
EE331—EXAMPLE #16: EXAMPLE #15 REVISITED

Given the vector field B(r, θ, φ) = r2 cosφ âr + r cosφ âθ, find the net outward flux through the

closed hemisphere 0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2, and 0 ≤ φ < 2π using the divergence theorem.

First make a sketch of the surface. (Still sorry about the strange perspective.)
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In Example #15 we found the net flux through the closed surface by dividing the surface into two

open surfaces, the top and bottom. However, according to the divergence theorem:

∮
B·dS =

∫
∇·B dv (1)

So let’s take the divergence of B:
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Using this result in (1) together with dv = r2 sin θdrdθdφ gives:
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which is the same result as we got in Example #15 using two surface integrals. Sometimes using the

divergence theorem can make life easier (either by doing the volume integral instead of the surface

integral or vice versa); sometimes it’s a wash (as is probably the case here). Regardless, it gives you

a way of checking your result!


