Name _____

EE 331 - BCT #1, v1

- 1. What is the area of a circle of radius r m?
- 2. What is the volume of a sphere of radius r m?
- 3. Write down Euler's rule (also called Euler's identity or Euler's law).
- 4. Sketch $y = \cosh x$.

5. Sketch $y = e^{-x}$ for $x \ge 0$.

Evaluate, simplify, convert to or from phasor form, or identify the following (eliminate any complex denominators):

- 6. $e^{x/2} \cdot e^{x/2} =$
- 7. $(\widehat{\mathbf{a}}_x \times \widehat{\mathbf{a}}_y) + (\widehat{\mathbf{a}}_z \times \widehat{\mathbf{a}}_z) =$
- 8. $\frac{4-j}{1-j} =$
- 9. $\frac{e^x + e^{-x}}{2} =$
- 10. $\frac{d(1/x)}{dx} =$

11.
$$\frac{d(xe^{\sin x})}{dx} =$$

12. $\int x \, dx =$
13. $\int_{-0.1}^{0.1} \frac{x}{[x^2 + 4]^{3/2}} dx =$
14. $\int \sin^3 x \cos x \, dx =$

15.
$$V_s(z) = 2e^{-(1+j2)z-j\pi/3}$$

16. Write down the sum of the first three *non-zero* terms of the Taylor series for e^x expanded about 0.

In the final problems, $f(x, y) = x^2 y - \cos x$, $\mathbf{A} = \hat{\mathbf{a}}_x + 2\hat{\mathbf{a}}_y$, and $\mathbf{B} = -2\hat{\mathbf{a}}_y$.

17.
$$\frac{\partial f(x,y)}{\partial y} =$$

18.
$$\frac{\partial^2 f(x,y)}{\partial x \partial y} =$$

19. $\mathbf{A} \cdot \mathbf{B} =$

20. |A - B| =