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Abstract — Motivated by the need for  economical fault-tolerant designs for  nano 

architectures, we explore a novel multiplexing-based redundant design scheme at small (� 

100) and very small (� 10) redundancy factors. In par ticular , we adapt a strategy known as 

von Neumann multiplexing to circuits of major ity gates with three inputs, and for  the first 

time exactly analyze the per formance of a multiplexing scheme for  very small 

redundancies, using combinator ial arguments. We also develop an extension of von 

Neumann multiplexing that fur ther  improves per formance by excluding unnecessary 

restorative stages in the computation.  Our results show that the optimized three-input 

major ity multiplexing (MAJ-3 MUX) outper forms the latest scheme presented in the 

literature, known as parallel restitution (PAR-REST), by a factor  between two and four , 

for  48 � R � 100. Our scheme per forms extremely well at very small redundancies, for  

which our  analysis is the only accurate one.  Finally, we determine an upper bound on the 

maximum tolerable failure probability when any redundancy factor  may be used. This 

bound clear ly indicates the advantage of using three-input major ity gates in terms of 

reliable operation. 

Index Terms — Fault/defect tolerance, major ity gates, nano architectures, von 

Neumann multiplexing. 
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I . INTRODUCTION 

The development of ever-smaller devices brings promise for further improvement in the 

performance of future integrated circuits, yet it also leads to several new technical challenges, 

including the need for nano architectures that reduce the uncertainty inherent to computation and 

communication at such small scales [1], [2]. One well-known approach for developing reliable 

architectures in the face of uncertainties, which include both defects in the fabricated chip and 

transient faults during operation, is to incorporate spatial and/or temporal redundancy. While 

redundancy is needed for reliable computation, however, economic constraints dictate that the 

redundancy factor R — the number of times a ‘computing unit’  is replicated — must be small or 

‘economical’  (R � 100), or better very small or ‘practical’  (R � 10). This article presents a fresh 

view toward a thorough investigation of the feasibility of reliable architecture development using 

small and very small redundancy factors. 

Fault- and defect-tolerant architectures have recently received revived attention in the 

nanotechnology community [3]–[10]. One can easily identify several reasons for further 

theoretical investigation of reliable redundant architectures in general, and of reliable redundant 

threshold logic gate (TLG) circuits in particular: 

• TLG circuits mimic the human brain, and hence hold promise in replicating the 

computational power of the brain. While a TLG — which fires when some variable 

reaches a threshold — seems at first to be a drastic simplification of a neuron, 

benchmarking the four-dimensional neuron model of Hodgkin and Huxley against a TLG 

verifies the connection [11]. In particular, the TLG model was shown to correctly predict 

nearly 90% of the spikes generated by the Hodgkin and Huxley model in a stochastic 

simulation [11], thus showing the considerable similarity between a neuron and a TLG. 
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• Many theoretical results show that TLG circuits are more powerful  / efficient (in a 

computational sense) than classical Boolean circuits (for reviews see [12]–[15]), 

motivating their further study. 

• Theory also shows that TLG circuits can be made arbitrarily fault-tolerant (reliable) 

using a “small”  amount of additional hardware (i.e., using a redundancy factor that is 

logarithmic in size), while Boolean circuits cannot [16]. 

• Finally — and most importantly — nano-scale devices are unreliable, and hence 

simulation and implementation of gates/circuits with unreliable components are of current 

interest (see [17], [18]). 

All of these strongly motivate the following lines of investigation: 

• Redundant design schemes [20]–[22] — e.g., modular redundancy, cascaded modular 

redundancy, multiplexing (MUX, including vN-MUX [19] and parallel restitution PAR-

REST [10]), and reconfigurability [3], [8], [23] — should be adapted to accommodate 

TLG circuits. 

• Redundant design schemes require further study in the case of small (and hence 

economical) redundancy factors (R � 100).  Modifications and enhancements of these 

schemes (and of their analyses) that would allow extension to very small redundancy 

factors (R � 10) should be aggressively pursued, since these can significantly improve the 

tolerable failure probability in  practical designs. 

• Paradigms for combining several redundancy schemes should also be considered, in 

order to appropriately evaluate whether very small (R � 10) practical redundant designs 

can be reliable enough. 

In this article, we present some new results concerning the first two of these directions of study. 
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Specifically, we modify vN-MUX for majority (MAJ) gates with 3 inputs (MAJ-3).  We then 

develop an exact probabilistic analysis of our MAJ-3 MUX scheme using exact combinatorial 

arguments, which allows for the first time to accurately characterize a MUX scheme at small and 

very small redundancy factors. We are motivated to pursue an adaptation of vN-MUX, in 

particular, because it has shown promise for architectures with both high defect and fault 

probabilities [3]–[7], [10], and has been shown to achieve much better results than R-modular 

redundancy (R-MR) for very large redundancy factors (R > 10,000) [19]. Next, we develop an 

upper bound on the maximum tolerable gate failure probability qMAJ-3, when any amount of 

redundancy may be used. This upper bound also underscores the advantage of using MAJ-3 gates 

rather than NAND-2 gates. Finally, we present an extension of vN-MUX that serves to further 

optimize its performance for very small redundancy factors (R � 10). 

