

S. Roy and V. Beiu: MAJ-3 MUX 1

Abstract — Motivated by the need for economical fault-tolerant designs for nano

architectures, we explore a novel multiplexing-based redundant design scheme at small (�

100) and very small (� 10) redundancy factors. In par ticular , we adapt a strategy known as

von Neumann multiplexing to circuits of major ity gates with three inputs, and for the first

time exactly analyze the per formance of a multiplexing scheme for very small

redundancies, using combinator ial arguments. We also develop an extension of von

Neumann multiplexing that fur ther improves per formance by excluding unnecessary

restorative stages in the computation. Our results show that the optimized three-input

major ity multiplexing (MAJ-3 MUX) outper forms the latest scheme presented in the

literature, known as parallel restitution (PAR-REST), by a factor between two and four ,

for 48 � R � 100. Our scheme per forms extremely well at very small redundancies, for

which our analysis is the only accurate one. Finally, we determine an upper bound on the

maximum tolerable failure probability when any redundancy factor may be used. This

bound clear ly indicates the advantage of using three-input major ity gates in terms of

reliable operation.

Index Terms — Fault/defect tolerance, major ity gates, nano architectures, von

Neumann multiplexing.

Sandip Roy, Member, IEEE, and Valeriu Beiu, Senior Member, IEEE

School of EE&CS, Washington State University, Pullman, WA 99164-2752

E-mail: { sroy, vbeiu} @eecs.wsu.edu

Major ity Multiplexing: Economical Redundant

Fault-Tolerant Designs for Nano Architectures

S. Roy and V. Beiu: MAJ-3 MUX 2

I . INTRODUCTION

The development of ever-smaller devices brings promise for further improvement in the

performance of future integrated circuits, yet it also leads to several new technical challenges,

including the need for nano architectures that reduce the uncertainty inherent to computation and

communication at such small scales [1], [2]. One well-known approach for developing reliable

architectures in the face of uncertainties, which include both defects in the fabricated chip and

transient faults during operation, is to incorporate spatial and/or temporal redundancy. While

redundancy is needed for reliable computation, however, economic constraints dictate that the

redundancy factor R — the number of times a ‘computing unit’ is replicated — must be small or

‘economical’ (R � 100), or better very small or ‘practical’ (R � 10). This article presents a fresh

view toward a thorough investigation of the feasibility of reliable architecture development using

small and very small redundancy factors.

Fault- and defect-tolerant architectures have recently received revived attention in the

nanotechnology community [3]–[10]. One can easily identify several reasons for further

theoretical investigation of reliable redundant architectures in general, and of reliable redundant

threshold logic gate (TLG) circuits in particular:

• TLG circuits mimic the human brain, and hence hold promise in replicating the

computational power of the brain. While a TLG — which fires when some variable

reaches a threshold — seems at first to be a drastic simplification of a neuron,

benchmarking the four-dimensional neuron model of Hodgkin and Huxley against a TLG

verifies the connection [11]. In particular, the TLG model was shown to correctly predict

nearly 90% of the spikes generated by the Hodgkin and Huxley model in a stochastic

simulation [11], thus showing the considerable similarity between a neuron and a TLG.

S. Roy and V. Beiu: MAJ-3 MUX 3

• Many theoretical results show that TLG circuits are more powerful / efficient (in a

computational sense) than classical Boolean circuits (for reviews see [12]–[15]),

motivating their further study.

• Theory also shows that TLG circuits can be made arbitrarily fault-tolerant (reliable)

using a “small” amount of additional hardware (i.e., using a redundancy factor that is

logarithmic in size), while Boolean circuits cannot [16].

• Finally — and most importantly — nano-scale devices are unreliable, and hence

simulation and implementation of gates/circuits with unreliable components are of current

interest (see [17], [18]).

All of these strongly motivate the following lines of investigation:

• Redundant design schemes [20]–[22] — e.g., modular redundancy, cascaded modular

redundancy, multiplexing (MUX, including vN-MUX [19] and parallel restitution PAR-

REST [10]), and reconfigurability [3], [8], [23] — should be adapted to accommodate

TLG circuits.

• Redundant design schemes require further study in the case of small (and hence

economical) redundancy factors (R � 100). Modifications and enhancements of these

schemes (and of their analyses) that would allow extension to very small redundancy

factors (R � 10) should be aggressively pursued, since these can significantly improve the

tolerable failure probability in practical designs.

• Paradigms for combining several redundancy schemes should also be considered, in

order to appropriately evaluate whether very small (R � 10) practical redundant designs

can be reliable enough.

In this article, we present some new results concerning the first two of these directions of study.

S. Roy and V. Beiu: MAJ-3 MUX 4

Specifically, we modify vN-MUX for majority (MAJ) gates with 3 inputs (MAJ-3). We then

develop an exact probabilistic analysis of our MAJ-3 MUX scheme using exact combinatorial

arguments, which allows for the first time to accurately characterize a MUX scheme at small and

very small redundancy factors. We are motivated to pursue an adaptation of vN-MUX, in

particular, because it has shown promise for architectures with both high defect and fault

probabilities [3]–[7], [10], and has been shown to achieve much better results than R-modular

redundancy (R-MR) for very large redundancy factors (R > 10,000) [19]. Next, we develop an

upper bound on the maximum tolerable gate failure probability qMAJ-3, when any amount of

redundancy may be used. This upper bound also underscores the advantage of using MAJ-3 gates

rather than NAND-2 gates. Finally, we present an extension of vN-MUX that serves to further

optimize its performance for very small redundancy factors (R � 10).

The remainder of the article is organized as follows. In Section II, we describe briefly

reliability-related work from the literature. In Section III, we characterize MAJ-3 MUX, and do a

probabilistic analysis of a single multiplexed computation using worst-case exact combinatorial

arguments. We also present an upper bound on the failure probability pf, when any redundancy

factor R may be used. In Section IV, we use our analysis to compare the required device-failure

probabilities pf for achieving chip-level reliability, given that MAJ-3 MUX at a particular

redundancy factor R is implemented. In Section V, an extension of the multiplexing method is

presented, and shown to further improve reliability significantly for very small redundancy

factors. In Section VI, we summarize our findings and briefly discuss directions for further

research.

S. Roy and V. Beiu: MAJ-3 MUX 5

I I . L ITERATURE REVIEW

Reliable operation of a circuit can be achieved using redundancy at many different levels: at

the device level [24], [25]; at the gate level [26]; at the block level [27]; in time; and in

communication (through encoding, e.g., [28]) (see also [3]–[10] and [17]). While most of these

methods are beyond our scope in this article, we note that they have in common that improved

reliability is traded off for increased chip area and higher connectivity [29], [30]. In this paper,

we only focus on redundant designs at the gate level.

In the circuit complexity community, fault / defect-tolerance at the gate level has been

formalized under two models: the gate error model where only gates are assumed to be faulty,

and the wire error model where only wires make errors [16]. The wire fault model tends to be

appropriate for circuits with complex gates because, for instance, it can capture that a gate with a

larger fan-in might have a larger probability of error. The fan-ins of the gates we analyze in this

article are very limited (fan-in = 3), and hence the gate error model is quite appropriate. That is,

we assume that only gates can cause errors, and that there is a fixed upper bound on their error

probability, regardless of the fan-in of the gate. To prevent amplification of these errors in a logic

circuit, some type of redundant design must be used. We will quantify redundancy using the

redundancy factor R, which indicates the multiplicative increase in circuit size (i.e., number of

gates) required to attain fault-free operation, or equivalently the ratio of the size of the

fault / defect-tolerant circuit to the size required in case of no faults. [Remark: In [29] and [30]

Reischuk and Schmeltz aptly point out that increase in circuit area rather than increase in circuit

size is a more significant measure of redundancy, and show how encoding in combination with

replication can be used to minimize circuit area.]

