EE 331 – Exam #2 March 13, 2020 Closed Book/Closed Notes

Relax and think carefully. Show all your work to insure maximum partial credit. Remember that *neatness counts*! SHOW ALL UNITS (e.g., V/m, m), and COMMUNICATE WHAT YOU KNOW!!

1. (a) (4 pts) Given
$$\mathbf{A} = \frac{2}{r} \, \hat{\mathbf{a}}_r + \frac{3}{r} \, \hat{\mathbf{a}}_{\phi}$$
, find $\mathbf{A} \cdot \mathbf{d} \mathbf{l}$.

$$\mathbf{A} \cdot \mathbf{d} \mathbf{l} = \left(\frac{2}{r} \, \hat{\mathbf{a}}_r + \frac{3}{r} \, \hat{\mathbf{a}}_{\phi}\right) \cdot \left(dr \, \hat{\mathbf{a}}_r + r \, d\theta \, \hat{\mathbf{a}}_{\theta} + r \sin \theta \, d\phi \, \hat{\mathbf{a}}_{\phi}\right)$$

$$= \frac{2}{r} \, dr + 3 \sin \theta \, d\phi$$

(b) (8 pts) A vector field is given by $\mathbf{A} = \rho \sin \phi \, \hat{\mathbf{a}}_{\phi}$. Find the curl of \mathbf{A} .

$$\nabla \times \mathbf{A} = \begin{bmatrix} \frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \end{bmatrix} \hat{\mathbf{a}}_{\rho} + \begin{bmatrix} \frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho} \end{bmatrix} \hat{\mathbf{a}}_{\phi} + \frac{1}{\rho} \begin{bmatrix} \frac{\partial (\rho A_{\phi})}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \phi} \end{bmatrix} \hat{\mathbf{a}}_z$$
$$= \begin{bmatrix} \frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \end{bmatrix}^0 \hat{\mathbf{a}}_{\rho} + \begin{bmatrix} \frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho} \end{bmatrix}^0 \hat{\mathbf{a}}_{\phi} + \frac{1}{\rho} \begin{bmatrix} \frac{\partial (\rho A_{\phi})}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \phi} \end{bmatrix} \hat{\mathbf{a}}_z$$
$$= \frac{1}{\rho} \begin{bmatrix} \frac{\partial (\rho^2 \sin \phi)}{\partial \rho} \end{bmatrix} \hat{\mathbf{a}}_z$$
$$= 2 \sin \phi \hat{\mathbf{a}}_z$$

(c) (2 pts) In part (b), is A a conservative field? Explain (explanation should be short).

No, because $\nabla \times \mathbf{A} \neq 0$.

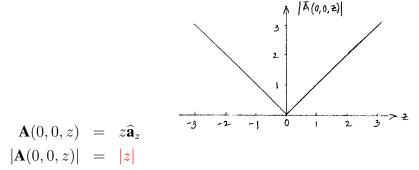
- 2. A vector field is given by $\mathbf{A} = 2x\,\hat{\mathbf{a}}_x + 2y\,\hat{\mathbf{a}}_y + (x^2y + z)\,\hat{\mathbf{a}}_z$.
 - (a) (5 pts) Find the value of A at $\mathbf{r} = (1, 1, 1)$ m.

$$\mathbf{A}(1,1,1) = 2(1)\,\widehat{\mathbf{a}}_x + 2(1)\,\widehat{\mathbf{a}}_y + ((1^2)(1)+1)\,\widehat{\mathbf{a}}_z$$
$$= 2\,\widehat{\mathbf{a}}_x + 2\,\widehat{\mathbf{a}}_y + 2\,\widehat{\mathbf{a}}_z$$

(b) (5 pts) Find the magnitude of A, i.e., $|\mathbf{A}|$, in the x = 0 plane.

$$\mathbf{A}(0, y, z) = 2y \,\widehat{\mathbf{a}}_y + z \,\widehat{\mathbf{a}}_z$$
$$|\mathbf{A}(0, y, z)| = \sqrt{4y^2 + z^2}$$

(c) (6 pts) Plot the magnitude of A, i.e., |A|, along the z axis for $-3 \le z \le 3$ m. Label your plot! Be careful! Think about this one!