The remainder of the article is organized as follows. In Section II, we describe briefly 

reliability-related work from the literature. In Section III, we characterize MAJ-3 MUX, and do a 

probabilistic analysis of a single multiplexed computation using worst-case exact combinatorial 

arguments. We also present an upper bound on the failure probability pf, when any redundancy 

factor R may be used. In Section IV, we use our analysis to compare the required device-failure 

probabilities pf for achieving chip-level reliability, given that MAJ-3 MUX at a particular 

redundancy factor R is implemented. In Section V, an extension of the multiplexing method is 

presented, and shown to further improve reliability significantly for very small redundancy 

factors. In Section VI, we summarize our findings and briefly discuss directions for further 

research. 



 
 

S. Roy and V. Beiu: MAJ-3 MUX  5 

 

I I . L ITERATURE  REVIEW 

Reliable operation of a circuit can be achieved using redundancy at many different levels: at 

the device level [24], [25]; at the gate level [26]; at the block level [27]; in time; and in 

communication (through encoding, e.g., [28]) (see also [3]–[10] and [17]). While most of these 

methods are beyond our scope in this article, we note that they have in common that improved 

reliability is traded off for increased chip area and higher connectivity [29], [30]. In this paper, 

we only focus on redundant designs at the gate level. 

In the circuit complexity community, fault / defect-tolerance at the gate level has been 

formalized under two models: the gate error model where only gates are assumed to be faulty, 

and the wire error model where only wires make errors [16]. The wire fault model tends to be 

appropriate for circuits with complex gates because, for instance, it can capture that a gate with a 

larger fan-in might have a larger probability of error. The fan-ins of the gates we analyze in this 

article are very limited (fan-in = 3), and hence the gate error model is quite appropriate. That is, 

we assume that only gates can cause errors, and that there is a fixed upper bound on their error 

probability, regardless of the fan-in of the gate. To prevent amplification of these errors in a logic 

circuit, some type of redundant design must be used. We will quantify redundancy using the 

redundancy factor R, which indicates the multiplicative increase in circuit size (i.e., number of 

gates) required to attain fault-free operation, or equivalently the ratio of the size of the 

fault / defect-tolerant circuit to the size required in case of no faults. [Remark: In [29]  and [30]  

Reischuk and Schmeltz aptly point out that increase in circuit area rather than increase in circuit 

size is a more significant measure of redundancy, and show how encoding in combination with 

replication can be used to minimize circuit area.] 
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In [19] von Neumann introduced the multiplexing redundancy algorithm vN-MUX as a 

plausible representation for reliable computation. vN-MUX was developed for arbitrary gates, 

including MAJ and NAND (known then as Sheffer Stroke) gates (see Fig. 1 showing the 

executive stage followed by two restorative stages). However, a detailed reliability analysis was 

performed for two-input NAND (NAND-2) gates only, assuming independent gate failures and 

very large redundancy factors. By exploiting the approximate Gaussianity of the number of 

failures in the executive stage output, von Neumann showed that long sequences of computations 

could be performed reliably for sufficiently small gate failure probability. His analysis yielded a 

maximum tolerable failure probability per NAND-2 gate of qNAND-2 = 0.0107 for sufficiently 

large redundancy. A detailed explanation of this result was recently given in [10]. 

The performance of NAND-2 vN-MUX was compared with the performance of other fault 

tolerance techniques in [3]–[7] (see Fig. 2). It was shown that NAND-2 vN-MUX can 

accommodate devices with a defect probability pf � 0.01. However, this maximum defect 

probability is only achievable at the expense of enormous redundancy factors (R ~ 1,000,000). 

In [7], NAND-2 vN-MUX was analyzed at small to moderate redundancy factors of 30, 300, 

and 3000. It was shown that the number of faulty outputs from a single multiplexed logic 

computation is binomial for these redundancies, and can be approximated as Gaussian only for 

moderate to large redundancy factors (R > 3000). NAND-2 vN-MUX has been analyzed using a 

CAD tool in [31]. The results reported in [31] show that for small redundancy factors the 

theoretical results from [7] are inaccurate, while PRISM [32], [33] is able to provide more 

precise estimates. The framework for PRISM is based on probabilistic model checking, and can 

be used for evaluation of the reliability / redundancy trade-off for various designs. In their analysis 

[31], the authors reported simulation results for small redundancy factors, i.e., 60, 120, and 180, 
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for the NAND-2 vN-MUX scheme. Another simulation tool for reliability calculations was 

recently described in [34]. It comprises MATLAB-based libraries for fundamental logic gates 

that can compute output probability distributions based on the input distribution. This approach 

is based on the analysis of Bahar et al. [35], where a Boolean gate is modeled using an energy 

distribution function. Another tool dedicated for estimating the reliability of quantum cellular 

automata (QCA) is presented in [36]. It can be integrated with QCADesigner, a tool for the 

layout and simulation of QCA structures. The approach suggested for increasing redundancy is a 

low-level one, based on triplicating both gates (MAJ) and wires. Very recently [28], examples of 

hardware architectures that incorporate one or multiple redundancy schemes (triple modular 

redundancy together with encoding) were tested using VHDL/Spice/Monte Carlo simulations. 