S. Roy and V. Beiu: MAJ-3 MUX 6

In [19] von Neumann introduced the multiplexing redundancy algorithm vN-MUX as a

plausible representation for reliable computation. vN-MUX was developed for arbitrary gates,

including MAJ and NAND (known then as Sheffer Stroke) gates (see Fig. 1 showing the

executive stage followed by two restorative stages). However, a detailed reliability analysis was

performed for two-input NAND (NAND-2) gates only, assuming independent gate failures and

very large redundancy factors. By exploiting the approximate Gaussianity of the number of

failures in the executive stage output, von Neumann showed that long sequences of computations

could be performed reliably for sufficiently small gate failure probability. His analysis yielded a

maximum tolerable failure probability per NAND-2 gate of qNAND-2 = 0.0107 for sufficiently

large redundancy. A detailed explanation of this result was recently given in [10].

The performance of NAND-2 vN-MUX was compared with the performance of other fault

tolerance techniques in [3]–[7] (see Fig. 2). It was shown that NAND-2 vN-MUX can

accommodate devices with a defect probability pf � 0.01. However, this maximum defect

probability is only achievable at the expense of enormous redundancy factors (R ~ 1,000,000).

In [7], NAND-2 vN-MUX was analyzed at small to moderate redundancy factors of 30, 300,

and 3000. It was shown that the number of faulty outputs from a single multiplexed logic

computation is binomial for these redundancies, and can be approximated as Gaussian only for

moderate to large redundancy factors (R > 3000). NAND-2 vN-MUX has been analyzed using a

CAD tool in [31]. The results reported in [31] show that for small redundancy factors the

theoretical results from [7] are inaccurate, while PRISM [32], [33] is able to provide more

precise estimates. The framework for PRISM is based on probabilistic model checking, and can

be used for evaluation of the reliability / redundancy trade-off for various designs. In their analysis

[31], the authors reported simulation results for small redundancy factors, i.e., 60, 120, and 180,

S. Roy and V. Beiu: MAJ-3 MUX 7

for the NAND-2 vN-MUX scheme. Another simulation tool for reliability calculations was

recently described in [34]. It comprises MATLAB-based libraries for fundamental logic gates

that can compute output probability distributions based on the input distribution. This approach

is based on the analysis of Bahar et al. [35], where a Boolean gate is modeled using an energy

distribution function. Another tool dedicated for estimating the reliability of quantum cellular

automata (QCA) is presented in [36]. It can be integrated with QCADesigner, a tool for the

layout and simulation of QCA structures. The approach suggested for increasing redundancy is a

low-level one, based on triplicating both gates (MAJ) and wires. Very recently [28], examples of

hardware architectures that incorporate one or multiple redundancy schemes (triple modular

redundancy together with encoding) were tested using VHDL/Spice/Monte Carlo simulations.

The PAR-REST scheme [10] is of particular interest. While PAR-REST has many features

similar to vN-MUX, the authors distinguish between the schemes based on the fact that the

computations are not collapsed after each layer of the circuit (see [10] for details) and that

restorative stages (defined later) are only used periodically. The article [10] shows that PAR-

REST can significantly improve upon NAND-2 vN-MUX for small to moderate R. Our

independent studies in the earlier works [37], [38], and in this article, also do not collapse the

result from each multiplexing stage and propose periodic restoration, though we tend to view this

modification as a modification of vN-MUX rather than a wholly new scheme.

Novel redundancy techniques that combine device-level and gate-level design ideas have also

been introduced. In [25] the authors propose a redundant design approach that creates a rescaled

weighted average of the redundant blocks’ outputs. This results in a multiple-valued logic

representation (of the function to be implemented), and provides an effective means of absorbing

faults. The authors show, through several examples, that the new design technique improves the

S. Roy and V. Beiu: MAJ-3 MUX 8

immunity to permanent and transient faults occurring at the transistor level, and works even for a

redundancy factor R = 2. The paper suggests that dynamically adjustable threshold levels may

further enhance this method. Another approach proposes a robust design of Boolean gates as

feedforward artificial neural networks of small size, specifically trained to absorb errors [26].

After learning, such gates could be incorporated in a library of fault tolerant gates, thus becoming

transparent to the VLSI designer (if the synthesis tools could take advantage of them). The

differential configuration used can also improve on the robustness of data transmission, but at the

expense of additional power consumption and increased switching activity (noise). The authors

mention that this method might be difficult to implement due to the high precision required for

the weights. Other low-level (i.e. device/gate) approaches which we should mention here belong

to the larger class of rad-hard by design [39], and high matching techniques used in analog

circuits [40], [41] (recently used for enhancing the reliability of CMOS TLGs [24]).

The methods for reliable design of nano architectures that we have described generally adhere

to the following philosophy: a particular redundancy scheme is chosen, and the reliability of a

typical class of circuits is evaluated given this redundancy scheme. A second body of literature

on reliability seeks to analyze the minimum redundancy required to implement a particular faulty

computation, assuming that any redundancy scheme may be used [16], [29], [30], [42]–[53].

Broadly speaking, these studies seek to construct a reliable architecture of minimum size for a

particular logic function, given the failure probability of gates and / or wires. This literature is

largely beyond this article’s scope, so we shall present only a few relevant results. The maximum

tolerable failure probability for any redundant NAND-2 circuit was shown to be q = 0.08856 in

[51], but the suggested redundant design in this case is not vN-MUX. A similar analysis has been

performed recently for TLG circuits, in which case gate failure probabilities up to q = 0.25 can be

S. Roy and V. Beiu: MAJ-3 MUX 9

tolerated [16]. In particular, Reischuk investigated the required redundancy for circuits with

unbounded fan-in. He concluded that TLG circuits have a clear advantage over Boolean gate

circuits with respect to reliability (fault / defect-tolerance). More precisely, only using unbounded

TLGs can arbitrary circuits be made reliable (fault / defect-tolerance) with a small amount of

additional hardware (logarithmic in size). Boolean circuits of unlimited fan-in cannot be made

reliable even if large redundancy factors are allowed. Finally, the error threshold of the gate

represents another advantage of MAJ over NAND, as can be seen in Fig. 3. In this figure, the

error threshold for MAJ-k gates (MAJ gates of fan-in = k) is �MAJ(k) =

��
�

�
��
�

�

−
−

−
−

2/)1(

1

2

2

1 2

k

k
k

k

 for k odd (as

determined in [49], [53]), while the error threshold �NAND for NAND-k gates was computed by

numerically solving NAND

k

NANDkk
ε

ε
−=�

�

	

�

�

−
�
�

�
�
�

� +
−

1
)21(

11
1

)1/(1

 (as recently proven in [54]).

I I I . MULTIPLEXING FOR A SINGLE MAJ-3 COMPUTATION

A. Description

The vN-MUX algorithm developed in [19] aims to improve the reliability of a sequence of

logic computations, by assimilating the results from redundant implementations of each

computation in the sequence. This ‘multiplexing’ of each computation serves to contain error

propagation down the sequence, by selecting for the more common (and hence more-likely

correct) result at each stage. The vN-MUX scheme can be applied to any logic computation, but

the analysis of the scheme must be adapted for each case.

A single MAJ-3 vN-MUX logic computation is presented in Fig. 4. The vN-MUX

computation comprises an executive stage and a restorative stage. The executive stage repeats

S. Roy and V. Beiu: MAJ-3 MUX 10

the desired logic computation (in our case a MAJ-3 computation) a total of N times, operating on

N different sets of inputs obtained from the previous computation. The restorative stage

triplicates and randomly orders (see randomizer in Fig. 4(b)) the outputs from the executive

stage, and then chooses the majority of each randomly-chosen set of three signals using a second

set of N MAJ-3 gates, to generate the N final outputs. The purpose of the restorative stage is to

increase the frequency of the more common output from the executive stage. This restoration is

central to the global performance of the vN-MUX scheme. It is important to note that we do not

collapse the N different outputs into a single one, and so we use the term MAJ-3 MUX rather

than MAJ-3 vN-MUX hereafter.

