Normalized Values

- **Condition**: \(\text{exp} \neq 000...0 \) and \(\text{exp} \neq 111...1 \)

- **Exponent coded as biased value**: \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value \(\text{exp} \)
 - \(\text{Bias} = 2^{\text{e}-1} - 1 \), where \(\text{e} \) is number of exponent bits
 - Single precision: 127 (\(\text{Exp}: 1...254, \ E: -126...127 \))
 - Double precision: 1023 (\(\text{Exp}: 1...2046, \ E: -1022...1023 \))

- **Significand coded with implied leading 1**: \(M = 1 . \ xxx...x_2 \)
 - \(xxx...x \): bits of \(\text{frac} \)
 - Minimum when \(000...0 \) (\(M = 1.0 \))
 - Maximum when \(111...1 \) (\(M = 2.0 - \varepsilon \))
 - Get extra leading bit for “free”
Denormalized Values

- **Condition**: \(\text{exp} = 000...0 \)

- **Exponent value**: \(E = -	ext{Bias} + 1 \) (instead of \(E = 0 - \text{Bias} \))

- **Significand coded with implied leading 0**: \(M = 0 . \ xxx...x_2 \)
 - \(xxx...x \): bits of \(\text{frac} \)

- **Cases**
 - \(\text{exp} = 000...0, \frac{\text{frac}}{\text{frac}} = 000...0 \)
 - Represents value \(0 \)
 - Note distinct values: \(+0 \) and \(-0 \) (why?)
 - \(\text{exp} = 000...0, \frac{\text{frac}}{\text{frac}} \neq 000...0 \)
 - Numbers very close to \(0.0 \)
 - Lose precision as get smaller
 - Equispaced
Special Values

- **Condition:** exp = 111...1

- **Case:** exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- **Case:** exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
Closer Look at Round-To-Even

- **Default Rounding Mode**
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- **Applying to Other Decimal Places / Bit Positions**
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

Binary Fractional Numbers
- “Even” when least significant bit is 0
- “Half way” when bits to right of rounding position = 100...₂

Examples
- Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.1₀₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Creating Floating Point Number

Steps
- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study
- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers
 - 10000000 0 1110 000
 - 00001101 0 1010 101
 - 00010001 0 1011 000
 - 00010011
 - 10001010
 - 00111111
Creating Floating Point Number

Steps
- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study
- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers
 128 10000000 0 1110 000
 15 00001101 0 1010 101
 33 00010001 0 1011 000
 35 00010011 0 1011 010
 138 10001010 0 1111 000
 63 00111111 0 1100 1111 → 0 1101 000
FP Multiplication

\[(-1)^{s_1} M_1 \ 2^{E_1} \times (-1)^{s_2} M_2 \ 2^{E_2} \]

- **Exact Result:** \[(-1)^{s} \ M \ 2^{E} \]
 - Sign \(s \): \(s_1 \land s_2 \)
 - Significand \(M \): \(M_1 \times M_2 \)
 - Exponent \(E \): \(E_1 + E_2 \)

- **Fixing**
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - If \(E \) out of range, overflow
 - Round \(M \) to fit fractional precision

- **Implementation**
 - Biggest chore is multiplying significands
Mathematical Properties of FP Mult

- **Compare to Commutative Ring**
 - Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Yes
 - Multiplication is Associative?
 - No
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity?
 - Yes
 - Multiplication distributes over addition?
 - No
 - Possibility of overflow, inexactness of rounding

- **Monotonicity**
 - $a \geq b \& c \geq 0 \Rightarrow a \times c \geq b \times c$?
 - Almost
 - Except for infinities & NaNs
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2} \]
Assume \(E_1 > E_2 \)

Exact Result: \((-1)^s \ M \ 2^E \)
- Sign \(s \), significand \(M \):
 - Result of signed align & add
- Exponent \(E \): \(E_1 \)

Fixing
- If \(M \geq 2 \), shift \(M \) right, increment \(E \)
- if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
- Overflow if \(E \) out of range
- Round \(M \) to fit \(\text{frac} \) precision
Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? Yes
 - But may generate infinity or NaN
 - Commutative? Yes
 - Associative? No
 - Overflow and inexactness of rounding
 - 0 is additive identity? Yes
 - Every element has additive inverse Almost
 - Except for infinities & NaNs

- Monotonicity
 - $a \geq b \Rightarrow a+c \geq b+c$? Almost
 - Except for infinities & NaNs
Floating Point in C

- C Guarantees Two Levels
 - `float` single precision
 - `double` double precision

- Conversions/Casting
 - Casting between `int`, `float`, and `double` changes bit representation
 - `Double/float → int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - `int → double`
 - Exact conversion, as long as int has ≤ 53 bit word size
 - `int → float`
 - Will round according to rounding mode
Floating Point Puzzles

• For each of the following C expressions, either:
 – Argue that it is true for all argument values
 – Explain why not true

1. \(x == (\text{int})(\text{double}) \ x \)
2. \(x == (\text{int})(\text{float}) \ x \)
3. \(f == (\text{float})(\text{double}) \ f \)
4. \(d == (\text{double})(\text{float}) \ d \)
5. \(f == -(\text{-}f); \)
6. \(1.0/2 == 1/2.0 \)
7. \(d \times d >= 0.0 \)
8. \((f+d)-f == d \)

int x = ...;
float f = ...;
double d = ...;

Assume neither \(d \) nor \(f \) is NaN
Floating Point Puzzles

For each of the following C expressions, either:
- Argue that it is true for all argument values
- Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

1. \(x == (\text{int})(\text{double}) \ x \) \(T \)
2. \(x == (\text{int})(\text{float}) \ x \) \(F \)
3. \(f == (\text{float})(\text{double}) \ f \) \(T \)
4. \(d == (\text{double})(\text{float}) \ d \) \(F \)
5. \(f == -(-f); \) \(T \)
6. \(1.0/2 == 1/2.0 \) \(T \)
7. \(d \times d >= 0.0 \) \(T \)
8. \((f+d)-f == d \) \(F \)