EE 331 – Exam #3 Apr. 17, 2020 Closed Book/Closed Notes

Relax and think carefully. Show all your work to insure maximum partial credit. Remember that *neatness counts*! SHOW ALL UNITS (e.g., V/m, C), and COMMUNICATE WHAT YOU KNOW!!

1. (21 pts—1.5 pts each) Match the one term on the right that is **BEST** associated with the term on the left. *Each term on the right can only be used once, and not all terms on the right are used.* No need to write down the terms on the left; just write 1-14, and put the letter next to it.

1) <u>B</u>	polarization density	A.	$\nabla^2 V = 0$
2) <u>G</u>	Joule's law	B.	Р
3) <u>K</u>	use to find electric field	C.	$\mathbf{J} = \sigma \mathbf{E}$
4) <u>L</u>	relaxation time	D.	$W = -Q \int \mathbf{E} \cdot \mathbf{d} \mathbf{l}$
5) <u>I</u>	fundamental problem in EM	E.	$\varepsilon(\mathbf{r}) = \varepsilon$
6) <u>E</u>	linear, isotropic, homogeneous	F.	$\nabla^2 V = -\frac{\rho_v}{\varepsilon}$
7) <u>F</u>	Poisson's equation	G.	$P = \int_{v} \mathbf{J} \cdot \mathbf{E}$
8) <u>S</u>	law of superposition	H.	χ_e
9) <u>D</u>	work	I.	charge here, effect there
10) <u>N</u>	static electric fields are conservative	J.	$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t}$
11) <u>C</u>	Ohm's law in point form	K.	$-\nabla V$
12) <u>H</u>	electric susceptibility	L.	$T_r = \frac{\varepsilon}{\sigma}$
13) <u>J</u>	continuity of current	М.	ε_r
14) <u>M</u>	dielectric constant	N.	$\nabla \times \mathbf{E} = 0$
		0.	$\nabla \cdot \mathbf{D} = \rho_v$
		P.	ε_0
		S.	$\mathbf{F} = \sum_{k=1}^{N} \mathbf{F}_{k}$
			k=1

2. (a) (8 pts) If the electric flux density **D** is $2\rho \sin \phi \hat{\mathbf{a}}_{\rho} + \rho \cos \phi \hat{\mathbf{a}}_{\phi}$ C/m², find the volume charge density ρ_v .

Use Gauss's law (M's first): $\nabla \cdot \mathbf{D} = \rho_v$

$$\nabla \cdot \mathbf{D} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (2\rho^2 \sin \phi) + \frac{1}{\rho} \frac{\partial}{\partial \phi} (\rho \cos \phi)$$
$$= \frac{1}{\rho} (4\rho \sin \phi) - \frac{1}{\rho} (\rho \sin \phi)$$
$$= 3 \sin \phi \ C/m^3$$

(b) (8 pts) If the dipole moment $p = Qd = 4\pi\varepsilon_0$, what is the electric field in the z = 0 plane at r = 1 m due to an electric dipole in free space?

$$\mathbf{E} = \frac{Qd}{4\pi\varepsilon_0 r^3} (2\cos\theta\,\widehat{\mathbf{a}}_r + \sin\theta\,\widehat{\mathbf{a}}_\theta) = \frac{4\pi\varepsilon_0}{4\pi\varepsilon_0 (1)^3} (2\cos\left(\pi/2\right)\,\widehat{\mathbf{a}}_r + \sin\left(\pi/2\right)\,\widehat{\mathbf{a}}_\theta) = \overline{\widehat{\mathbf{a}}_\theta \,\,\mathrm{V/m}}$$

(c) (12 pts) Region 1 (z > 0) has a dielectric constant of 3. Region 2 (z < 0) has a dielectric constant of 1.5. If $\mathbf{D}_2 = 12\hat{\mathbf{a}}_x + 9\hat{\mathbf{a}}_z$, find \mathbf{D}_1 .