B. Probabilistic Analysis

Our aim is to relate the output error probabilities of a MAJ-3 MUX computation to the input

error probabilities and the MAJ-3 gate failure probabilities qMAJ-3. Our statistical model for this

MAJ-3 MUX computation is as follows. We assume that each of the three sets of N inputs —

henceforth called a bundle as in the original article [19] — has a nominal binary value. Let the

number of lines in bundle i, 31 ≤≤ i , that are in error (i.e., deviate from their nominal input

value) be denoted ie . Given ie , all configurations of line errors among the N lines in bundle i are

assumed to be equally probable. The three random variables 1e , 2e , and 3e are assumed to be

independently distributed, with probability distributions)(1eP ,)(2eP , and)(3eP , respectively.

We also assume that each MAJ-3 gate can fail with probability qMAJ-3. Based on the nominal

inputs, we can determine the nominal final output. We define d as the number of final outputs

(outputs from the restorative stage) that differ from the nominal output. Our goal is to

characterize the distribution of d.

S. Roy and V. Beiu: MAJ-3 MUX 11

The distribution of d depends on the values of the nominal inputs — in particular, on whether

or not there is a consensus among the nominal inputs. It is easy to see that the probability of

malfunction (i.e., the probability that a significant number of outputs differ from the nominal

output) is greatest when the nominal inputs are not in consensus. Since our concern is about the

reliability of this design, we will evaluate the distribution of d in the worst case, i.e. when the

inputs are not in consensus. Without loss of generality, let us assume that that inputs I1 and I2

have a nominal value of high, while input I3 has a nominal value of low. Thus, the nominal

output is high. Also, we note that the probability of malfunction decreases as the number of

errors in the single distinct input (input I3 in our case) increases. In our calculations, we thus

assume the worst case, i.e. that input I3 is always correct, and so 3e is always low.

We will require several steps to compute the distribution of d. First, we define a variable w

for the number of MAJ-3 gates in the executive stage that have at least two inputs high. To find

the distribution for w, let us first find the conditional distribution for w given 1e and 2e , or

),|(21 eewP . This conditional distribution can be found using a counting argument, as follows.

In total, there are ��
�

�
��
�

�
⋅��
�

�
��
�

�

21 e

N

e

N
 configurations for the line errors in all three input bundles (recall

that the third set of lines is assumed to have no errors). Each of these configurations has w MAJ-

3 gates with at least two inputs high if and only if neither line 1 (i.e., the line from bundle 1) nor

line 2 has errors at w MAJ-3 gates, and either line 1 or line 2 has an error at the other wN −

MAJ-3 gates. (Note that, in consequence, the probability is zero unless),min(21 eew ≤ and

wNee −≥+ 21 .) The number of ways in which we can choose w MAJ-3 gates, for which both

input I1 and input I2 are high, is ��
�

�
��
�

�

w

N
. The number of ways in which to distribute the errors

S. Roy and V. Beiu: MAJ-3 MUX 12

among the lines to the remaining wN − MAJ-3 gates, so that either input I1 or input I2 has an

error, is:

 ��
�

�
��
�

�

−−
⋅��
�

�
��
�

� −
weN

e

e

wN

2

1

1

. (1)

Hence, we find that the conditional probability for w given 1e and 2e is:

��
�

�
��
�

�
⋅��
�

�
��
�

�

��
�

�
��
�

�

−−
⋅��
�

�
��
�

� −
⋅��
�

�
��
�

�

=

21

2

1

1
21),|(

e

N

e

N

weN

e

e

wN

w

N

eewP . (2)

Finally, we can compute the probability distribution for w as:

= =

⋅⋅=
N

e

N

e

ePePeewPwP
1

21
1

21

1 2

)()(),|()(. (3)

We note that the combinatorial arguments used to find the distribution of w are similar to those

given in [19], for analysis of the executive stage of a NAND-2 computation.

Once we have computed the distribution for w, we can compute the distribution for s — the

number of correct outputs (i.e., the number of outputs that are high) after the executive stage. An

output from a MAJ-3 gate is guaranteed to be correct only if at least two of its inputs are high,

and the MAJ-3 gate is functioning. Hence, the conditional distribution for s given w is binomial:

sws qq
s

w
wsP −

−− ⋅−⋅��
�

�
��
�

�
= 3MAJ3MAJ)1()|(, and the (unconditioned) distribution for s is

=

⋅=
N

sw

wPwsPsP)()|()(.

The next signal that we consider is a, the number of MAJ-3 gates in the restorative stage that

have at least two inputs high. Note that the inputs into the restorative stage MAJ-3 gates are

generated from the outputs of the executive stage, through triplication and randomization. To

S. Roy and V. Beiu: MAJ-3 MUX 13

compute the probability distribution for a, we first compute the conditional distribution for a

given s, using a combinatorial argument. In particular, we determine the number of distinct input

arrangements (consisting of 3N inputs) into the N MAJ-3 gates that make up the restorative stage,

and count the number of such arrangements for which a MAJ-3 gates have at least two inputs

high. Given s, 3s of the 3N inputs into the restorative stage are high. Hence, the high inputs of the

MAJ-3 gates in the restorative stage can be arranged in ��
�

�
��
�

�

s

N

3

3
 different ways, each of which is

equally probable (because of the action of the randomizer). Next, we aim to count the number of

such sequences for which exactly a MAJ-3 gates have at least two inputs high. We will call these

the good sequences. To count the number of good sequences, we count the number of good

sequences that have exactly 3i gates with all three inputs high, and add over all 3i . Note that

),min(3 asi ≤ . For a particular 3i , the number of MAJ-3 gates with exactly two inputs high is

32 iai −= , since a MAJ-3 gates have at least two inputs high. Next, since the total number of

high inputs is 3s, the total number of MAJ-3 gates 1i with exactly one input high must be

231 233 iisi −−= , where it is required that 01 ≥i . The number of MAJ-3 gates 0i with no inputs

high must be 1230 iiiNi −−−= , where 0i is further constrained to be non-negative. Since

3i determines 2i , 1i , and 0i , the number of good sequences having a particular 3i is the number of

good sequences with the resultant 3i , 2i , 1i , and 0i . To count this number, we note that MAJ-3

gates with three, two, one, and zero inputs high can be arranged arbitrarily, and further that the

inputs into each MAJ-3 gate with exactly one or two inputs high can be arranged in three

different ways (100, 010, 001, and respectively 110, 101, 011). Hence, the number good

sequences with a particular 3i is given by

S. Roy and V. Beiu: MAJ-3 MUX 14

12 33
1

23

2

3

3

ii

i

iiN

i

iN

i

N
⋅⋅��

�

�
��
�

� −−
⋅��
�

�
��
�

� −
⋅��
�

�
��
�

�

)(233

333

3

3

333 33
)(233

iaisia

iais

aN

ia

iN

i

N −−−− ⋅⋅��
�

�
��
�

�

−−−
−

⋅��
�

�
��
�

�

−
−

⋅��
�

�
��
�

�
= , (4)

where a combination is assumed to be zero if its lower term is smaller than zero, or greater than

the upper term. It follows from (4) that the conditional probability for a given s is

��
�

�
��
�

�

⋅⋅��
�

�
��
�

�

−−−
−

⋅��
�

�
��
�

�

−
−

⋅��
�

�
��
�

�

=

−−−−

=

s

N

iais

aN

ia

iN

i

N

saP

iaisia
sa

i

3

3

33
)(233

)|(

)(233
),min(

0 333

3

3

333

3 . (5)

As we have done before, we can compute the unconditioned distribution for a by finding the joint

distribution of a and s, and marginalizing.

We can compute the distribution of the number of output errors d from the distribution of a,

by considering failures in the restorative-stage MAJ-3 gates. A binomial distribution represents

the conditional distribution in this case. We omit the details, since this analysis is identical to our

analysis of the executive stage presented before.