The PAR-REST scheme [10] is of particular interest. While PAR-REST has many features 

similar to vN-MUX, the authors distinguish between the schemes based on the fact that the 

computations are not collapsed after each layer of the circuit (see [10] for details) and that 

restorative stages (defined later) are only used periodically. The article [10] shows that PAR-

REST can significantly improve upon NAND-2 vN-MUX for small to moderate R. Our 

independent studies in the earlier works [37], [38], and in this article, also do not collapse the 

result from each multiplexing stage and propose periodic restoration, though we tend to view this 

modification as a modification of vN-MUX rather than a wholly new scheme. 

Novel redundancy techniques that combine device-level and gate-level design ideas have also 

been introduced. In [25] the authors propose a redundant design approach that creates a rescaled 

weighted average of the redundant blocks’  outputs. This results in a multiple-valued logic 

representation (of the function to be implemented), and provides an effective means of absorbing 

faults. The authors show, through several examples, that the new design technique improves the 
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immunity to permanent and transient faults occurring at the transistor level, and works even for a 

redundancy factor R = 2. The paper suggests that dynamically adjustable threshold levels may 

further enhance this method. Another approach proposes a robust design of Boolean gates as 

feedforward artificial neural networks of small size, specifically trained to absorb errors [26]. 

After learning, such gates could be incorporated in a library of fault tolerant gates, thus becoming 

transparent to the VLSI designer (if the synthesis tools could take advantage of them). The 

differential configuration used can also improve on the robustness of data transmission, but at the 

expense of additional power consumption and increased switching activity (noise). The authors 

mention that this method might be difficult to implement due to the high precision required for 

the weights. Other low-level (i.e. device/gate) approaches which we should mention here belong 

to the larger class of rad-hard by design [39], and high matching techniques used in analog 

circuits [40], [41] (recently used for enhancing the reliability of CMOS TLGs [24]). 

The methods for reliable design of nano architectures that we have described generally adhere 

to the following philosophy: a particular redundancy scheme is chosen, and the reliability of a 

typical class of circuits is evaluated given this redundancy scheme. A second body of literature 

on reliability seeks to analyze the minimum redundancy required to implement a particular faulty 

computation, assuming that any redundancy scheme may be used [16], [29], [30], [42]–[53]. 

Broadly speaking, these studies seek to construct a reliable architecture of minimum size for a 

particular logic function, given the failure probability of gates and / or wires. This literature is 

largely beyond this article’s scope, so we shall present only a few relevant results. The maximum 

tolerable failure probability for any redundant NAND-2 circuit was shown to be q = 0.08856 in 

[51], but the suggested redundant design in this case is not vN-MUX. A similar analysis has been 

performed recently for TLG circuits, in which case gate failure probabilities up to q = 0.25 can be 
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tolerated [16]. In particular, Reischuk investigated the required redundancy for circuits with 

unbounded fan-in. He concluded that TLG circuits have a clear advantage over Boolean gate 

circuits with respect to reliability (fault / defect-tolerance). More precisely, only using unbounded 

TLGs can arbitrary circuits be made reliable (fault / defect-tolerance) with a small amount of 

additional hardware (logarithmic in size). Boolean circuits of unlimited fan-in cannot be made 

reliable even if large redundancy factors are allowed. Finally, the error threshold of the gate 

represents another advantage of MAJ over NAND, as can be seen in Fig. 3. In this figure, the 

error threshold for MAJ-k gates (MAJ gates of fan-in = k) is �MAJ(k) = 
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 (as recently proven in [54]). 

I I I . MULTIPLEXING  FOR  A  SINGLE  MAJ-3  COMPUTATION 

A. Description 

The vN-MUX algorithm developed in [19] aims to improve the reliability of a sequence of 

logic computations, by assimilating the results from redundant implementations of each 

computation in the sequence. This ‘multiplexing’  of each computation serves to contain error 

propagation down the sequence, by selecting for the more common (and hence more-likely 

correct) result at each stage. The vN-MUX scheme can be applied to any logic computation, but 

the analysis of the scheme must be adapted for each case. 

A single MAJ-3 vN-MUX logic computation is presented in Fig. 4. The vN-MUX 

computation comprises an executive stage and a restorative stage. The executive stage repeats 
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the desired logic computation (in our case a MAJ-3 computation) a total of N times, operating on 

N different sets of inputs obtained from the previous computation. The restorative stage 

triplicates and randomly orders (see randomizer in Fig. 4(b)) the outputs from the executive 

stage, and then chooses the majority of each randomly-chosen set of three signals using a second 

set of N MAJ-3 gates, to generate the N final outputs. The purpose of the restorative stage is to 

increase the frequency of the more common output from the executive stage. This restoration is 

central to the global performance of the vN-MUX scheme.  It is important to note that we do not 

collapse the N different outputs into a single one, and so we use the term MAJ-3 MUX rather 

than MAJ-3 vN-MUX hereafter. 

