• SLAM exercise?

• Google Cartographer

https://opensource.googleblog.com/2016/10/introducing-cartographer.html?m=1
Example 2

The probability distribution no longer sums to 1!

Normalize (divide by total)

Sums to 0.36

The probability distribution no longer sums to 1!
Kalman Filter

\[
\begin{align*}
\mu' &= \left(\frac{x r^2 + ν σ^2}{σ^2 + r^2} \right) \\
σ^2' &= \left(\frac{σ^2 + r^2}{σ^2 r^2} \right)
\end{align*}
\]

\[\mu' = μ + u \quad σ^2' = σ^2 + r^2\]
Implementing a Kalman Filter example

VERY simple model of robot movement:

\[
x' = x + \dot{x}
\]

\[
\dot{x}' = \dot{x}
\]

\[
\begin{bmatrix} x' \\ \dot{x}' \end{bmatrix} \leftarrow [?] \begin{bmatrix} x \\ \dot{x} \end{bmatrix}
\]

What information do our sensors give us?

\[
Z \leftarrow [?] \begin{bmatrix} x \\ \dot{x} \end{bmatrix}
\]
Implementing a Kalman Filter example

\[x' = x + \dot{x} \]
\[\dot{x}' = \dot{x} \]

\[
\begin{bmatrix}
 x' \\
 \dot{x}'
\end{bmatrix} \leftarrow \begin{bmatrix}
 F & \? \\
 \? & \?
\end{bmatrix}
\begin{bmatrix}
 x \\
 \dot{x}
\end{bmatrix}
\]

\[Z \leftarrow \begin{bmatrix}
 \? & \? \\
 \? & \?
\end{bmatrix}
\begin{bmatrix}
 x \\
 \dot{x}
\end{bmatrix}
\]

\[F = \begin{bmatrix}
 1 & 1 \\
 0 & 1
\end{bmatrix} \]

\[H = [1 \ 0] \]
Implementing a Kalman Filter

Motion Prediction

\[x' = Fx + u \]
\[P' = FF^T + Q \]

Estimate

- \(P' \): uncertainty covariance
- \(F \): state transition matrix
- \(u \): motion vector
- \(F \): motion noise
Implementing a Kalman Filter

Motion Prediction

\[x' = Fx + u \]
\[P' = FPFT + Q \]

Measurement Update

\[y = z - Hx \]
\[S = PHHT + R \]
\[K = PHHTS^{-1} \]

Estimate

- \(P' \): uncertainty covariance
- \(F \): state transition matrix
- \(u \): motion vector
- \(F \): motion noise
Implementing a Kalman Filter

Motion Prediction

\[x' = Fx + u \]
\[P' = FPF^T + Q \]

Measurement Update

\[y = z - Hx \]
\[S = HPH^T + R \]
\[K = PH^T S^{-1} \]

End Result

\[x' = x + (Ky) \]
\[P' = (I - KH)P \]

Estimate

- \(P' \): uncertainty covariance
- \(F \): state transition matrix
- \(u \): motion vector
- \(F \): motion noise
Particle Filter Localization (using sonar)

Particules

• Each particle is a guess about where the robot might be
Robot Motion

move each particle according to the rules of motion
+ add random noise

n particles

n particles
Incorporating Sensing
Incorporating Sensing

Difference between the actual measurement and the estimated measurement

Importance weight
def Gaussian(self, mu, sigma, x):
 # calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma
 return exp(- ((mu - x) ** 2) / (sigma ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2))

def measurement_prob(self, measurement):
 # calculates how likely a measurement should be
 prob = 1.0;
 for i in range(len(landmarks)):
 dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2)
 prob *= self.Gaussian(dist, self.sense_noise, measurement[i])
 return prob

def get_weights(self):
 w = []
 for i in range(N): #for each particle
 w.append(p[i].measurement_prob(Z)) #set it’s weight to p(measurement Z)
 return w
Importance weight pseudocode

Calculate the probability of a sensor measurement for a particle:

```
prob = 1.0;
  for each landmark
    d = Euclidean distance to landmark
    prob *= Gaussian probability of obtaining a reading at
distance d for this landmark from this particle

return prob
```
Incorporating Sensing
Resampling