In his seminal paper [19], von Neumann also observed that accurate (essentially error-free)

computations are possible using NAND-2 vN-MUX only if the probability of a NAND-2 gate

failure probability qNAND-2 is below a certain threshold value. In particular, if qNAND-2 is below

this threshold value, the frequency of errors at the output of a multiplexing stage is less than or

equal to the frequency of errors at the input of that stage — given that a sufficiently large bundle

size N is used. Thus, a sequence of computations can be completed without increasing the error

frequency. We have observed a similar behavior for MAJ-3 MUX. In particular, we have

determined that MAJ-3 MUX can achieve accurate computations for gate failure probabilities

S. Roy and V. Beiu: MAJ-3 MUX 15

qMAJ-3 < 0.0197. This outperforms the NAND-2 gate failure probabilities qNAND-2 < 0.0107. We

have obtained this threshold in an analogous manner to [19]: by invoking the central limit

theorem, we identify a deterministic equivalence for the error frequency update, in the limit of

large bundle size. The deterministic equivalence allows us to compute whether the error

frequency decreases over a computation, for a given gate failure probability. A more detailed

discussion of this threshold result will be presented in future work, while a relevant discussion

for NAND-2 gates can be found in [10].

IV. CHIP-LEVEL ANALYSIS

In the previous section, we showed how to obtain the probability distribution of the number

of high outputs of a single MAJ-3 MUX computation given the MAJ-3 gate failure probability

qMAJ-3. In this section we extend the analysis to the chip level, by going from a device to a gate,

and finally to the system (chip). These steps will allow us to determine the relationship between

the device failure rate (pf) and the chip failure rate (Pchip). Our chip-level analysis follows the

analysis of [3]–[5], [7].

The first step is represented by the device failure rate pf. This is an elusive measure, which for

current CMOS processes can be estimated to be in the 10–7 to 10–8 range, but will be adversely

affected by scaling (see also [55], [56]). For example, for SET the expectations are that about one

in one thousand devices might have considerable background charge fluctuations, i.e. pf � 10–3

[57].

The second step is to determine the gate failure rate qMAJ-3 in terms of the device failure rate

pf. A simple equation relating the two is qMAJ-3 = 1 – (1 – pf)
j, where j is the number of devices in

a MAJ-3 gate (see [3], [4]). This simplified model does not take into account the fact that

S. Roy and V. Beiu: MAJ-3 MUX 16

different devices (i.e., both active ones like MOS transistors, SET junctions, RTDs, etc., and

passive ones like resistors and capacitors) might have different failure probabilities. Also, this

model does not consider connections, i.e., both wires (which for a CMOS process can be on

several different layers, and hence might have different failure probabilities) and contacts

(between the different layers). A conventional CMOS implementation requires 4 transistors (2

nMOS and 2 pMOS) for a NAND-2 gate, giving qNAND-2 = 1 – (1 – pf)
4 [3], [4]. A standard

domino implementation of a NAND-2 also requires 4 transistors (a solution with 3 transistors is

possible). It was suggested that other Boolean gates could be replaced by NAND-2 gates [3], [4].

The authors also mention that a MAJ-3 gate requires 4 NAND-2 gates, and conclude that the use

of NAND-2 gates is in the interest of minimizing redundancy. While this is true if MAJ-3 gates

are implemented using NAND-2 gates, there are other CMOS—and also SET, RTD, and

molecular—designs which could be used for implementing MAJ-3 gates [18]. The simplest

CMOS solution is a pseudo-nMOS implementation requiring 4 transistors: 3 nMOS for the 3

inputs, and 1 pMOS acting as load. This gives qMAJ-3 = 1 – (1 – pf)
4, suggesting that a MAJ-3

(pseudo-nMOS) gate might be as reliable as a NAND-2 (CMOS) gate. In fact things are much

more complicated, and many other designs are possible, which although having more devices can

have a lower probability of failure. For example, using high matching techniques ([40], [41]), the

number of devices is increased, but because several (identical but smaller) devices are connected

in parallel, they build redundancy at the lowest possible level (i.e., the device level), and so

increase the overall reliability of the gate [24], [58].

The third step assumes that the chip has NTOTAL devices, and is divided into processing units

of effective device count Nunit. Since the MAJ-3 MUX introduces a redundancy factor of R = 2×N

(we note here that the NAND-2 vN-MUX has a slightly larger R = 3×N), the number of

S. Roy and V. Beiu: MAJ-3 MUX 17

processing units is given by n = NTOTAL /(R×Nunit) = NTOTAL /(2×N×Nunit). We also assume that the

units have a logical depth D = 10, as has been done previously in [3]–[5], [7]. We thus apply the

probability analysis of Section III to the logical units sequentially to obtain the final probability

distribution PD(d) = P10(d). We then assume a critical threshold level � = 0.5, and calculate the

probability that d / N ≥ � = 0.5. [Remark: We note here that von Neumann’s original study [19] ,

as well as some more recent studies [3] –[7] , use thresholds smaller than 0.5. Such thresholds

are needed to maximize the tolerable probability of error pf when a decision is taken at each

multiplexing stage. We advocate taking a decision (voting in our case) only after the final stage,

and so a threshold of 0.5 suffices.] This is the probability that one data bit (Pbit) is wrong. We

note that the implementation of the threshold at the output requires additional logic circuitry. As

has been done in the literature ([3]–[10] and [19]), we assume that the failure probability of the

final thresholding circuit is negligible. Very high reliability logic gates can be designed in

practice by introducing redundancy at the device level [24]–[26], [36], [39]–[41], [58].

The reliability of one processing unit is thus given by Punit = (Pbit)
m, where m is the number of

outputs from a processing unit. Hence, the reliability of the whole chip is Pchip = (Punit)
n. Putting

all of these together we get

Pchip = (Punit)
n = [(Pbit)

m]n = { [PD(d)]m} n = { [P10(d)]m} NTOTAL
/

(R×Nunit). (6)

Now that we have related the chip reliability Pchip, i.e. the probability that the chip produces a

correct output during a single clock cycle, to the device failure rate pf for a given redundancy

factor R, we can determine the maximum allowed failure probability pf as a function of R for

given Pchip, m, NTOTAL, and Nunit. We consider a chip with NTOTAL = 1210 devices and Nunit = 610

processing units, each of which returns a single bit m = 1. Through simulation, we determine the

S. Roy and V. Beiu: MAJ-3 MUX 18

maximum failure probability pf needed to guarantee a chip reliability of Pchip = 90%, as a

function of the redundancy factor R. Our results for small redundancy factors (R < 100) are

shown in Fig. 5. We note that these results provide a significant improvement over R-MR and

NAND-2 vN-MUX [3]–[7], and stress again that our results are the only ones that are accurate at

very small redundancies.

A comparison of greater interest is between MAJ-3 MUX and PAR-REST [10], since PAR-

REST constitutes the latest scheme recently proposed in the literature. The article [10] considers

reliability over a duration of time (i.e., multiple clock cycles), and reports maximum failure

probabilities when 90% reliability over ten years of processing is demanded. We compare MAJ-3

MUX with PAR-REST using this reliability demand and identical chip specifications as in [10].

Because PAR-REST is most fairly compared with a scheme that only periodically uses

restoration, we delay this comparison to the next section. Finally, we note that we are currently

investigating a more realistic chip-level analysis that meshes multiple redundancy strategies,

including device level ones, and will report on the results in a subsequent article.

V. AN EXTENSION OF VON NEUMANN MULTIPLEXING

The purpose of the restorative stage in MUX is to reduce error propagation from a logic

computation’s input to its output, by selecting for the more common outputs from the

computation. The restorative stage is only effective when the probabilities of error in the inputs

are sufficiently large. In fact, for small input error probabilities, the chance of error introduced by

the gates in the restorative stage might outweigh the advantage of having the restorative stage.

Thus, if the input error probabilities, for a particular logic computation, are small enough, we can

S. Roy and V. Beiu: MAJ-3 MUX 19

simultaneously improve the output error probability and economize (reduce the redundancy

factor R) of any MUX design by eliminating the restorative stage.

