The reflection coefficient Γ_L gives the ratio of the reflected voltage and incident voltage in terms of the load impedance Z_L and characteristic impedance of the line Z_0 :

$$\Gamma_{L} = \frac{V_{0}^{-}}{V_{0}^{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}.$$

The ratio of the maximum voltage magnitude and the minimum voltage magnitude is called the standing wave ratio:

$$s = \frac{|V_s|_{\max}}{|V_s|_{\min}} = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}.$$

This is also called the SWR or VSWR. Consider a lossless transmission line with a characteristic impedance of $Z_0 \ \Omega$. (a) For a matched load (i.e., $Z_L = Z_0$), what is *s* and what are the values of $|V_s|_{\text{max}}$ and $|V_s|_{\text{min}}$? (b) Sketch $|V_s(z)|$ as a function of *z* for a matched load and explain why it looks the way it does. (c) What is *s* for an open-circuited line and what is it for a short-circuited line? (d) What are the values of $|V_s|_{\text{min}}$ for open- and short-circuited lines? Note: $|V_s|_{\text{max}} = |V_0^+|(1 + |\Gamma_L|)$ and $|V_s|_{\text{min}} = |V_0^+|(1 - |\Gamma_L|)$.

- (a) For a matched load, $\Gamma_L = 0$ (i.e., no reflection). Thus, $s = \frac{1+0}{1-0} = 1$.
- (b) Since $\frac{|V_s|_{\text{max}}}{|V_s|_{\text{min}}} = s = 1$, $|V_s|_{\text{max}} = |V_s|_{\text{min}} = |V_0^+|$. $|V_s(z)| = |V_0^+|$ is constant because there's no reflected wave to interfere with the incident wave to cause a standing wave.

- (c) For $Z_L \to \infty$, $\Gamma_L = 1$, and $|\Gamma_L| = 1$. Thus, $s \to \infty$. For $Z_L = 0$, $\Gamma_L = -1$, and $|\Gamma_L| = 1$. Thus, $s \to \infty$.
- (d) We know $|V_s|_{\min} = |V_0^+|(1 |\Gamma_L|)$. Since $|\Gamma_L| = 1$ for both an open-circuit load and a short-circuit load, $|V_s|_{\min} = 0$ for both.

Earlier we found that $0 \le |\Gamma_L| \le 1$. Now we find that $1 \le s \le \infty$.