(d) (9 pts) Use the projection method to transform A to cylindrical coordinates, but just find A_{ρ} .

$$A_{\rho} = \mathbf{A} \cdot \widehat{\mathbf{a}}_{\rho}$$

= $2x \, \widehat{\mathbf{a}}_{x} \cdot \widehat{\mathbf{a}}_{\rho} + 2y \, \widehat{\mathbf{a}}_{y} \cdot \widehat{\mathbf{a}}_{\rho} + (x^{2}y + z) \, \widehat{\mathbf{a}}_{z} \cdot \widehat{\mathbf{a}}_{\rho}$
= $2x \cos \phi + 2y \sin \phi + 0$
= $2\rho \cos^{2} \phi + 2\rho \sin^{2} \phi$
= $2\rho (\cos^{2} \phi + \sin^{2} \phi) = 2\rho$

- 3. A vector field is given by $\mathbf{D} = \frac{2}{r} \, \hat{\mathbf{a}}_r + \frac{3}{r} \, \hat{\mathbf{a}}_{\phi} \, \mathbf{C/m^2}$. Don't forget units.
 - (a) (8 pts) Find the divergence of **D**.

$$\nabla \cdot \mathbf{D} = \frac{1}{r^2} \frac{\partial (r^2 D_r)}{\partial r} + 0 + \frac{1}{r \sin \theta} \frac{\partial D_{\phi}}{\partial \phi}$$
$$= \frac{1}{r^2} \frac{\partial (2r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(\frac{3}{r}\right)^{\bullet}$$
$$= \frac{2}{r^2} C/m^3$$

(b) (10 pts) Find the net outward flux $\oint_S \mathbf{D} \cdot \mathbf{dS}$ for a sphere of radius 2 m.

$$\oint_{S} \mathbf{D} \cdot \mathbf{dS} = \oint \left(\frac{2}{r} \,\widehat{\mathbf{a}}_{r} + \frac{3}{r} \,\widehat{\mathbf{a}}_{\phi}\right) \cdot r^{2} \sin \theta \, d\theta \, d\phi \, \widehat{\mathbf{a}}_{r}$$

$$= 2r|_{r=2} \int_{0}^{\pi} \sin \theta \, d\theta \int_{0}^{2\pi} d\phi$$

$$= 4 \left(\cos \theta|_{\pi}^{0}\right) \left(\phi|_{0}^{2\pi}\right)$$

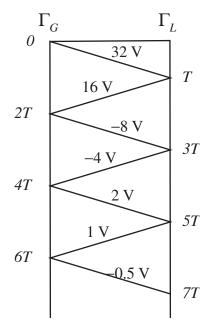
$$= (4)(2)(2\pi)$$

$$= 16\pi \mathbf{C}$$

(c) (10 pts) Find the total charge in a sphere of radius 2 m if the volume charge density is $\rho_v = \frac{2}{r^2}$ C/m³.

$$\int_{v} \rho_{v} dv = \int_{v} \left(\frac{2}{r^{2}}\right) r^{2} \sin \theta \, dr \, d\theta \, d\phi$$
$$= 2 \int_{0}^{2} dr \int_{0}^{\pi} \sin \theta \, d\theta \int_{0}^{2\pi} d\phi$$
$$= 2 \left(r|_{0}^{2}\right) \left(\cos \theta|_{\pi}^{0}\right) \left(\phi|_{0}^{2\pi}\right)$$
$$= (2)(2)(2)(2\pi)$$
$$= 16\pi C$$

- 4. In the following problem $\Gamma_L = 1/2$, $\Gamma_G = -1/2$, and $V_1^+ = 32$ V.
 - (a) (10 pts) Complete the bounce diagram by writing in the voltages V_1^+ , V_1^- , V_2^+ , and so on for all the diagonal lines in the bounce diagram.



(b) (4 pts) What is V_L , the line voltage at the load, at t = 0 s?

$$V_L(0) = \mathbf{0} \mathbf{V}$$

(c) (4 pts) What is V_G , the line voltage at the generator, at t = 2T s?

$$V_G(2T) = 32 + 16 - 8 = 40 \text{ V}$$

- 5. A 50- Ω transmission line is connected to an antenna with a normalized load impedance as shown on the Smith chart on the next page. Show your work on the Smith chart as directed.
 - (a) (5 pts) From the Smith chart, find the normalized load admittance y_L . Indicate and give the value of y_L on the Smith chart.
 - (b) (5 pts) Indicate and give the **two** possible values for y_d (the admittance of the load and the line) on the Smith chart.
 - (c) (5 pts) Indicate and give the **two** possible values for y_s (the admittance of the stub tuner) on the Smith chart.

