
CptS 111, Spring 2023
Lect. #7, Feb. 1, 2023
Class Notes

Today's Agenda:

1. Data structures in Python
2. Lists
3. Tuples
4. Dictionaries

Ch. 3 (cont.)

1. Python's Data Structures (strings, lists, tuples, sets, and dictionaries)

Thus far we've worked with integers, floats, and strings. Python also provides four other variable types which are called data structures because of the special
actions that can be performed with them. Actually, in Python, strings are also a data structure which makes them very easy to manipulate and is one of the
reasons why Python is so popular.

In addition to strings, the four data structures are lists, tuples, sets, and dictionaries. Before discussing these, let's define some new terms:

- A container is something that contains literals or variables (or even data structures).
- An iterable is a data type that can be iterated :); we'll use these in for -loops which we'll cover in Ch. 6.
- A sequence is an ordered iterable that allows items to be indexed.

Because lists, tuples, set, and dictionaries all contain other variables, they're all containers. Let's compare these different containers together with strings.

Data Structure Iterable Sequence Mutable Creation Example

string yes yes no str() 'Go, Cougs!'

list yes yes yes list() [1, 1.618, ['a', 'b']]

tuple yes yes no tuple() (1, 1.618, ['a', 'b'])

set yes no yes set() {1, 1.618, 'a', 'b'}

dictionary yes no yes dict() {1:'one', 'two':2, (1, 2):'tuple'}

Recall that if something is mutable, it can be changed; if it is immutable, it can't be changed.

Lists, tuples, sets, and dictionaries are all containers that are iterables. However, they aren't all sequences or mutable. Strings are iterable sequences that are
immutable.

We won't use sets very much or cover named tuples in CptS 111 (other than in the reading assignments you've completed), but it's good for you to know
about them.

2. Lists

1) About lists:

together with strings, are probably the most useful variable type in Python
are sequences so can index like strings
indexes are always enclosed by square brackets []
indexing always begins at 0
are mutable so can change values
can have lists of lists, lists of tuples, mixed lists, and so forth

In [1]:

An aside:

Functions and methods are both ways of performing actions.
Functions are usually broader in scope than methods.
Both functions and methods may or may not have arguments.
Functions stand on their own, but methods follow objects preceded by a dot.
Methods are typically associated with a specific data structure.
You must spend time memorizing which commands are functions and which are methods!

Some list functions and methods:

li f b

43

List example with a commonly used index value

prime_list = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]
last_prime = prime_list[-1]
print(last_prime)

len() : finds list length, i.e., the number of elements in a list
max() : finds maximum value
min() : finds minimum value
.append() : adds element to end of a list <- very useful!
.pop() : removes element w/ given index or last element w/ no index
.remove() : removes first element w/ a given value
.sort() : sorts list from lowest to highest value
.count() : provides count of number of occurrences of given value

2) To initialize an empty list, we use, e.g.,:

nums = []

In [2]:

3) We can use operator overloading to combine two lists.

In [4]:

4) We use indexing to change the value of an element.

In [5]:

5) Examples for some list functions:

In [6]:

In [7]:

6) Examples for some list methods; note the differences between how functions and methods are used.

In [8]:

[]

primes: [11, 13, 17, 2, 3, 5, 7]

primes1: [2, 3, 5, 7]
primes1[0]: 2

primes1: [11, 3, 5, 7]
primes1[0]: 11

8.285714285714286

17
2

[11, 13, 17, 2, 3, 5, 7, 5]

Initializing an empty list

names = []
print(names)

Combining two lists using operator overloading
Result is order dependent!

primes1 = [2, 3, 5, 7]
primes2 = [11, 13, 17]
primes = primes2 + primes1
print('primes:', primes)

We can change list elements because LISTS ARE MUTABLE

print('primes1:', primes1)
print('primes1[0]:', primes1[0]) # Print first element
primes1[0] = 11 # Change first element
print()

print('primes1:', primes1)
print('primes1[0]:', primes1[0]) # Print first element

Note well!
Use sum() and len() to find _average_ value of numbers in list

avg = sum(primes) / len(primes)
print(avg)

Use max() and min() to find maximum and minimum values

print(max(primes))
print(min(primes))

Use .append() method to add 5 to end of list; we'll use this method a lot!

primes.append(5) # name of list before dot!
print(primes)

In [9]:

In [10]:

In [11]:

In [12]:

In [13]:

In [14]:

In [15]:

Actions performed on lists change the lists "in place" which means when you perform an action on a list, you lose the original list.

3. Tuples

About tuples:

are very similar to lists
major difference is that tuples are immutable
are very common in Python
often use is hidden because they're easily unpacked (more about unpacking later)
can use many of the functions and methods used with lists

In [16]:

However, we can't use any of the functions or methods that alter a tuple. Why? Also, while we can initialize an empty tuple, it isn't of any practical use. Why?
However, we can use operator overloading to create a new tuple.