B. Probabilistic  Analysis 

Our aim is to relate the output error probabilities of a MAJ-3 MUX computation to the input 

error probabilities and the MAJ-3 gate failure probabilities qMAJ-3. Our statistical model for this 

MAJ-3 MUX computation is as follows. We assume that each of the three sets of N inputs — 

henceforth called a bundle as in the original article [19] — has a nominal binary value. Let the 

number of lines in bundle i, 31 ≤≤ i , that are in error (i.e., deviate from their nominal input 

value) be denoted ie . Given ie , all configurations of line errors among the N lines in bundle i are 

assumed to be equally probable. The three random variables 1e , 2e , and 3e  are assumed to be 

independently distributed, with probability distributions )( 1eP , )( 2eP , and )( 3eP , respectively. 

We also assume that each MAJ-3 gate can fail with probability qMAJ-3. Based on the nominal 

inputs, we can determine the nominal final output. We define d as the number of final outputs 

(outputs from the restorative stage) that differ from the nominal output. Our goal is to 

characterize the distribution of d. 
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The distribution of d depends on the values of the nominal inputs — in particular, on whether 

or not there is a consensus among the nominal inputs. It is easy to see that the probability of 

malfunction (i.e., the probability that a significant number of outputs differ from the nominal 

output) is greatest when the nominal inputs are not in consensus. Since our concern is about the 

reliability of this design, we will evaluate the distribution of d in the worst case, i.e. when the 

inputs are not in consensus. Without loss of generality, let us assume that that inputs I1 and I2 

have a nominal value of high, while input I3 has a nominal value of low. Thus, the nominal 

output is high. Also, we note that the probability of malfunction decreases as the number of 

errors in the single distinct input (input I3 in our case) increases. In our calculations, we thus 

assume the worst case, i.e. that input I3 is always correct, and so 3e  is always low. 

We will require several steps to compute the distribution of d. First, we define a variable w 

for the number of MAJ-3 gates in the executive stage that have at least two inputs high. To find 

the distribution for w, let us first find the conditional distribution for w given 1e  and 2e , or 

),|( 21 eewP . This conditional distribution can be found using a counting argument, as follows. 

In total, there are ��
�
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�
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⋅��
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N

e

N
 configurations for the line errors in all three input bundles (recall 

that the third set of lines is assumed to have no errors). Each of these configurations has w MAJ-

3 gates with at least two inputs high if and only if neither line 1 (i.e., the line from bundle 1) nor 

line 2 has errors at w MAJ-3 gates, and either line 1 or line 2 has an error at the other wN −  

MAJ-3 gates. (Note that, in consequence, the probability is zero unless ),min( 21 eew ≤  and 

wNee −≥+ 21 .) The number of ways in which we can choose w MAJ-3 gates, for which both 

input I1 and input I2 are high, is ��
�

�
��
�

�

w

N
. The number of ways in which to distribute the errors 
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among the lines to the remaining wN −  MAJ-3 gates, so that either input I1 or input I2 has an 

error, is: 

 ��
�

�
��
�

�

−−
⋅��
�

�
��
�

� −
weN

e

e

wN

2

1

1

.                    (1) 
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Finally, we can compute the probability distribution for w as: 
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We note that the combinatorial arguments used to find the distribution of w are similar to those 

given in [19], for analysis of the executive stage of a NAND-2 computation. 

Once we have computed the distribution for w, we can compute the distribution for s — the 

number of correct outputs (i.e., the number of outputs that are high) after the executive stage. An 

output from a MAJ-3 gate is guaranteed to be correct only if at least two of its inputs are high, 

and the MAJ-3 gate is functioning. Hence, the conditional distribution for s given w is binomial: 

sws qq
s

w
wsP −

−− ⋅−⋅��
�

�
��
�

�
= 3MAJ3MAJ )1()|( , and the (unconditioned) distribution for s is 


=

⋅=
N

sw

wPwsPsP )()|()( . 

The next signal that we consider is a, the number of MAJ-3 gates in the restorative stage that 

have at least two inputs high. Note that the inputs into the restorative stage MAJ-3 gates are 

generated from the outputs of the executive stage, through triplication and randomization. To 
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compute the probability distribution for a, we first compute the conditional distribution for a 

given s, using a combinatorial argument. In particular, we determine the number of distinct input 

arrangements (consisting of 3N inputs) into the N MAJ-3 gates that make up the restorative stage, 

and count the number of such arrangements for which a MAJ-3 gates have at least two inputs 

high. Given s, 3s of the 3N inputs into the restorative stage are high. Hence, the high inputs of the 

MAJ-3 gates in the restorative stage can be arranged in ��
�

�
��
�

�

s

N

3

3
 different ways, each of which is 

equally probable (because of the action of the randomizer). Next, we aim to count the number of 

such sequences for which exactly a MAJ-3 gates have at least two inputs high. We will call these 

the good sequences. To count the number of good sequences, we count the number of good 

sequences that have exactly 3i  gates with all three inputs high, and add over all 3i . Note that 

),min(3 asi ≤ . For a particular 3i , the number of MAJ-3 gates with exactly two inputs high is 

32 iai −= , since a MAJ-3 gates have at least two inputs high. Next, since the total number of 

high inputs is 3s, the total number of MAJ-3 gates 1i  with exactly one input high must be 