From another viewpoint, if we are seeking the best-performing architecture for a particular

redundancy factor R, we might expect to improve on the standard vN-MUX algorithm by

applying the restorative stage on only some computations, while simultaneously increasing the

bundle size N. For instance, say that we wish to design a MUX architecture with a maximum

redundancy factor RMAX = 15. A classical NAND-2 vN-MUX would use a bundle size of N = 5,

and apply restoration on every computation, hence RNAND-2 = 3×5 = 15 = RMAX. If we were to

apply the standard MAJ-3 MUX, we would use a bundle size of N = 7 and apply restoration on

every computation, which yields RMAJ-3 = 2×7 = 14 < RMAX. It turns out that even the reliability

of this architecture can be improved by using a bundle size of N = 11 and applying restoration

only every third computation (to be precise, for computations at depths 3, 6, and 9 in the logic

circuit). This design yields an ‘average’ redundancy factor of REnhanced_MAJ-

3 = 11 + 11 / 3 = 14.3 < RMAX. We use this idea to improve our MAJ-3 MUX, but the same

principle can be applied when using any other type of gate or combinatorial logic block.

Specifically, we consider architectures in which the logical depths of all inputs to a given

computation are the same (but in general this need not be the case). We define the enhanced

MAJ-3 MUX(N, k) architecture as one in which an executive stage with bundle size N is used for

all computations, and a restorative stage is applied only on every kth stage (i.e., for computations

with logical depth k, 2k, … — while in general the restorative stages could be distributed

unevenly). We note that the redundancy factor introduced by a MAJ-3 MUX(N, k) architecture is

R = N + N / k. By placing the restorative stage only every kth stage, the bundle size N can be

increased to N+ = [2k/(k+1)]×N for the same redundancy factor R.

S. Roy and V. Beiu: MAJ-3 MUX 20

We have computed the maximum probability of failure for a device pf, such that a reliable

chip-level design Pchip = 0.9 can be achieved for a given redundancy factor R (see Fig. 5).

However, we now consider all MAJ-3 MUX(N, k) architectures, i.e. all possible (N, k) pairs

satisfying a given R. We find this probability by computing the maximum allowed probability of

device failure for each architecture for the given R, and then choosing the architecture that

maximizes the allowed failure probability. For instance, for a redundancy factor R = 15, we

found that the MAJ-3 MUX(11, 3) architecture provides the maximum allowed probability of

device failure, of 6.25×10–5. Fig. 6 shows the probabilities of failure allowed for each redundancy

factor using the best possible MAJ-3 MUX(N, k) architecture. To illustrate our enhanced MAJ-3

MUX(N, k) scheme, we present a detailed comparison of MAJ-3 MUX(N, k) with MAJ-3 MUX

in Fig. 7. It shows that:

• for small but not very small redundancy factors, 10 < R < 100, MAJ-3 MUX(N, k) does

not significantly improve on MAJ-3 MUX (see Fig. 7(a));

• on the other hand, for very small redundancy factors, R < 10, MAJ-3 MUX(N, k)

architectures provide an additional four orders of magnitude over MAJ-3 MUX (see Fig.

7(b)), with the strongest advantages at R = 3, 4, and 5.

• MAJ-3 MUX(N, k) seems to be always better than R-MR and is quite able to compete

with reconfiguration ([3], [8], [23]).

An exact numerical comparison for very small redundancy factors can be seen in Table I. The

table also presents the particular (N, k) that achieves the best performance. An interesting

additional advantage of using MAJ-3 MUX(N, k) is that we can tailor the designs to achieve

desired redundancy factors.

S. Roy and V. Beiu: MAJ-3 MUX 21

Finally, we return to the comparison between MAJ-3 MUX and PAR-REST. As in enhanced

MAJ-3 MUX(N,k), PAR-REST takes advantage of periodic restoration to improve performance.

Hence, a comparison between MAJ-3 MUX and PAR-REST is perhaps the most fair comparison

of the reliability of MAJ-3 and NAND-2 architectures. We have compared the performance of

MAJ-3 MUX and PAR-REST at the smallest analyzed redundancy for PAR-REST (R = 48) and

also at R = 100 (which is the largest redundancy we have considered for MAJ-3 MUX). At

R = 48, MAJ-3 MUX improves on PAR-REST by a factor of 1.5 (i.e., 2.3×10–4 versus about

1.5×10–4), while achieving a factor of 4.25 at R = 100 (i.e., 1.7×10–3 versus about 4×10–4).

VI . CONCLUSIONS AND FUTURE DIRECTIONS OF RESEARCH

In this article, we have presented an engineering analysis of multiplexing. We have developed

the first exact and worst case analysis for MAJ-3 MUX for small and very small redundancy

factors, using combinatorial arguments. We have also presented an extension of MAJ-3 MUX

that can significantly improve its performance at very small redundancy factors (R < 10). We

have compared these schemes to other redundancy schemes, showing that MAJ-3 MUX holds

promise for economical (i.e., small) as well as practical (i.e., very small) redundant fault-tolerant

designs. In fact, MAJ-3 MUX improves on the performance of R-MR by five orders of

magnitude, and by about four orders of magnitude over classical NAND-2 vN-MUX. An

additional three to four orders of magnitude can be gained at very small redundancy factors

(R = 3, 4, 5) when using enhanced MAJ-3 MUX(N, k), a scheme that we introduced here. These

comparisons show that MAJ-3 MUX gives better results than R-MR for very small redundancy

factors (R < 10), and is able to compete with reconfiguration for small redundancy factors

S. Roy and V. Beiu: MAJ-3 MUX 22

(R < 100). The enhanced MAJ-3 vN-MUX(N, k) outperforms R-MR for any R > 2, and starts

competing with reconfiguration even at very small redundancy factors (R < 10).

In this article, we have also presented an upper bound on the maximum tolerable failure

probability, indicating the clear advantage of using MAJ-3 gates over NAND-2 gates in

multiplexing.

Our future work will focus on several lines of research. The first one is to investigate

combinations of MAJ-3 MUX(N, k) with low-level reliable schemes. This will allow for

additional (hopefully significant) reductions in area. As an example, the MAJ-3 MUX(3, �) (see

Fig. 8(a)) has been used in combination with a high-matching inspired technique [40], [41] (see

[24] for a CMOS application to TLGs). These were used together to improve the robustness of

capacitive SET TLGs with respect to process variations [58]. Data was collected from 10,000

simulations using SIMON (a Monte Carlo SET simulator) and our own MATLAB modules. Both

the probability of failure of one MAJ-3 SET gate qMAJ-3 versus process variations, as well as the

probability of failure of a MAJ-3 MUX(3, �) structure (see Fig. 9(a)), implemented using high

matching MAJ-3 SET gates (see Fig. 9(b)), can be seen in Fig. 8(b). This figure shows that while

one MAJ-3 SET gate starts giving errors from ±3% variations (on all junctions and capacitor

values), the enhanced MAJ-3 vN-MUX scheme using high-matching MAJ-3 SET gates starts to

err only from ±5% variations. It also can be seen that the robustness (tolerance) to variations is

improved by over three orders of magnitude up to ±6% variations, by over two orders of

magnitude for variations in the range ±7% to ±8%, and over one order of magnitude for

variations up to ±10%. The same structure is currently being characterized in 120 nm standard

CMOS (in subthreshold using an original adaptive body bias technique [59].

S. Roy and V. Beiu: MAJ-3 MUX 23

We are also pursuing further improvement and analysis of our MAJ-� MUX(N, k), and plan

to present these developments in a subsequent article. It is known [49], [53], [54], that gates with

larger fan-ins are expected to give an additional improvement (see Fig. 3). Thus, we plan to first

extend MAJ-3 MUX to MAJ-5 MUX, as a step towards finding optimal MAJ-� MUX(N, k)

structures. The extension from MAJ-� to arbitrary TLGs with very small delay penalty was

theoretically proven in [60], [61]. Other techniques for improving performance that we are also

following include unevenly sequencing the computations with and without restoration, and

dynamically varying (re-sizing) the bundle size N from one stage to another.

