
CptS 111, Spring 2023
Lect. #9, Feb. 8, 2023
Class Notes

Today's Agenda:

1. Relational/Comparison operators revisited
2. Boolean/Logical operators and expressions
3. Operator chaining
4. Nested conditionals
5. Precedence

Ch. 4 (cont.)
1. Relational/Comparison Operators Revisited

On Monday, we discussed the six comparison/relational operators used in test expressions to compare two operands:
x < y Is x less than y?

x <= y Is x less than or equal to y?

x == y Is x equal to y?

x >= y Is x greater than or equal to y?

x > y Is x greater than y?

x != y Is x not equal to y?

When used in a test expression, these result in one of the Boolean variables True or False . Note that floats and integers can be equal to each other:

In [1]:

However, as I mentioned on Monday, it's not a good idea to compare float values to each other because the value of a float may not be what you think it is,
which is usually a result of the finite precision of floats. Consider the following two examples:

In [2]:

In [3]:

In [4]:

In the first example, the value of y is 1.0 as expected, but in the second example, the value of z isn't quite 1.0 because of the way floats are handled.

Comparing integers is straightforward. For example,

In [5]:

Out[1]: True

Out[2]: True

Out[3]: False

0.1 * 10 = 1.0

0.1 summed 10 times = 0.9999999999999999

Out[5]: True

Integers and floats can be equal

1 == 1.0

It's not a good idea to test for equality between two floats

First, multiply 0.1 and 10 which should result in 1

x = 0.1
y = 10 * x
y == 1.0

Second, add 0.1 ten times; this should also result in 1

Sum of 10 x's.

z = (x + x + x + x + x + x + x + x + x + x) # Add 0.1 10 times
z == 1.0

What happened? Adding 0.1 ten times and multiplying 0.1 by 10

should both give 1

print('0.1 * 10 =', y)

print('0.1 summed 10 times =', z)

Is the same true for integers? 2 + 2 = 4!

int1 = 4
int2 = 2 + 2
int1 == int2

In [6]:

Because decimal integers can be written exactly in terms of binary sums, integers don't have rounding errors!

Comparing strings is a little bit more complicated. Recall from Ch. 3 that ASCII characters (how many are there?) can be equated to their decimal and binary
values, e.g., A is 65 and a is 97 . Also, A < Z , and a < z , but what about a > Z ?

In [7]:

In [8]:

Uppercase letters are smaller than lowercase letters! Because of this, we can even compare lists of strings.

In [10]:

2. Boolean/Logical Operators and Boolean Expressions

There are three Boolean operators: and , or , and not . The first two are used frequently; not must be used with care. not has higher precedence than
and which has higher precedence than or , i.e.,

not > and > or

and requires both Boolean/logical expressions to be True to test True
or requires only one Boolean/logical expression to be True to test True

Note: If the first test expression in a Boolean expression using and is false, the second test expression won't be evaluated. Similarly, if the first test
expression in a Boolean expression using or is true, the second test expression won't be evaluated. Remember this because it can be the source of
errors. For example:

In [45]:

Out[6]: True

a is < z

a is > Z

a is 97

z is 122

Z is 90

Thus, a < z (97 < 122),

but a > Z (97 > 90).

['a', 'b', 'c'] > ['a', 'b', 'D']

x < 10

10 * 4 = 40, but what about if we add 4 ten times?

int3 = 10 * int1
int4 = int2 + int2 + int2 + int2 + int2 + int2 + int2 + int2 + int2 + int2
int3 == int4

'a' is less that 'z', but is 'a' > 'Z'?

if 'a' < 'z':
 print('a is < z')

if 'a' > 'Z':
 print('a is > Z')

Of course, this all has to do with the decimal values of ASCII

characters; any lowercase letter is larger than any uppercase

letter!

print('a is', ord('a')) # Arg of ord() is a single character

print('z is', ord('z'))

print('Z is', ord('Z'))

print('Thus, a < z (', ord('a'), ' < ', ord('z'), '),', sep='')
print('but a > Z (', ord('a'), ' > ', ord('Z'), ').', sep='')

Compare two different lists

list1 = ['a', 'b', 'c']
list2 = ['a', 'b', 'D']
if list1 > list2:
 print("['a', 'b', 'c'] > ['a', 'b', 'D']")

We can't divide by 0, but x / 0 isn't evaluated!

x = 5
if x < 10 or x / 0:
 print('x < 10')

In [46]:

In [47]:

Sometimes the Boolean/logical not operator is useful, but often we can avoid using it to make our code more readable. For example, consider the following:

In [48]:

In [49]:

In [50]:

In [51]:

3. Operator Chaining

Python allows us to combine comparison expressions easily using operator chaining. Using operator chaining,

if x > 5 and x < 10:

can be written simply as:

if 5 < x < 10:

Operator chaining isn't common in programming languages. It's another example of how Python makes programming easier.

