Unsigned Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

$UAdd_w(u, v)$

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

$$ s = UAdd_w(u, v) = u + v \mod 2^w $$

$$ UAdd_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases} $$
Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers u, v
 - Compute true sum $\text{Add}_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum

- 2^{w+1}
- 2^w
- 0

Modular Sum

Overflow

$UAdd_4(u, v)$
Mathematical Properties

- Modular Addition Forms an *Abelian Group*

 - **Closed** under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]

 - **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]

 - **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]

 - **0** is additive identity
 \[\text{UAdd}_w(u, 0) = u \]

 - Every element has additive **inverse**
 - Let \(\text{UComp}_w(u) = 2^w - u \)
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
+ \text{v}
\end{array}
\]

\(u + v \)

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

TAdd\(_w\)(u, v)

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

    ```c
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    
    Will give \( s == t \)
    ```
TAdd Overflow

Functionality
- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>011...1</td>
<td>011...1</td>
</tr>
<tr>
<td>0100...0</td>
<td>000...0</td>
</tr>
<tr>
<td>0000...0</td>
<td></td>
</tr>
<tr>
<td>1011...1</td>
<td>100...0</td>
</tr>
<tr>
<td>(-2^{w-1}-1)</td>
<td></td>
</tr>
<tr>
<td>(-2^w)</td>
<td></td>
</tr>
</tbody>
</table>
Visualizing 2′s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7
- **Wraps Around**
 - If \(\text{sum} \geq 2^{w-1} \)
 - Becomes negative
 - At most once
 - If \(\text{sum} < -2^{w-1} \)
 - Becomes positive
 - At most once
Characterizing TAdd

Functionality
- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u,v) = \begin{cases}
 u + v - 2^w & \text{if } TMax_w < u + v \\
 u + v & \text{if } TMin_w \leq u + v \leq TMax_w \\
 u + v + 2^w & \text{if } u + v < TMin_w \text{ (NegOver)} \\
 u + v - 2^w & \text{if } u + v > TMax_w \text{ (PosOver)}
\end{cases}
\]
Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - $\text{TAdd}_w(u, v) = \text{U2T}((\text{UAdd}_w(\text{T2U}(u)), \text{T2U}(v)))$
 - Since both have identical bit patterns

- Two’s Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$T\text{Comp}_w(u) = \begin{cases}
-u & u \neq \text{TMin}_w \\
\text{TMin}_w & u = \text{TMin}_w
\end{cases}$$
Multiplication

- **Computing Exact Product of \(w \)-bit numbers \(x, y \)**
 - Either signed or unsigned

- **Ranges**
 - Unsigned: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to \(2w \) bits
 - Two’s complement min: \(x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1} \)
 - Up to \(2w - 1 \) bits
 - Two’s complement max: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)
 - Up to \(2w \) bits, but only for \((TMin_w)^2\)

- **Maintaining Exact Results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2w \) bits

Discard \(w \) bits: \(w \) bits

- Standard Multiplication Function
 - Ignores high order \(w \) bits

- Implements Modular Arithmetic
 \[
 \text{UMult}_w(u, v) = u \cdot v \mod 2^w
 \]
Signed Multiplication in C

Operands: \(w \) bits

True Product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits

- Standard Multiplication Function
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
Power-of-2 Multiply with Shift

Operation
- $u \ll k$ gives $u \times 2^k$
- Both signed and unsigned

Operands: w bits

True Product: $w+k$ bits

Discard k bits: w bits

Examples
- $u \ll 3 = u \times 8$
- $u \ll 5 - u \ll 3 = u \times 24$
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

- `leal (%eax,%eax,2), %eax`
- `sall $2, %eax`

Explanation

- `t <- x+x*2`
- `return t << 2;`

- C compiler automatically generates shift/add code when multiplying by constant