REFERENCES

[1] International Technology Roadmap for Semiconductors, ITRS, 2003. Available:

http://public.itrs.net/

[2] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,” IEEE Micro, vol.

23, Jul.-Aug. 2003, pp. 14–19.

[3] M. Forshaw, K. Nikoli�, and A. S. Sadek, “ANSWERS: Autonomous Nanoelectronic

Systems With Extended Replication and Signaling,” Microelectronics Advance Research

Initiative (MEL-ARI) #28667, 3rd Year Annual Report, 2001, pp. 1–32.

Available: http://ipga.phys.ucl.ac.uk/research/answers/reports/3rd_year_UCL.pdf

[4] K. Nicoli�, A. S. Sadek, and M. Forshaw, “Architectures for reliable computing with

unreliable nanodevices,” Proc. IEEE-NANO’01, Maui, HI, USA, Oct. 28-30, 2001, pp.

254–259.

[5] K. Nikoli�, A. S. Sadek, and M. Forshaw, “Fault-tolerant techniques for nanocomputers,”

Nanotechnology, vol. 13, no. 3, Jun. 2002, pp. 357–362.

S. Roy and V. Beiu: MAJ-3 MUX 24

[6] J. Han, and P. Jonker, “A fault-tolerant technique for nanocomputers: NAND

multiplexing,” Proc. Annual Conf. of the Advanced School for Computing and Imaging

ASCI’02, Lochem, The Netherlands, Jun. 19-21, 2002, pp. 59–66.

[7] J. Han, and P. Jonker, “A system architecture solution for unreliable nanoelectronic

devices,” IEEE Trans. Nanotech., vol. 1, no. 4, Dec. 2002, pp. 201–208.

[8] J. Han, and P. Jonker, “A defect- and fault-tolerant architecture for nanocomputers,”

Nanotechnology, vol. 14, no. 2, Feb. 2003, pp. 224–230.

[9] J. Han, and P. Jonker, “A study on fault-tolerant circuits using redundancy,” Proc.

VLSI’03 (Multiconference in Comp. Sci. and Eng.), Las Vegas, NV, USA, Jun. 23-26,

2003, pp. 65–69.

[10] A. S. Sadek, K. Nikoli�, and M. Forshaw, “Parallel information and computation with

restitution for noise-tolerant nanoscale logic networks,” Nanotechnology, vol. 15, no. 1,

Jan. 2004, pp. 192–210.

[11] W. M. Kistler, W. Gerstner, and J. L. van Hemmen, “Reduction of the Hodgkin-Huxley

equations to a single-variable threshold model,” Neural Computation, vol. 9, no. 5, Jul.

1997, pp. 1015–1045.

[12] F. Scarselli, and A. C. Tsoi, “Universal approximation using feedforward neural

networks: A survey of some existing methods, and some new results,” Neural Networks,

vol. 11, no. 1, Jan. 1998, pp. 15–37.

[13] V. Beiu, “A survey of perceptron circuit complexity results,” Intl. Joint Conf. Neural

Networks IJCNN’03, vol. 2, Jul. 2003, pp. 989–994.

S. Roy and V. Beiu: MAJ-3 MUX 25

[14] J. Šíma, and P. Orponen, “General-purpose computation with neural networks: A survey

of complexity theoretic results,” Neural Computations, vol. 15, no. 12, Dec. 2003, pp.

2727-2778.

[15] M. Anthony, “Boolean functions and artificial neural networks,” Tech. Rep. LSE-CDAM-

2003-01, Department of Mathematics, London School of Economics, Jan. 2003.

Available: http://www.cdam.lse.ac.uk/Reports/Files/cdam-2003-01.pdf

To appear in Y. Crama, and P. L. Hammer (eds.): Boolean Functions: Theory,

Algorithms, and Applications (book in progress).

Available: http://www.sig.egss.ulg.ac.be/rogp/Crama/Publications/BookPage.html

[16] R. Reischuk, “Can large fanin circuits perform reliable computations in the presence of

faults?,” Theoretical Comp. Sci., vol 240, no. 12, Jun. 2000, pp. 319–335. Preliminary

version in Proc. Intl. Computing and Combinatorics Conf. COCOON’97, Shanghai,

China, Aug. 20-22, 1997, pp. 72–81. Also as Tech. Rep. SIIM-TR-97-05, Inst. for

Theoretical Comp. Sci., University of Lübeck, Lübeck, Germany.

Available: http://www.itheoi.mu-luebeck.de/Forschung/A9705b.ps

[17] R. Compañó, L. Molenkamp, and D.J. Paul (Eds.), Technology Roadmap for

Nanoelectronics, European Commission, IST Programme, Future and Emerging

Technologies, Microelectronics Advanced Research Initiative (MEL-ARI NANO), 2000.

Available: http://www.cordis.lu/esprit/src/melna-rm.htm

[18] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI implementation of threshold logic: A

comprehensive survey,” IEEE Trans. Neural Networks (Special Issue on Hardware

Implementations), vol. 14, Sep. 2003, pp. 1217–1243.

S. Roy and V. Beiu: MAJ-3 MUX 26

[19] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms from

unreliable components,” in C. E. Shannon, and J. McCarthy (Eds.), Automata Studies,

Princeton, NJ: Princeton Univ. Press, 1956, pp. 43–98.

[20] B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems, New York,

Addison-Wesley, 1989.

[21] D. P. Siewiorek, and R. S. Swarz, Reliable Computer Systems, Burlington, Digital Press,

1992.

[22] P. Ch. Kandellakis, and A. A. Shvartsman, Fault-Tolerant Parallel Computations,

Boston, Kluwer, 1997.

[23] J. R. Heath, P. J. Keukes, G. S. Snider, and R. S. Williams, “A defect-tolerant computer

architecture: Opportunities for nanotechnology,” Science, vol. 280, Jun. 12, 1998, pp.

1716–1721.

[24] S. Tatapudi, and V. Beiu, “Split-precharge differential noise immune threshold logic gate

(SPD-NTL),” in J. Mira, and J. R. Álvarez (Eds.): Artificial Neural Nets Problem Solving

Methods (Proc. IWANN’03, Menorca, Spain, Jun. 3-6), Springer, LNCS 2687, 2003, pp.

49–56.

[25] A. Schmid, and Y. Leblebici, “Robust circuit and system design methodologies for

nanometer-scale devices and single-electron transistors,” Proc. IEEE-NANO’03, San

Francisco, CA, USA, Aug. 12-14, 2003, vol. 2, pp. 516–519.

[26] A. Schmid, and Y. Leblebici, “A modular approach for reliable nanoelectronics and very-

deep submicron circuit design based on analog neural network principles,” Proc. IEEE-

NANO’03, San Francisco, CA, USA, Aug. 12-14, 2003, vol. 2, pp. 647–650.

S. Roy and V. Beiu: MAJ-3 MUX 27

[27] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, “Fault tolerance

techniques for wireless ad hoc sensor networks,” Proc. IEEE Sensors, 2002, pp. 1491–

1496.

[28] A. J. KleinOsowski, and D. J. Lilja, “The NanoBox project: Exploring fabrics of self-

correcting logic blocks for high defect rate molecular device technologies,” Proc. IEEE

Annual Symp. VLSI ISVLSI’04, Lafayette, LA, USA, Feb. 19-20, 2004, pp. 19–24.

[29] R. Reischuk, and B. Schmeltz, “Area efficient methods to increase the reliability of

combinatorial circuits,” Proc. Intl. Symp. Theoretical Aspects of Comp. Sci. STACS’89,

Paderbon, Germany, Feb. 1989, Springer, LNCS vol. 349, pp. 314–326.

[30] R. Reischuk, and B. Schmeltz, “Area efficient methods to increase the reliability of

circuits,” in B. Monien, and T. Ottmann (Eds.): Data Structures and Efficient Algorithms,

Springer, LNCS vol. 594, 1992, pp. 363–389.