231 233 iisi −−= , where it is required that 01 ≥i . The number of MAJ-3 gates 0i  with no inputs 

high must be 1230 iiiNi −−−= , where 0i  is further constrained to be non-negative. Since 

3i determines 2i , 1i , and 0i , the number of good sequences having a particular 3i  is the number of 

good sequences with the resultant 3i , 2i , 1i , and 0i . To count this number, we note that MAJ-3 

gates with three, two, one, and zero inputs high can be arranged arbitrarily, and further that the 

inputs into each MAJ-3 gate with exactly one or two inputs high can be arranged in three 

different ways (100, 010, 001, and respectively 110, 101, 011). Hence, the number good 

sequences with a particular 3i  is given by 
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where a combination is assumed to be zero if its lower term is smaller than zero, or greater than 

the upper term. It follows from (4) that the conditional probability for a given s is 
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As we have done before, we can compute the unconditioned distribution for a by finding the joint 

distribution of a and s, and marginalizing. 

We can compute the distribution of the number of output errors d from the distribution of a, 

by considering failures in the restorative-stage MAJ-3 gates. A binomial distribution represents 

the conditional distribution in this case. We omit the details, since this analysis is identical to our 

analysis of the executive stage presented before. 

In his seminal paper [19], von Neumann also observed that accurate (essentially error-free) 

computations are possible using NAND-2 vN-MUX only if the probability of a NAND-2 gate 

failure probability qNAND-2 is below a certain threshold value. In particular, if qNAND-2 is below 

this threshold value, the frequency of errors at the output of a multiplexing stage is less than or 

equal to the frequency of errors at the input of that stage — given that a sufficiently large bundle 

size N is used. Thus, a sequence of computations can be completed without increasing the error 

frequency. We have observed a similar behavior for MAJ-3 MUX. In particular, we have 

determined that MAJ-3 MUX can achieve accurate computations for gate failure probabilities 



 
 

S. Roy and V. Beiu: MAJ-3 MUX  15 

 

qMAJ-3 < 0.0197. This outperforms the NAND-2 gate failure probabilities qNAND-2 < 0.0107. We 

have obtained this threshold in an analogous manner to [19]: by invoking the central limit 

theorem, we identify a deterministic equivalence for the error frequency update, in the limit of 

large bundle size. The deterministic equivalence allows us to compute whether the error 

frequency decreases over a computation, for a given gate failure probability. A more detailed 

discussion of this threshold result will be presented in future work, while a relevant discussion 

for NAND-2 gates can be found in [10]. 

IV. CHIP-LEVEL  ANALYSIS  

In the previous section, we showed how to obtain the probability distribution of the number 

of high outputs of a single MAJ-3 MUX computation given the MAJ-3 gate failure probability 

qMAJ-3. In this section we extend the analysis to the chip level, by going from a device to a gate, 

and finally to the system (chip). These steps will allow us to determine the relationship between 

the device failure rate (pf) and the chip failure rate (Pchip). Our chip-level analysis follows the 

analysis of [3]–[5], [7]. 

The first step is represented by the device failure rate pf. This is an elusive measure, which for 

current CMOS processes can be estimated to be in the 10–7 to 10–8 range, but will be adversely 

affected by scaling (see also [55], [56]). For example, for SET the expectations are that about one 

in one thousand devices might have considerable background charge fluctuations, i.e. pf � 10–3 

[57]. 

The second step is to determine the gate failure rate qMAJ-3 in terms of the device failure rate 

pf. A simple equation relating the two is qMAJ-3 = 1 – (1 – pf) 
j, where j is the number of devices in 

a MAJ-3 gate (see [3], [4]). This simplified model does not take into account the fact that 
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different devices (i.e., both active ones like MOS transistors, SET junctions, RTDs, etc., and 

passive ones like resistors and capacitors) might have different failure probabilities. Also, this 

model does not consider connections, i.e., both wires (which for a CMOS process can be on 

several different layers, and hence might have different failure probabilities) and contacts 

(between the different layers). A conventional CMOS implementation requires 4 transistors (2 

nMOS and 2 pMOS) for a NAND-2 gate, giving qNAND-2 = 1 – (1 – pf) 
4 [3], [4]. A standard 

domino implementation of a NAND-2 also requires 4 transistors (a solution with 3 transistors is 

possible). It was suggested that other Boolean gates could be replaced by NAND-2 gates [3], [4]. 

The authors also mention that a MAJ-3 gate requires 4 NAND-2 gates, and conclude that the use 

of NAND-2 gates is in the interest of minimizing redundancy. While this is true if MAJ-3 gates 

are implemented using NAND-2 gates, there are other CMOS—and also SET, RTD, and 

molecular—designs which could be used for implementing MAJ-3 gates [18]. The simplest 

CMOS solution is a pseudo-nMOS implementation requiring 4 transistors: 3 nMOS for the 3 

inputs, and 1 pMOS acting as load. This gives qMAJ-3 = 1 – (1 – pf) 
4, suggesting that a MAJ-3 

(pseudo-nMOS) gate might be as reliable as a NAND-2 (CMOS) gate. In fact things are much 

more complicated, and many other designs are possible, which although having more devices can 

have a lower probability of failure. For example, using high matching techniques ([40], [41]), the 

number of devices is increased, but because several (identical but smaller) devices are connected 

in parallel, they build redundancy at the lowest possible level (i.e., the device level), and so 

increase the overall reliability of the gate [24], [58]. 

