Sarsa: On-Policy TD Control

Turn this into a control method by always updating the policy to be greedy with respect to the current estimate:

Initialize $Q(s, a)$ arbitrarily
Repeat (for each episode):
 Initialize s
 Choose a from s using policy derived from Q (e.g., ε-greedy)
Repeat (for each step of episode):
 Take action a, observe r, s'
 Choose a' from s' using policy derived from Q (e.g., ε-greedy)
 $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]$
 $s \leftarrow s'$; $a \leftarrow a'$
until s is terminal
Q-Learning: Off-Policy TD Control

One-step Q-learning:

\[
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]
\]

Initialize \(Q(s, a) \) arbitrarily
Repeat (for each episode):
 Initialize \(s \)
 Repeat (for each step of episode):
 Choose \(a \) from \(s \) using policy derived from \(Q \) (e.g., \(\varepsilon \)-greedy)
 Take action \(a \), observe \(r, s' \)
 \(Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_a Q(s', a') - Q(s, a)] \)
 \(s \leftarrow s' \);
 until \(s \) is terminal
Cliffwalking

\[r = -1 \]

safe path

optimal path

\[r = -100 \]

\[\varepsilon \text{-greedy, } \varepsilon = 0.1 \]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
The Book

• Part I: The Problem
 – Introduction
 – Evaluative Feedback
 – The Reinforcement Learning Problem
• Part II: Elementary Solution Methods
 – Dynamic Programming
 – Monte Carlo Methods
 – Temporal Difference Learning
• Part III: A Unified View
 – Eligibility Traces
 – Generalization and Function Approximation
 – Planning and Learning
 – Dimensions of Reinforcement Learning
 – Case Studies
Unified View

Dynamic programming

Exhaustive search

Temporal-difference learning

Monte Carlo

full backups

sample backups

shallow backups

bootstrapping, λ

deep backups
Afterstates

- Usually, a state-value function evaluates states in which the agent can take an action.
- But sometimes it is useful to evaluate states after agent has acted, as in tic-tac-toe.
- Why is this useful?
Summary

• TD prediction
• Introduced one-step tabular model-free TD methods
• Extend prediction to control by employing some form of GPI
 – On-policy control: Sarsa
 – Off-policy control: Q-learning
• These methods bootstrap and sample, combining aspects of DP and MC methods
Questions – for Discussion

• What is common to all three classes of methods? – DP, MC, TD
• What are the principle strengths and weaknesses of each?
 – How could you use each to “solve” black jack?
 – What about Mario?
• In what sense is our RL view complete?
• In what senses is it incomplete?
 – What are the principal things missing?
• The broad applicability of these ideas…
• What does the term bootstrapping refer to?
• What is the relationship between DP and learning?