[31] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla, “Evaluating reliability of defect

tolerant architecture for nanotechnology using probabilistic model checking,” Proc. Intl.

Conf. VLSI Design VLSID’04, Mumbai, India, Jan. 5-9, 2004, pp. 907–912.

[32] PRISM publications: http://www.cs.bham.ac.uk/~dxp/prism/publications.html

[33] PRISM case studies: http://www.cs.bham.ac.uk/~dxp/prism/casestudies/nand.html

[34] D. Bhaduri, and S. K. Shukla, “NANOLAB: A tool for evaluating reliability of defect-

tolerant nano architectures,” Proc. IEEE Annual Symp. VLSI ISVLSI’04, Lafayette, LA,

USA, Feb. 19-20, 2004, pp. 25–31.

[35] R. Bahar, J. Mundy, and J. Chen, “A probability-based design methodology for nanoscale

computation,” Proc. Intl. Conf. Computer Aided Design ICCAD’03, San Jose, CA, USA,

Nov. 9-13, 2003, pp. 480–486.

S. Roy and V. Beiu: MAJ-3 MUX 28

[36] T. J. Dysart, and P. M. Kogge, “Strategy and prototype tool for doing fault modeling in a

nano-technology,” Proc. IEEE-NANO’03, San Francisco, CA, USA, Aug. 12-14, 2003,

vol. 2, pp. 356–359.

[37] S. Roy, V. Beiu, and M. Sulieman, “Reliability analysis of some nano architectures,”

presented at the Special Workshop on Neural Inspired Architectures for Nanoelectronics,

Neural Information Processing Systems NIPS’03, Whistler, Canada, Dec. 12-13, 2003.

Available: http://www.eecs.wsu.edu/~vbeiu/workshop_nips03/Presentations/S_Roy.pdf

[38] S. Roy, and V. Beiu, “Multiplexing schemes for cost effective fault tolerance,” Proc.

IEEE Conf. Nanotech. IEEE-NANO, Munich, Germany, Aug. 17-19, 2004, in press.

[39] H. L. Hughes, and J. M. Benedetto, “Radiation effects and hardening of MOS technology:

Devices and circuits,” IEEE Trans. Nuclear Sci., vol. 50, Jun. 2003, pp. 500–521.

[40] M. Lan, A. Tammineedi, and R. Geiger, “A new current mirror layout technique for

improved matching characteristics,” Proc. IEEE Midwest Symp. Circ. and Sys.

MWSCAS’99, Aug. 1999, vol. 2, pp. 1126–1129.

[41] M. Lan, and R. Geiger, “Gradient sensitivity reduction in current mirrors with non-

rectangular layout structures,” Proc. IEEE Intl. Symp. Circ. and Sys. ISCAS’00, May

2000, vol. 1, pp. 687–690.

[42] R. L. Dobrushin and S. I. Ortyukov, “Lower bound for the redundancy of self-correcting

arrangements of unreliable functional elements,” Prob. Inform. Transm., vol. 13, 1977,

pp. 59–65.

[43] R. L. Dobrushin and S. I. Ortyukov, “Upper bound for the redundancy of self-correcting

arrangements of unreliable functional elements,” Prob. Inform. Transm., vol. 13, 1977,

pp. 203–218.

S. Roy and V. Beiu: MAJ-3 MUX 29

[44] T. Feder, “Reliable computation by networks in the presence of noise,” IEEE Trans.

Inform. Theory, vol. 35, May 1989, pp. 596–571.

[45] N. Pippenger, G. Stamoulis, and J. Tsitsiklis, “On a lower bound for the redundancy of

reliable networks with noisy gates,” IEEE Trans. Inform. Theory, vol. 37, May 1991, pp.

639–643.

[46] R. Reischuk, and B. Schmeltz, “Reliable computation with noisy circuits and decision

trees: A general nlogn lower bound,” Proc. Intl. Symp. Foundations of Comp. Sci.

FOCS’91, San Juan, Puerto Rico, Oct. 1-4, 1991, pp. 602–611.

[47] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, “Computing with noisy information,”

SIAM J. Comput., vol. 23, 1994, pp. 1001–1018.

[48] P. Gács, and A. Gál, “Lower bounds for the complexity of reliable Boolean circuits with

noisy gates,” IEEE Trans. Inform. Theory, vol. 40, Mar. 1994, pp. 579–583.

[49] W. S. Evans, “ Information Theory and Noisy Computation,” Ph.D. dissertation, Univ. of

California at Berkeley, ICSI Tech. Rep. TR-94-57, Nov. 1994.

Available http://www.cs.ubc.ca/~will/papers/thesis.pdf

[50] A. Gál, “Combinatorial Methods in Boolean Function Complexity,” Ph.D. dissertation,

Dept. of Comp. Sci., Univ. of Chicago, USA, Aug. 1995.

Available http://www.cs.utexas.edu/users/panni/thesis.ps

[51] W. S. Evans, and N. Pippenger, “On the maximum tolerable noise for reliable

computations by formulas,” IEEE Trans. Inform. Theory, vol. 44, May 1998, pp. 1299–

1305.

[52] A. Gál, and A. Rosén, “A theorem on sensitivity and applications to private

computations,” SIAM J. Comput., vol. 31, 2002, pp. 1424–1437. Preliminary version in

S. Roy and V. Beiu: MAJ-3 MUX 30

Proc. ACM Symp. Theory of Comput. STOC’99, Atlanta, GA, USA, May 1-10, 1999, pp.

348–357.

[53] W. S. Evans, and L. J. Schulman, “On the maximum tolerable noise of k-input gates for

reliable computations by formulas,” IEEE Trans. Inform. Theory, vol. 49, Nov. 2003, pp.

3094–3098.

[54] Y. Qi, J. Gao, and J. A. B. Fortes, “Probabilistic computation: A general framework for

fault-tolerant nanoelectronic systems,” Tech. Rep. TR-ACIS-03-002, ECE Dept.,

University of Florida, Gainesville, FL, USA, Nov. 28, 2003.

Available: http://www.acis.ufl.edu/techreports/acis03002.pdf

[55] P. Sivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the effect

of technology trends on soft error rate of combinatorial logic,” Proc. Intl. Conf.

Dependable Sys. and Networks DSN’02, Washington, DC, Jun. 23-26, 2002, pp. 389–

398.

[56] P. Sivakumar, S. W. Keckler, C. R. Moore, and D. Burger, “Exploiting microarchitectural

redundancy for defect tolerance,” Proc. Intl. Conf. Comp. Design ICCD’03, San Jose,

CA, Oct. 13-15, 2003, pp. 481–488.

[57] K. K. Likharev, “Single-electron devices and their applications,” Proc. IEEE, vol. 87,

Apr.1999, pp. 606–632.

[58] M. Sulieman, and V. Beiu, “Design and analysis of SET circuits: Using MATLAB and

SIMON,” Proc. IEEE-NANO’04, Munich, Germany, Aug. 17-19, 2004, in press.

[59] V. Beiu, “A novel highly reliable low-power nano architecture: When von Neumann

augments Kolmogorov,” Proc. IEEE Intl. Conf. App.-specific Sys., Arch. and Processors

ASAP’04, Galveston, USA, Sep. 27-29, 2004, pp. 167–177.

S. Roy and V. Beiu: MAJ-3 MUX 31

[60] M. Goldmann, J. Håstad, and A. Razborov, “Majority gates vs. general weighted

threshold gates,” Proc. Structure in Complexity Theory Conf. CoCo’92, Boston, MA,

USA, Jun. 22-25, 1992, pp. 2–13.

[61] M. Goldmann, and M. Karpinski, “Simulating threshold circuits by majority circuits,”

Proc. ACM Symp. Theory of Computing STOC’93, San Diego, CA, USA, May 16-18,

1993, pp. 551–560.