The third step assumes that the chip has NTOTAL devices, and is divided into processing units 

of effective device count Nunit. Since the MAJ-3 MUX introduces a redundancy factor of R = 2×N 

(we note here that the NAND-2 vN-MUX has a slightly larger R = 3×N), the number of 
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processing units is given by n = NTOTAL /(R×Nunit) = NTOTAL /(2×N×Nunit).  We also assume that the 

units have a logical depth D = 10, as has been done previously in [3]–[5], [7]. We thus apply the 

probability analysis of Section III to the logical units sequentially to obtain the final probability 

distribution PD(d) = P10(d). We then assume a critical threshold level � = 0.5, and calculate the 

probability that d / N ≥ � = 0.5. [Remark: We note here that von Neumann’s original study [19] , 

as well as some more recent studies [3] –[7] , use thresholds smaller than 0.5. Such thresholds 

are needed to maximize the tolerable probability of error pf when a decision is taken at each 

multiplexing stage. We advocate taking a decision (voting in our case) only after the final stage, 

and so a threshold of 0.5 suffices.] This is the probability that one data bit (Pbit) is wrong. We 

note that the implementation of the threshold at the output requires additional logic circuitry. As 

has been done in the literature ([3]–[10] and [19]), we assume that the failure probability of the 

final thresholding circuit is negligible. Very high reliability logic gates can be designed in 

practice by introducing redundancy at the device level [24]–[26], [36], [39]–[41], [58]. 

The reliability of one processing unit is thus given by Punit = (Pbit)
m, where m is the number of 

outputs from a processing unit. Hence, the reliability of the whole chip is Pchip = (Punit)
n. Putting 

all of these together we get 

 

Pchip = (Punit)
n = [(Pbit)

m]n = { [PD(d)]m} n = { [P10(d)]m} NTOTAL 
/

 
(R×Nunit).            (6) 

 

Now that we have related the chip reliability Pchip, i.e. the probability that the chip produces a 

correct output during a single clock cycle, to the device failure rate pf for a given redundancy 

factor R, we can determine the maximum allowed failure probability pf as a function of R for 

given Pchip, m, NTOTAL, and Nunit. We consider a chip with NTOTAL = 1210  devices and Nunit = 610  

processing units, each of which returns a single bit m = 1. Through simulation, we determine the 
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maximum failure probability pf needed to guarantee a chip reliability of Pchip = 90%, as a 

function of the redundancy factor R. Our results for small redundancy factors (R < 100) are 

shown in Fig. 5.  We note that these results provide a significant improvement over R-MR and 

NAND-2 vN-MUX [3]–[7], and stress again that our results are the only ones that are accurate at 

very small redundancies.  

A comparison of greater interest is between MAJ-3 MUX and PAR-REST [10], since PAR-

REST constitutes the latest scheme recently proposed in the literature. The article [10] considers 

reliability over a duration of time (i.e., multiple clock cycles), and reports maximum failure 

probabilities when 90% reliability over ten years of processing is demanded. We compare MAJ-3 

MUX with PAR-REST using this reliability demand and identical chip specifications as in [10]. 

Because PAR-REST is most fairly compared with a scheme that only periodically uses 

restoration, we delay this comparison to the next section. Finally, we note that we are currently 

investigating a more realistic chip-level analysis that meshes multiple redundancy strategies, 

including device level ones, and will report on the results in a subsequent article. 

V. AN  EXTENSION  OF  VON  NEUMANN  MULTIPLEXING 

The purpose of the restorative stage in MUX is to reduce error propagation from a logic 

computation’s input to its output, by selecting for the more common outputs from the 

computation. The restorative stage is only effective when the probabilities of error in the inputs 

are sufficiently large. In fact, for small input error probabilities, the chance of error introduced by 

the gates in the restorative stage might outweigh the advantage of having the restorative stage. 

Thus, if the input error probabilities, for a particular logic computation, are small enough, we can 
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simultaneously improve the output error probability and economize (reduce the redundancy 

factor R) of any MUX design by eliminating the restorative stage. 

From another viewpoint, if we are seeking the best-performing architecture for a particular 

redundancy factor R, we might expect to improve on the standard vN-MUX algorithm by 

applying the restorative stage on only some computations, while simultaneously increasing the 

bundle size N. For instance, say that we wish to design a MUX architecture with a maximum 

redundancy factor RMAX = 15. A classical NAND-2 vN-MUX would use a bundle size of N = 5, 

and apply restoration on every computation, hence RNAND-2 = 3×5 = 15 = RMAX. If we were to 

apply the standard MAJ-3 MUX, we would use a bundle size of N = 7 and apply restoration on 

every computation, which yields RMAJ-3 = 2×7 = 14 < RMAX. It turns out that even the reliability 

of this architecture can be improved by using a bundle size of N = 11 and applying restoration 

only every third computation (to be precise, for computations at depths 3, 6, and 9 in the logic 

circuit). This design yields an ‘average’  redundancy factor of REnhanced_MAJ-

3 = 11 + 11 / 3 = 14.3 < RMAX. We use this idea to improve our MAJ-3 MUX, but the same 

principle can be applied when using any other type of gate or combinatorial logic block. 