<table>
<thead>
<tr>
<th>n original particles</th>
<th>Importance Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
</tbody>
</table>

Sum is 2.8
Resampling

<table>
<thead>
<tr>
<th>n original particles</th>
<th>Importance Weight</th>
<th>Normalized Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>

Sum is 2.8
Resampling

n original particles

<table>
<thead>
<tr>
<th>Importance Weight</th>
<th>Normalized Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td>0.6</td>
<td>0.21</td>
</tr>
<tr>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td>0.8</td>
<td>0.29</td>
</tr>
<tr>
<td>0.8</td>
<td>0.29</td>
</tr>
<tr>
<td>0.2</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Sum is 2.8

Sample n new particles from previous set
Each particle chosen with probability p, with replacement
Resampling

<table>
<thead>
<tr>
<th>n original particles</th>
<th>Importance Weight</th>
<th>Normalized Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>

Sum is 2.8

Is it possible that one of the particles is never chosen?
Yes!

Is it possible that one of the particles is chosen more than once?
Yes!

Sample n new particles from previous set
Each particle chosen with probability p, with replacement.
What is the probability that this particle is not chosen during the resampling of the six new particles?

Sample n new particles from previous set
Each particle chosen with probability p, with replacement
Question

• What happens if there are no particles near the correct robot location?
Question

• What happens if there are no particles near the correct robot location?

• Possible solutions:
 – Add random points each cycle
 – Add random points each cycle, where \(a \) is proportional to the average measurement error
 – Add points each cycle, located in states with a high likelihood for the current observations
Summary

• Kalman Filter
 – Continuous
 – Unimodal
 – Harder to implement
 – More efficient
 – Requires a good starting guess of robot location

• Particle Filter
 – Continuous
 – Multimodal
 – Easier to implement
 – Less efficient
 – Does not require an accurate prior estimate
SLAM

• Simultaneous localization and mapping:

Is it possible for a mobile robot to be placed at an unknown location in an unknown environment and for the robot to incrementally build a consistent map of this environment while simultaneously determining its location within this map?
Three Basic Steps

• The robot moves
 – increases the uncertainty on robot pose
 – need a mathematical model for the motion
 – called motion model
Three Basic Steps

• The robot discovers interesting features in the environment
 – called landmarks
 – uncertainty in the location of landmarks
 – need a mathematical model to determine the position of the landmarks from sensor data
 – called inverse observation model
Three Basic Steps

• The robot \textit{observes previously mapped landmarks}:
 – uses them to correct both self localization and the localization of all landmarks in space
 – uncertainties decrease
 – need a model to predict the measurement from predicted landmark location and robot localization
 – called \textit{direct observation model}
How to do SLAM

- Use internal representations for
 - the positions of landmarks (: map)
 - the camera parameters

- Assumption: Robot’s uncertainty at starting position is zero

Start: robot has zero uncertainty
How to do SLAM

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations
How to do SLAM

- The robot observes a feature which is mapped with an uncertainty related to the measurement model

On every frame:
- **Predict** how the robot has moved
- Measure
- **Update** the internal representations
How to do SLAM

- As the robot moves, its pose uncertainty increases, obeying the robot’s **motion model**.

On every frame:
- **Predict** how the robot has moved
- Measure
- **Update** the internal representations

Robot moves forwards: uncertainty grows

© R. Siegwart, D. Scaramuzza and M. Chli, ETH Zurich - ASL
How to do SLAM

- Robot observes two new features.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot makes first measurements of B & C
How to do SLAM

- Their position uncertainty results from the combination of the measurement error with the robot pose uncertainty.
 - map becomes correlated with the robot pose estimate.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot makes first measurements of B & C
How to do SLAM

- Robot moves again and its uncertainty increases (motion model)

On every frame:
- **Predict** how the robot has moved
- Measure
- **Update** the internal representations

Robot moves again: uncertainty grows more
How to do SLAM

- Robot re-observes an old feature
 - Loop closure detection

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot re-measures A: “loop closure”
How to do SLAM

- Robot updates its position: the resulting position estimate becomes correlated with the feature location estimates.
- Robot’s uncertainty shrinks and so does the uncertainty in the rest of the map.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot re-measures A: “loop closure” uncertainty shrinks