In [52]:

ZeroDivisionError Traceback (most recent call last)

Input In [46], in <cell line: 4>()

 1 # If we reverse the comparisons, let's see what happens
 3 x = 5
----> 4 if x / 0 or x < 10:
 5 print('x < 10')

ZeroDivisionError: division by zero

x is 10

x <= 7 and x >= 0

x <=7 and x >= 0

x <= 7 and x >= 0

If we reverse the comparisons, let's see what happens

x = 5
if x / 0 or x < 10:
 print('x < 10')

Again, if the first test expression is wrong when 'and' is used,

Python will skip the second one because the two evaluate to false

x = 10
if x != 10 and x / 0:
 print("You can't divide by zero.")

else:
 print('x is 10')

The Boolean 'not' can be confusing; here we test to see whether x is

greater than 3

x = 1
if not x <= 3:
 print('x > 3')

'x > 3' is equivalent to 'not x <= 3'

This is easier for me to understand

if x > 3:
 print('x > 3')

The use of parentheses here means that the expression evaluates to

True if x is less than or equal to 7 or x is greater than or equal to 0

if not (x > 7 or x < 0):
 print('x <= 7 and x >= 0')

We can use a Boolean 'and' expression to get an expression equivalent

to the 'not(x > 7 or x < 0)'

This is easier for me to understand

if x <= 7 and x >= 0: # Use parentheses to make this more readable
 print('x <=7 and x >= 0')

Last example using operator chaining

This is even easier for me to understand!

if 0 <= x <= 7:
 print('x <= 7 and x >= 0')

In [53]:

Note that in the example above, we could have also used the following operator chaining:

In [54]:

4. Nested Conditionals

We can nest conditionals as many times as needed:

if <test expression>:

 if <test expression>:

 if <test expression>:

 <code>

 else:

 <code>

 else:

 <code>

else:

 <code>

As you read in your zyBook, you must keep track of the correct indentation in your blocks of code!

In [55]:

5. Precedence

Recall that in arithmetic expressions, certain operators have precedence over others, e.g., multiplication has higher precedence than addition. When we
combine arithmetic expressions with comparison and logical expressions, we also need to know the rules of precedence: Arithmetic operators have
precedence over comparison/relational operators which have precedence over Boolean/logical operators. Remember this!

arithmetic > comparison/relational > Boolean/logical

When in doubt, use parentheses!

In [23]:

In the example above, the math calculations are performed first, then the comparison operations, and finally the logical (and) operation. Thus the progression
is:

(56 > 48) and (90 < 80) # First arithmetic operations

(True) and (False) # Next comparison operations (> and <)

False # Finally, logical operations (and)

Where we recall that in order for the and operator to give a True result, both operands must be True .

She's a high school student.

She's a high school student.

Enter day of the week: Sunday

Enter the temperature forecast [integer]: 60

Enter the weather_forecast [clear, rainy]: clear

Let's go for a hike!

Out[23]: False

Another example of operator chaining

grade_in_hs = 10
if 9 <= grade_in_hs <= 12:
 print("She's a high school student.")

This is an equivalent expression

if 12 >= grade_in_hs >= 9:
 print("She's a high school student.")

Nested conditionals

day = input('Enter day of the week: ')
if day == 'Saturday' or day == 'Sunday':
 temp_forecast = int(input('Enter the temperature forecast [integer]: '))
 weather_forecast = input('Enter the weather_forecast [clear, rainy]: ')
 if 60 <= temp_forecast <= 75 and weather_forecast == 'clear':
 print("Let's go for a hike!")

 elif temp_forecast < 60 and weather_forecast == 'rainy':
 print("I'm going read a book.")

 else:
 print("I'm open to suggestions.")

else:
 print('Go to work or to school!')

(8 * 7 > 8 * 6) and (9 * 10 < 8 * 10)