Specifically, we consider architectures in which the logical depths of all inputs to a given 

computation are the same (but in general this need not be the case). We define the enhanced 

MAJ-3 MUX(N, k) architecture as one in which an executive stage with bundle size N is used for 

all computations, and a restorative stage is applied only on every kth stage (i.e., for computations 

with logical depth k, 2k, … — while in general the restorative stages could be distributed 

unevenly). We note that the redundancy factor introduced by a MAJ-3 MUX(N, k) architecture is 

R = N + N / k. By placing the restorative stage only every kth stage, the bundle size N can be 

increased to N+ = [2k/(k+1)]×N for the same redundancy factor R. 
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We have computed the maximum probability of failure for a device pf, such that a reliable 

chip-level design Pchip = 0.9 can be achieved for a given redundancy factor R (see Fig. 5). 

However, we now consider all MAJ-3 MUX(N, k) architectures, i.e. all possible (N, k) pairs 

satisfying a given R. We find this probability by computing the maximum allowed probability of 

device failure for each architecture for the given R, and then choosing the architecture that 

maximizes the allowed failure probability. For instance, for a redundancy factor R = 15, we 

found that the MAJ-3 MUX(11, 3) architecture provides the maximum allowed probability of 

device failure, of 6.25×10–5. Fig. 6 shows the probabilities of failure allowed for each redundancy 

factor using the best possible MAJ-3 MUX(N, k) architecture. To illustrate our enhanced MAJ-3 

MUX(N, k) scheme, we present a detailed comparison of MAJ-3 MUX(N, k) with MAJ-3 MUX 

in Fig. 7. It shows that: 

• for small but not very small redundancy factors, 10 < R < 100, MAJ-3 MUX(N, k) does 

not significantly improve on MAJ-3 MUX (see Fig. 7(a)); 

• on the other hand, for very small redundancy factors, R < 10, MAJ-3 MUX(N, k) 

architectures provide an additional four orders of magnitude over MAJ-3 MUX (see Fig. 

7(b)), with the strongest advantages at R = 3, 4, and 5. 

• MAJ-3 MUX(N, k) seems to be always better than R-MR and is quite able to compete 

with reconfiguration ([3], [8], [23]). 

An exact numerical comparison for very small redundancy factors can be seen in Table I. The 

table also presents the particular (N, k) that achieves the best performance. An interesting 

additional advantage of using MAJ-3 MUX(N, k) is that we can tailor the designs to achieve 

desired redundancy factors. 
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Finally, we return to the comparison between MAJ-3 MUX and PAR-REST. As in enhanced 

MAJ-3 MUX(N,k), PAR-REST takes advantage of periodic restoration to improve performance. 

Hence, a comparison between MAJ-3 MUX and PAR-REST is perhaps the most fair comparison 

of the reliability of MAJ-3 and NAND-2 architectures. We have compared the performance of 

MAJ-3 MUX and PAR-REST at the smallest analyzed redundancy for PAR-REST (R = 48) and 

also at R = 100 (which is the largest redundancy we have considered for MAJ-3 MUX). At 

R = 48, MAJ-3 MUX improves on PAR-REST by a factor of 1.5 (i.e., 2.3×10–4 versus about 

1.5×10–4), while achieving a factor of 4.25 at R = 100 (i.e., 1.7×10–3 versus about 4×10–4). 

VI . CONCLUSIONS  AND  FUTURE  DIRECTIONS  OF  RESEARCH 

In this article, we have presented an engineering analysis of multiplexing. We have developed 

the first exact and worst case analysis for MAJ-3 MUX for small and very small redundancy 

factors, using combinatorial arguments. We have also presented an extension of MAJ-3 MUX 

that can significantly improve its performance at very small redundancy factors (R < 10). We 

have compared these schemes to other redundancy schemes, showing that MAJ-3 MUX holds 

promise for economical (i.e., small) as well as practical (i.e., very small) redundant fault-tolerant 

designs. In fact, MAJ-3 MUX improves on the performance of R-MR by five orders of 

magnitude, and by about four orders of magnitude over classical NAND-2 vN-MUX. An 

additional three to four orders of magnitude can be gained at very small redundancy factors 

(R = 3, 4, 5) when using enhanced MAJ-3 MUX(N, k), a scheme that we introduced here. These 

comparisons show that MAJ-3 MUX gives better results than R-MR for very small redundancy 

factors (R < 10), and is able to compete with reconfiguration for small redundancy factors 
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(R < 100). The enhanced MAJ-3 vN-MUX(N, k) outperforms R-MR for any R > 2, and starts 

competing with reconfiguration even at very small redundancy factors (R < 10). 

In this article, we have also presented an upper bound on the maximum tolerable failure 

probability, indicating the clear advantage of using MAJ-3 gates over NAND-2 gates in 

multiplexing. 

