EE331 — Homework #3 / Due Wednesday, Feb. 5, 2020 at the beginning of class

- 1. A planar transmission line with w = 6 mm, d = 0.25 mm, and t = 25 mm has conducting plates with $\sigma_c = 5.5 \times 10^7 \text{ S/m}$ and a dielectric with $\sigma = 3.5 \times 10^{-3} \text{ S/m}$ and $\varepsilon = 25 \text{ pF/m}$. Calculate R, L, G, and C for f = 750 MHz. Assume $\mu = \mu_c = \mu_0 = 4\pi \times 10^{-7} \text{ H/m}$.
- 2. For Prob. #1, calculate (a) the propagation constant γ and (b) the characteristic impedance of the line Z_0 . (c) The attenuation is non-zero, so we know the line is lossy. What's the cause of this loss?
- 3. Now connect the line of Prob. #1 to a load with an impedance of 100 Ω . Calculate (a) the voltage reflection coefficient and (b) the standing wave ratio.
- 4. Next connect the other end of the line of Prob. #1 to a signal generator with $V_g = 12$ V, $\theta_g = 0$, and $Z_g = 10 \Omega$. Let the length of the line be l = 15 cm. Calculate (a) the input impedance Z_{in} and (b) V_0^+ . Be sure to use the equation I gave in class, not the equation for V_0^+ in the book.
- 5. *Putting it all together!* Finally, (a) find $V_s(z)$ anywhere along the line with the load and generator as given and using the various parameters you found in the other problems and (b) convert $V_s(z)$ to its instantaneous form.