We're given:

$$\mathbf{D}_2 = 12\widehat{\mathbf{a}}_x + 9\widehat{\mathbf{a}}_z \ \mathrm{C/m}^2$$

from which we get:

$$\mathbf{D}_{2t} = 12\widehat{\mathbf{a}}_x, \quad \mathbf{D}_{2n} = 9\widehat{\mathbf{a}}_z$$

The BC are given by:

BC: 1) $E_{1t} = E_{2t}$ 2) $D_{1n} = D_{2n}$

From the first BC:

$$E_{1t} = E_{2t} = \frac{D_{2t}}{\varepsilon_2} = \frac{D_{1t}}{\varepsilon_1}$$
$$\rightarrow D_{1t} = \frac{\varepsilon_1}{\varepsilon_2} D_{2t} = \frac{3\varepsilon_0}{1.5\varepsilon_0} (12) = 24$$

From the second BC:

$$D_{1n} = D_{2n} = 9$$

Thus:

 $\mathbf{D}_1 = 24\widehat{\mathbf{a}}_x + 9\widehat{\mathbf{a}}_z \ \mathrm{C/m}^2$

- 3. Two infinite conducting sheets are placed in free space with their edges meeting along the z axis but not touching. One sheet is in the plane $\phi = 0$ and has V = 0, and the other sheet is in the plane $\phi = \pi/4$ and has V = 25 V.
 - (a) (16 pts) Find the potential in the region between the two conductors.

Start with Laplace's equation:

$$\nabla^2 V = 0 \quad \rightarrow \quad \frac{1}{\rho^2} \frac{d^2 V}{d\phi^2} = 0 \quad \rightarrow \quad \frac{d^2 V}{d\phi^2} = 0$$

Next integrate twice wrt ϕ *:*

$$\frac{dV}{d\phi} = A$$
$$V(\phi) = A\phi + B$$

Next apply the values at the boundaries:

$$V(0) = A(0) + B \rightarrow B = 0$$

$$V(\pi/4) = A\left(\frac{\pi}{4}\right) = 25 \rightarrow A = \frac{100}{\pi}$$

Finally, then:

$$V(\phi) = \frac{100}{\pi} \phi \ \mathrm{V}$$

(b) (10 pts) Using the uniqueness theorem, prove that your solution is the correct and only solution. Hint: You must show two things to satisfy the uniqueness theorem! If you're unable to solve part (a), then explain these two things to get most of the credit.

First show that V is a solution to Laplace's equation:

$$\frac{1}{\rho^2} \frac{d^2 V}{d\phi^2} = \frac{1}{\rho^2} \frac{d^2}{d\phi^2} \left(\frac{100}{\pi}\phi\right) = \frac{1}{\rho^2} \frac{d}{d\phi} \left(\frac{100}{\pi}\right) = 0$$

Next show V satisfies the values at the boundaries:

$$V(0) = \frac{100}{\pi}(0) = 0$$
$$V(\pi/4) = \frac{100}{\pi} \left(\frac{\pi}{4}\right) = 25 \text{ V}$$

4. An infinite line (0, -2, z) carries a charge $\rho_L = 2$ C/m in free space. Find the value of the electric field at the origin using Coulomb's law:

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho_L(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} dl' \ [V/m]$$
(1)

(a) (7 pts) What are $\mathbf{r}, \mathbf{r}', \mathbf{r} - \mathbf{r}'$, and $|\mathbf{r} - \mathbf{r}'|^3$?

$$\mathbf{r} = 0$$
, $\mathbf{r}' = (0, -2, z')$ m
 $\mathbf{r} - \mathbf{r}' = (0, 2, -z')$ m, $|\mathbf{r} - \mathbf{r}'|^3 = [z'^2 + 4]^{3/2}$ m³

(b) (4 pts) What are dl' and the limits of integration?

$$dl' = dz', \quad \int_{-\infty}^{\infty} dz'$$

(c) (4 pts) By symmetry, what component(s) of **E**, if any, will be zero (it might help to make a sketch)?

$$E_x, E_z$$

(d) (10 pts) Now use all this information in Eq. (1) to find **E** at the origin. Leave your answer in terms of ε_0 . Make sure your answer makes physical sense! Some integrals are given on the equation sheet.

$$\mathbf{E}(0) = \frac{2}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} \frac{(\cancel{0}, 2, \cancel{z})^0}{[z'^2 + 4]^{3/2}} dz'$$

$$= \frac{2}{\pi\varepsilon_0} \widehat{\mathbf{a}}_y \int_0^{\infty} \frac{dz'}{[z'^2 + 4]^{3/2}} \quad \text{(even function)}$$

$$= \frac{2}{\pi\varepsilon_0} \widehat{\mathbf{a}}_y \left(\frac{z'}{4\sqrt{z'^2 + 4}}\Big|_0^{\infty}\right) \quad \text{(from equation sheet)}$$

$$= \boxed{\frac{1}{2\pi\varepsilon_0}} \widehat{\mathbf{a}}_y \text{ V/m}$$