Our future work will focus on several lines of research. The first one is to investigate 

combinations of MAJ-3 MUX(N, k) with low-level reliable schemes. This will allow for 

additional (hopefully significant) reductions in area. As an example, the MAJ-3 MUX(3, �) (see 

Fig. 8(a)) has been used in combination with a high-matching inspired technique [40], [41] (see 

[24] for a CMOS application to TLGs). These were used together to improve the robustness of 

capacitive SET TLGs with respect to process variations [58]. Data was collected from 10,000 

simulations using SIMON (a Monte Carlo SET simulator) and our own MATLAB modules. Both 

the probability of failure of one MAJ-3 SET gate qMAJ-3 versus process variations, as well as the 

probability of failure of a MAJ-3 MUX(3, �) structure (see Fig. 9(a)), implemented using high 

matching MAJ-3 SET gates (see Fig. 9(b)), can be seen in Fig. 8(b). This figure shows that while 

one MAJ-3 SET gate starts giving errors from ±3% variations (on all junctions and capacitor 

values), the enhanced MAJ-3 vN-MUX scheme using high-matching MAJ-3 SET gates starts to 

err only from ±5% variations. It also can be seen that the robustness (tolerance) to variations is 

improved by over three orders of magnitude up to ±6% variations, by over two orders of 

magnitude for variations in the range ±7% to ±8%, and over one order of magnitude for 

variations up to ±10%. The same structure is currently being characterized in 120 nm standard 

CMOS (in subthreshold using an original adaptive body bias technique [59]. 
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We are also pursuing further improvement and analysis of our MAJ-� MUX(N, k), and plan 

to present these developments in a subsequent article. It is known [49], [53], [54], that gates with 

larger fan-ins are expected to give an additional improvement (see Fig. 3). Thus, we plan to first 

extend MAJ-3 MUX to MAJ-5 MUX, as a step towards finding optimal MAJ-� MUX(N, k) 

structures. The extension from MAJ-� to arbitrary TLGs with very small delay penalty was 

theoretically proven in [60], [61]. Other techniques for improving performance that we are also 

following include unevenly sequencing the computations with and without restoration, and 

dynamically varying (re-sizing) the bundle size N from one stage to another. 
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FIGURE CAPTIONS 
 

Fig. 1. NAND-2 von Neumann multiplexing. 

Fig. 2. Comparison of several techniques showing the allowable failure rate per device pf with 

respect to the redundancy factor R (adapted from [3] by highlighting the ranges of very small and 

small redundancy factors). 

Fig. 3. The variation of the error thresholds of NAND and MAJ gates with respect to their fan-in. 

Fig. 4. (a) Generic MAJ-3 MUX stage. (b) An example for N = 5. 

Fig. 5. Maximum allowed failure probability of MAJ-3 MUX at small redundancy factors 

(R < 100), for Nc = 106. 

Fig. 6. Maximum allowed failure probability MAJ-3 MUX(N, k) at small redundancy factors 

(R < 100), for Nc = 106. 

Fig. 7. Comparison of MAJ-3 MUX and enhanced MAJ-3 MUX(N, k). (a) At small redundancy 

factors (R < 100). (b) At very small redundancy factors (R < 10). 

Fig. 8. (a) The MAJ-3 MUX(3, �)  structure used for testing. (b) Probability of failure versus 

variations for one MAJ-3 SET gate, and for the MAJ-3 MUX(3, �) with high-matching MAJ-3 

SET gates. 

Fig. 9. A capacitive SET MAJ-3 MUX design was compared with a high-matching bias 

capacitors version (generated with MATLAB and simulated in SIMON, a Monte Carlo 

simulator). 
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Fig. 1. NAND-2 von Neumann multiplexing. 
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Fig. 2. Comparison of several techniques showing the allowable failure rate per device pf with 

respect to the redundancy factor R (adapted from [3] by highlighting the ranges of very small and 

small redundancy factors). 
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Fig. 3. The variation of the error thresholds of NAND and MAJ gates with respect to their fan-in. 
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Fig. 5. Maximum allowed failure probability of MAJ-3 MUX at small redundancy factors 

(R < 100), for Nc = 106. 
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Fig. 6. Maximum allowed failure probability MAJ-3 MUX(N, k) at small redundancy factors 

(R < 100), for Nc = 106. 
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TABLE  I 

MAJ-3  MUX  AND  OPTIMIZED  MAJ-3  MUX(N, K)  FOR 

VERY  SMALL  REDUNDANCY  FACTORS  R = 3 … 10 

 

 

 

Maximum Allowed Device Failure Probability Redundancy 
Factor MAJ-3 MUX Optimized MAJ-3 MUX(N, k) 

Improvement 
Factor 

(N, k) 
Optimized 

Pair 

3 2.5×10–11 7.8×10–8 3100 (3, �) 

4 2.5×10–11 1.7×10–7 6700 (3, 3) 

5 2.5×10–11 9.0×10–7 36,000 (5, �) 

6 3.8×10–7 9.0×10–7 2.4 (5, �) 

7 3.8×10–7 3.0×10–6 8 (7, �) 

8 3.8×10–7 4.5×10–6 12 (7, 10) 

9 3.8×10–7 6.5×10–6 17.3 (7, 4) 

10 1.9×10–6 1.6×10–5 8.4 (9, 10) 
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