
EE331—EXAMPLE #26: LAPLACE’S EQUATION, 2-D PROBLEM

Use the general solution to Laplace’s equation for V (0, y) = V (x, 0) = V (x, a) = 0 to find the
complete solution to Laplace’s equation when V (b, y) = V0 = constant.
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The general solution is given by:
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Apply the non-zero boundary value:
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Multiply both sides by sin
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and integrate:
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Look at the right-hand side of the equation. The only non-zero term occurs when m = n. Thus:
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Now integrate the left-hand side to get:
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Now consider (2). When n is an even integer, cos(nπ) = 1, and when n is an odd integer, cos(nπ) =
−1. So (2) is 0 for even n and for n odd:
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Equating (1) and (3) gives:
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Thus, the coefficients associated with the sine terms are given by:
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and the complete solution for our problem (i.e., the value of the potential everywhere inside the
region of interest) is:
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