
CptS 111, Spring 2023
Lect. #8, Feb. 6, 2023
Class Notes

Today's Agenda:

1. Conditionals
2. if statements
3. Relational (comparison) operators
4. if - else statements
5. if - elif - else statements

Ch. 4

Conditionals

A basic and important aspect of programming is the ability to code test expressions (conditions) that evaluate to the Boolean variables True or False .
These conditionals allow us to execute different commands depending on the outcome of the test expression.

1. if Statements

The simplest conditional is an if statement.

if statement template:

if <test expression>:

 <conditional body>

If the test expression evaluates to True , then the statements in the body are executed; if it evaluates to False , they aren't executed. The body of the
conditional must be indented as shown.

Note that all variables, names, functions, literals, classes, and so forth in Python are True except for four. These four are False , 0 , None , and anything
empty, e.g., an empty string or list. Thus, True , 1 , Hello , 3.141592 , and so on all evaluate to True .

Consider the simplest examples of conditionals--single variable tests:

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

In [6]:

Let's next move on to a more complex text expression.

This is a true statement.

This is a true statement.

This is a true statement.

We can use a single variable as our test expression

We can even use the Boolean variables True and False

if True:
 print('This is a true statement.')

Any number that's non-zero evaluates to True

if -1:
 print('This is a true statement.')

Any string that isn't empty evaluates to True

if 'Henry':
 print('This is a true statement.')

Four objects evaluate to False; zero is one of them

if 0:
 print('This is a false statement.')

All empty objects evaluate to False, including an empty string

if '':
 print('This is a false statement.')

None also evaluates to False

if None:
 print('This is a false statement.')

In [7]:

The last example (and variants of it) can actually be quite useful. If we replace 2 by any other number, we can determine whether test_num is divisible by
that number.

In [8]:

2. Comparison (Relational) Operators

It's useful to be able to use comparison/relational operators in test expressions to compare two operands as in the last two examples, i.e., we used == . There
are six different comparison/relational operators:

x < y Is x less than y?

x <= y Is x less than or equal to y?

x == y Is x equal to y?

x >= y Is x greater than or equal to y?

x > y Is x greater than y?

x != y Is x not equal to y?

It's best not to use the equality operator (==) with floats because of float precision, i.e., we don't always know the actual value of the float. Note that == has
to be used to determine whether two things are equal because = is the assignment operator.

Let's consider some examples using comparison operators.

In [9]:

In [10]:

In [11]:

In [12]:

There are instances when a series of if statements is the correct way to write a program. Consider the following:

test_num is even!

3456789 is divisible by 7.

x and y are not equal.

It's not easy to tell how x and y are related.

5x is greater than y.

x is less than or equal to y.

This is a very useful test!

The modulo of an even number is 0!

test_num = 6
if (test_num % 2) == 0: # Parentheses aren't needed
 print('test_num is even!')

Check to see whether 7 is a factor of a number

number = 3456789
if (number % 7) == 0:
 print(f'{number} is divisible by 7.')

Not equal to

x = 5
y = 10
if x != y:
 print('x and y are not equal.')

We can use operations in conditionals!

if (x + 5) >= y:
 print("It's not easy to tell how x and y are related.")

Another example of an operation

if (5 * x) > y:
 print('5x is greater than y.')

Less than or equal to

if x <= y:
 print('x is less than or equal to y.')

In [13]:

For the example above, each if statement was required in order to obtain the correct discount. However, if we only want to execute one body of
statements depending on the outcome of a test expression, we don't use a series of if statements, or it's considered to be bad coding.

3. if-else Statements

Consider the following example:

In [14]:

For this example, it doesn't make sense to execute the second if statement, i.e., the second test expression, if the first one evaluates to True because the
person is either 18 or older or else younger than 18. Instead we should use an if-else statement.

if-else statement template

if <test expression>:

 <body>

else:

 <body>

Using this format, the previous example would simply be:

In [15]:

Let's consider a few more examples:

In [16]:

Your discount is 10%.

Enter your age: 28

You're eligible to vote.

Enter your age: 28

You're eligible to vote.

Enter their mile time: 5.67

They did not break a 4-minute mile.

Use of multiple if statements

age = 58
member = True # Note that True and False aren't strings so
coupon = False # we don't use quotes with them

discount = 0 # Initialize discount to 0
 # Here discount is an accumulator

if age >= 55:
 discount += 5
if member:
 discount += 5
if coupon:
 discount += 5

print(f'Your discount is {discount}%.')

Example of bad coding

age = int(input('Enter your age: '))
if age >= 18:
 print("You're eligible to vote.")

if age < 18:
 print("You're still too young to vote.")

Example of correct coding using if-else

age = int(input('Enter your age: '))
if age >= 18:
 print("You're eligible to vote.")

else:
 print("You're still too young to vote.")

Another if-else example

mile_pace = float(input('Enter their mile time: '))
if mile_pace < 4:
 print('They broke a 4-minute mile.')

else:
 print('They did not break a 4-minute mile.')

In [17]:

4. if-elif-else Statements

When we want to execute only one body of statements depending on the outcome of mutiple test expressions, we use an if-elif-else construct (you
need to use this in zyLab_PA3).

if-elif-else statement template

if <test expression 1>:

 <body 1>

elif <test expression 2>:

 <body 2>

elif <test expression 3>:

 <body 3>

.

.

.

else:

 <body N>

elif is shorthand for else if . You can have as many elif statements as necessary, and then you close with an else statement. For example,
consider the following:

In [18]:

In [19]:

In [20]:

We need to buy more cookies.

Enter current temperature: 43

A warm coat and gloves should be fine.

Enter an integer: 42

Your integer is divisible by 3.

Enter an integer: 42

Your number is divisible by 7.

An if-else example with variables

num_cookies = 24
num_children = 25
if num_cookies >= num_children:
 print('We have enough cookies!')

else:
 print('We need to buy more cookies.')

Example of if-elif-else

degrees = float(input('Enter current temperature: '))
if degrees <= 20:
 print('Bundle up in lots of clothing!')

elif degrees <= 32:
 print('Wear a warm coat, a scarf, a hat, and gloves.')

elif degrees <= 45:
 print('A warm coat and gloves should be fine.')

elif degrees <= 55:
 print('A jacket should be plenty.')

elif degrees <= 65:
 print('You may need a sweater or hoodie.')

else:
 print('Time to haul out the shorts!')

And one more if-elif-else example using !=

num = int(input('Enter an integer: '))
if num < 0:
 print('We only want to test positive integers.')

elif (num % 3) != 0:
 print('Your integer is not divisible by 3.')

else:
 print('Your integer is divisible by 3.')

We can use any number we want; we can also use == rather than !=

num = int(input('Enter an integer: '))
if (num % 7) == 0:
 print('Your number is divisible by 7.')

else:
 print('Your number is not divisible by 7.')