S. Roy and V. Beiu: MAJ-3 MUX 32

Sandip Roy (S’01–M’04) received his B.S. from the University of Illinois, Urbana-Champaign,

in 1998 and his S.M. and Ph.D. at the Massachusetts Institute of Technology in 2000 and 2003,

respectively, all in electrical engineering. He is currently Assistant Professor of Electrical

Engineering at the Washington State University (WSU). He has held numerous internship

positions, including at the National Aeronautics and Space Administration and at the National

Institute of Standards and Technology. He is author of more than 20 refereed publications, and

has given several invited talks. His research interests are in the areas of systems and control, with

a particular focus on the modeling and design of complex networks. He is currently faculty

mentor for the WSU IEEE Student Branch.

Valer iu Beiu (S’92–M’95–SM’96) received the M.Sc. in computer engineering from the

“Politehnica” University of Bucharest (Romania), in 1980, and the Ph.D. with summa cum laude

in electrical engineering from the Katholieke Universiteit Leuven (Belgium), in 1994.

After graduating, he has worked for two years on high-speed CPUs and FPUs at the Research

Institute for Computer Techniques (Bucharest), before returning to the “Politehnica” University

of Bucharest. He has received five fellowships: Fulbright (1991), Human Capital and Mobility

(1994-1996) with King’s College London (project title: “ Programmable Neural Arrays”),

Director’s Funded Postdoc (1996–1998) with Los Alamos National Laboratory (project title:

“ Field Programmable Neural Arrays,” under the Deployable Adaptive Processing Systems

initiative), and Fellow of Rose Research (1999–2001). He was a founder and CTO of RN2R

(1998–2001), and since 2001 he is an Associate Professor with the School of EE&CS,

S. Roy and V. Beiu: MAJ-3 MUX 33

Washington State University (Pullman, USA). He was the PI of 34 research contracts, holds 11

patents, received 32 grants, gave over 100 invited talks, and authored over 120 papers in refereed

journals and international conferences. He is the author of a chapter on digital integrated circuit

implementations (of neural networks) in the Handbook of Neural Computation, and of a

forthcoming book on the VLSI complexity of discrete neural networks. His main research

interests are: VLSI design of high–performance innovative computer architectures and

algorithms (massively parallel, adaptive/reconfigurable), their optimized designs—inspired by

systolic arrays, neural networks, quantum, or a mixture of them—and their application for

computational intensive tasks. I like to take abstract concepts for very difficult but practical

applications, turn them into efficient algorithms, and then design innovative VLSI circuits

performing them optimally (i.e., at ultra-high speeds, with very low-power, with high reliability,

etc.). I am very interested by emerging nanoelectronics and in particular by nano architectures

(massively parallel, adaptive / reconfigurable, regular, fault-tolerant, neural inspired), by their

optimized designs—inspired by cellular and systolic arrays, artificial neural networks, or

combinations of these—and by their application to computational intensive tasks.

Dr. Beiu is a member of INNS, ENNS, ACM, and MCFA, has organized 11 conferences

and 22 conference sessions, has received 5 Best Paper Awards, and has been the Program

Chairman of the IEEE Los Alamos Section (1997).

S. Roy and V. Beiu: MAJ-3 MUX 34

FIGURE CAPTIONS

Fig. 1. NAND-2 von Neumann multiplexing.

Fig. 2. Comparison of several techniques showing the allowable failure rate per device pf with

respect to the redundancy factor R (adapted from [3] by highlighting the ranges of very small and

small redundancy factors).

Fig. 3. The variation of the error thresholds of NAND and MAJ gates with respect to their fan-in.

Fig. 4. (a) Generic MAJ-3 MUX stage. (b) An example for N = 5.

Fig. 5. Maximum allowed failure probability of MAJ-3 MUX at small redundancy factors

(R < 100), for Nc = 106.

Fig. 6. Maximum allowed failure probability MAJ-3 MUX(N, k) at small redundancy factors

(R < 100), for Nc = 106.

Fig. 7. Comparison of MAJ-3 MUX and enhanced MAJ-3 MUX(N, k). (a) At small redundancy

factors (R < 100). (b) At very small redundancy factors (R < 10).

Fig. 8. (a) The MAJ-3 MUX(3, �) structure used for testing. (b) Probability of failure versus

variations for one MAJ-3 SET gate, and for the MAJ-3 MUX(3, �) with high-matching MAJ-3

SET gates.

Fig. 9. A capacitive SET MAJ-3 MUX design was compared with a high-matching bias

capacitors version (generated with MATLAB and simulated in SIMON, a Monte Carlo

simulator).

S. Roy and V. Beiu: MAJ-3 MUX 35

Fig. 1. NAND-2 von Neumann multiplexing.

S. Roy and V. Beiu: MAJ-3 MUX 36

R-Modular Redundancy

NAND-2 von Neumann
Multiplexing

Reconfiguration

pf

R

Fig. 2. Comparison of several techniques showing the allowable failure rate per device pf with

respect to the redundancy factor R (adapted from [3] by highlighting the ranges of very small and

small redundancy factors).

S. Roy and V. Beiu: MAJ-3 MUX 37

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fan−in of One Gate

E
rr

or
 T

hr
es

ho
ld

 V
al

ue

NAND

MAJ

Fig. 3. The variation of the error thresholds of NAND and MAJ gates with respect to their fan-in.

S. Roy and V. Beiu: MAJ-3 MUX 38

(a)

(b)

S. Roy and V. Beiu: MAJ-3 MUX 39

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Redundancy Factor R

A
llo

w
ed

 D
ev

ic
e

F
ai

lu
re

 P
ro

ba
bi

lit
y

p f

Fig. 5. Maximum allowed failure probability of MAJ-3 MUX at small redundancy factors

(R < 100), for Nc = 106.

S. Roy and V. Beiu: MAJ-3 MUX 40

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Redundancy Factor R

A
llo

w
ed

 D
ev

ic
e

F
ai

lu
re

 P
ro

ba
bi

lit
y

p f

Fig. 6. Maximum allowed failure probability MAJ-3 MUX(N, k) at small redundancy factors

(R < 100), for Nc = 106.

S. Roy and V. Beiu: MAJ-3 MUX 41

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

A
llo

w
ed

 D
ev

ic
e

F
ai

lu
re

 P
ro

ba
bi

lit
y

p f

Redundancy Factor R

MAJ−3 MUX
Optimized MAJ−3 MUX(N,k)

10

0
10

1
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

A
llo

w
ed

 D
ev

ic
e

F
ai

lu
re

 P
ro

ba
bi

lit
y

p f

Redundancy Factor R

MAJ−3 MUX
Optimized MAJ−3 MUX(N,k)

(a)

(b)

S. Roy and V. Beiu: MAJ-3 MUX 42

0 1 2 3 4 5 6 7 8 9 10
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Variations (%)

lo
g

10
 (

P
ra

b
ab

ili
ty

 o
f

F
ai

lu
re

)

(a)

(b)

S. Roy and V. Beiu: MAJ-3 MUX 43

(a)

(b)

S. Roy and V. Beiu: MAJ-3 MUX 44

TABLE I

MAJ-3 MUX AND OPTIMIZED MAJ-3 MUX(N, K) FOR

VERY SMALL REDUNDANCY FACTORS R = 3 … 10

Maximum Allowed Device Failure Probability Redundancy
Factor MAJ-3 MUX Optimized MAJ-3 MUX(N, k)

Improvement
Factor

(N, k)
Optimized

Pair

3 2.5×10–11 7.8×10–8 3100 (3, �)

4 2.5×10–11 1.7×10–7 6700 (3, 3)

5 2.5×10–11 9.0×10–7 36,000 (5, �)

6 3.8×10–7 9.0×10–7 2.4 (5, �)

7 3.8×10–7 3.0×10–6 8 (7, �)

8 3.8×10–7 4.5×10–6 12 (7, 10)

9 3.8×10–7 6.5×10–6 17.3 (7, 4)

10 1.9×10–6 1.6×10–5 8.4 (9, 10)

S. Roy and V. Beiu: MAJ-3 MUX 45

Sandip Roy

S. Roy and V. Beiu: MAJ-3 MUX 46

Valeriu Beiu

