Initialize $V(s)$ arbitrarily
Repeat (for each episode):
 $e(s) = 0$, for all $s \in S$
 Initialize s
 Repeat (for each step of episode):
 $a \leftarrow$ action given by π for s
 Take action a, observe reward, r, and next state s'
 $\delta \leftarrow r + \gamma V(s') - V(s)$
 $e(s) \leftarrow e(s) + 1$
 For all s:
 $V(s) \leftarrow V(s) + \alpha \delta e(s)$
 $e(s) \leftarrow \gamma \lambda e(s)$
 $s \leftarrow s'$
 Until s is terminal
Relation of Backwards View to MC & TD(0)

- Using update rule:

\[\Delta V_t(s) = \alpha \delta_t e_t(s) \]

- As before, if you set \(\lambda \) to 0, you get to TD(0)
- If you set \(\lambda \) to 1, you get MC but in a better way
 - Can apply TD(1) to continuing tasks
 - Works incrementally and on-line (instead of waiting to the end of the episode)
Control: Sarsa(\(\lambda\))

- Save eligibility for state-action pairs instead of just states

\[
e_t(s,a) = \begin{cases}
\gamma \lambda e_{t-1}(s,a) + 1 & \text{if } s = s_t \text{ and } a = a_t \\
\gamma \lambda e_{t-1}(s,a) & \text{otherwise}
\end{cases}
\]

\[
Q_{t+1}(s,a) = Q_t(s,a) + \alpha \delta_t e_t(s,a)
\]

\[
\delta_t = r_{t+1} + \gamma Q_t(s_{t+1},a_{t+1}) - Q_t(s_t,a_t)
\]

\[
\sum = 1
\]

Sarsa(λ) Algorithm

Initialize $Q(s, a)$ arbitrarily

Repeat (for each episode):

\[e(s, a) = 0, \text{ for all } s, a \]

Initialize s, a

Repeat (for each step of episode):

Take action a, observe r, s'

Choose a' from s' using policy derived from Q (e.g. ε-greedy)

\[\delta \leftarrow r + \gamma Q(s', a') - Q(s, a) \]

\[e(s, a) \leftarrow e(s, a) + 1 \]

For all s, a:

\[Q(s, a) \leftarrow Q(s, a) + \alpha \delta e(s, a) \]

\[e(s, a) \leftarrow \gamma \lambda e(s, a) \]

\[s \leftarrow s'; a \leftarrow a' \]

Until s is terminal
Sarsa(λ) Gridworld Example

- With one trial, the agent has much more information about how to get to the goal
 - not necessarily the best way
- Can considerably accelerate learning
Replacing Traces

- Using accumulating traces, frequently visited states can have eligibilities greater than 1
 - This can be a problem for convergence

- **Replacing traces**: Instead of adding 1 when you visit a state, set that trace to 1

\[
e_t(s) = \begin{cases} \gamma \lambda e_{t-1}(s) & \text{if } s \neq s_t \\ 1 & \text{if } s = s_t \end{cases}
\]

- Diagram showing times of state visits, accumulating trace, and replacing trace.
Replacing Traces Example

- Same 19 state random walk task as before
- Replacing traces perform better than accumulating traces over more values of λ
Why Replacing Traces?

- Replacing traces can significantly speed learning
- They can make the system perform well for a broader set of parameters
- Accumulating traces can do poorly on certain types of tasks

Why is this task particularly onerous for accumulating traces?
More Replacing Traces

- Off-line replacing trace TD(1) is identical to first-visit MC

- Extension to action-values:
 - When you revisit a state, what should you do with the traces for the other actions?
 - Singh and Sutton say to set them to zero:

\[
e_t(s,a) = \begin{cases}
1 & \text{if } s = s_t \text{ and } a = a_t \\
0 & \text{if } s = s_t \text{ and } a \neq a_t \\
\gamma \lambda e_{t-1}(s,a) & \text{if } s \neq s_t
\end{cases}
\]
Implementation Issues with Traces

- Could require much more computation
 - But most eligibility traces are VERY close to zero
- If you implement it in Matlab, backup is only one line of code and is very fast (Matlab is optimized for matrices)
Variable λ

- Can generalize to variable λ

$$e_t(s) = \begin{cases} \gamma \lambda_t e_{t-1}(s) & \text{if } s \neq s_t \\ \gamma \lambda_t e_{t-1}(s) + 1 & \text{if } s = s_t \end{cases}$$

- Here λ is a function of time
 - Could define

$$\lambda_t = \lambda(s_t) \text{ or } \lambda_t = \lambda^{t/\tau}$$
Conclusions

- Provides efficient, incremental way to combine MC and TD
 - Includes advantages of MC (can deal with lack of Markov property)
 - Includes advantages of TD (using TD error, bootstrapping)
- Can significantly speed learning
- Does have a cost in computation
Any FA Method?

- In principle, yes:
 - artificial neural networks
 - decision trees
 - multivariate regression methods
 - etc.

- But RL has some special requirements:
 - usually want to learn while interacting
 - ability to handle nonstationarity
 - other?