Out[9]: 2

Out[10]: [11, 13, 17, 2, 3, 5, 7]

Out[11]: [11, 13, 17, 2, 3, 5, 7, 2]

Out[12]: [13, 17, 2, 3, 5, 7, 2]

Out[13]: [13, 17, 2, 3, 5, 7, 2, 2]

Out[14]: [13, 17, 3, 5, 7, 2, 2]

Out[15]: [2, 2, 3, 5, 7, 13, 17]

Max is: 13
Length is: 6
2 count is: 1
Sum is: 41

Use .count() method to find number of 5's in list

primes.count(5)

Use .pop() method wo/ arg to remove last element

primes.pop()
primes

Use .append() method again; note that element is placed
at the end

primes.append(2)
primes

Use .pop() method w/ arg to remove first element

primes.pop(0)
primes

Use .append() method again

primes.append(2)
primes

Use .remove() method to remove _first_ occurrence of 2

primes.remove(2)
primes

Use .sort() method to sort list from low to high values

primes.sort()
primes

We can use some of the functions with tuples that we used
with lists

primes = (2, 3, 5, 7, 11, 13)
print('Max is:', max(primes))
print('Length is:', len(primes))
print('2 count is:', primes.count(2)) # Method!
print('Sum is:', sum(primes))

In [17]:

In [18]:

4. Dictionaries

Dictionaries are useful data structures, and we'll have more to say about them in a later lecture. For now, we'll cover the material that you need for PA #5.

About dictionaries:

differ from lists and tuples because they aren't sequences -> can't be indexed
are made up of key-value pairs {key1: value1, key2: value2}
keys must be immutable
values can be either immutable or mutable

To initialize an empty dictionary, we simply do the following, e.g.,

In [19]:

Then to add to the dictionary, we use new key-value pairs. Important: To add these, we use the form >>> dict_name[key] = value <<< .

In [20]:

In [21]:

In [22]:

In [23]:

Out[17]: (1, 3, 5, 7, 9, 2, 4, 6, 8, 10)

AttributeError Traceback (most recent call last)
Input In [18], in <cell line: 3>()
 1 # Can't sort because tuples are immutable!
----> 3 nums.sort()

AttributeError: 'tuple' object has no attribute 'sort'

Out[19]: {}

Out[20]: {'goodies': ['cookies', 'HD coffee ice cream', 'scones']}

Out[21]: {'goodies': ['cookies', 'HD coffee ice cream', 'scones'],
 'numbers': [42, 1.618, 3.141592653]}

Out[22]: {'goodies': ['cookies', 'HD coffee ice cream', 'scones'],
 'numbers': [42, 1.618, 3.141592653],
 'integer': 88}

Out[23]: {'goodies': ['cookies', 'HD coffee ice cream', 'scones'],
 'numbers': [42, 1.618, 3.141592653],
 'integer': 88,
 'husband': 'John Schneider'}

We can't change a tuple, but we can use operator overloading
with tuples

evens = (2, 4, 6, 8, 10)
odds = (1, 3, 5, 7, 9)
nums = odds + evens
nums

Can't sort because tuples are immutable!

nums.sort()

Initialize an empty dictionary

faves = {}
faves # Empty!

Dictionary values can be anything: lists, tuples, dictionaries, ...
Let's add a list value ('goodies' is the key; the list is the value)

faves['goodies'] = ['cookies', 'HD coffee ice cream', 'scones'] # value is list
faves # goodies is the key; the value occurs after the colon

Add another list value; here we assign the list to the lvalue nums and
then use the lvalue as the value

nums = [42, 1.618, 3.141592653]
faves['numbers'] = nums # value is a list
faves # goodies and numbers are the keys

Add an integer value

faves['integer'] = 88 # value is an integer
faves # goodies, numbers, and integer are the keys

This dictionary value is a string literal ('husband' is the key)

faves['husband'] = 'John Schneider' # value is a string
faves # We've added a new key-value pair: 'husband': 'John Schneider'

Notice that a value can be any type of variable (including another dictionary). We can change a value using a key.

In [24]:

In [25]:

For PA #5, you'll also need to use the in command as part of a test statement to see whether a key exists in your dictionary.

In [26]:

We remove key-value pairs using the del (for delete) command.

In [27]:

Finally, we can remove all the entries from a dictionary using the .clear() method. Be careful with this method if your dictionary is large. You don't want to
wipe out a dictionary you wanted to keep!

In [28]:

Out[24]: {'goodies': ['cookies', 'HD coffee ice cream', 'scones'],
 'numbers': [42, 1.618, 3.141592653],
 'integer': 99,
 'husband': 'John Schneider'}

Out[25]: {'goodies': ['cookies',
 'HD coffee ice cream',
 'scones',
 'chocolate croissants'],
 'numbers': [42, 1.618, 3.141592653],
 'integer': 99,
 'husband': 'John Schneider'}

My favorite goodies are: ['cookies', 'HD coffee ice cream', 'scones', 'chocolate croissants']

Out[27]: {'numbers': [42, 1.618, 3.141592653],
 'integer': 99,
 'husband': 'John Schneider'}

Out[28]: {}

USE A KEY TO CHANGE A VALUE

faves['integer'] = 99 # Can think of a key as being a substitute for an index
faves # The value for the key 'integer' has been changed from 88 to 99

What am I doing here? Hint: .append() is used with lists

faves['goodies'].append('chocolate croissants')
faves

faves['goodies'] gives the value which is a list; we can append
an element to a list

if 'goodies' in faves:
 print('My favorite goodies are:', faves['goodies'])

Use del to delete a key-value pair

del faves['goodies']
faves

Use the .clear method to empty the dictionary of everything

faves.clear()
faves # And we're back to our empty dictionary

