Parameter Tuning

1. Initial weights?
2. Learning rate?
3. Momentum?
4. Generalization?
5. # Hidden nodes?
6. Recurrent links?
Over-Training Prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it after every epoch. Stop training when additional epochs actually increase validation error.

• To avoid losing training data for validation:
 – Use internal 10-fold CV on the training set to compute the average number of epochs that maximizes generalization accuracy.
 – Train final network on complete training set for this many epochs.
Determining the Best Number of Hidden Units

- Too few hidden units prevents the network from adequately fitting the data.
- Too many hidden units can result in over-fitting.
- Use internal cross-validation to empirically determine an optimal number of hidden units.

![Graph showing error vs. number of hidden units for training and test data](image)
Successful Applications

• Text to Speech (NetTalk)
• Fraud detection
• Financial Applications
 – HNC (eventually bought by Fair Isaac)
• Chemical Plant Control
 – Pavillion Technologies
• Automated Vehicles
• Game Playing
 – Neurogammon
• Handwriting recognition
Issues in Neural Nets

• More efficient training methods:
 – Quickprop
 – Conjugate gradient (exploits 2nd derivative)

• Learning the proper network architecture:
 – Grow network until able to fit data
 • Cascade Correlation
 • Upstart
 – Shrink large network until unable to fit data
 • Optimal Brain Damage

• Recurrent networks that use feedback and can learn finite state machines with “backpropagation through time.”
Issues in Neural Nets (cont.)

- More biologically plausible learning algorithms based on Hebbian learning.
- Unsupervised Learning
 - Self-Organizing Feature Maps (SOMs)
- Reinforcement Learning
 - Frequently used as function approximators for learning value functions.
- Neuroevolution
- Deep Nets
Axioms of Probability Theory

• All probabilities between 0 and 1
 \[0 \leq P(A) \leq 1 \]

• True proposition has probability 1, false has probability 0.
 \[P(\text{true}) = 1 \quad P(\text{false}) = 0. \]

• The probability of disjunction is:
 \[P(A \lor B) = P(A) + P(B) - P(A \land B) \]
Conditional Probability

- $P(A \mid B)$ is the probability of A given B
- Assumes that B is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
Independence

• A and B are independent iff:

\[P(A | B) = P(A) \]
\[P(B | A) = P(B) \]

These two constraints are logically equivalent

• Therefore, if A and B are independent:

\[P(A | B) = \frac{P(A \land B)}{P(B)} = P(A) \]

\[P(A \land B) = P(A)P(B) \]
The joint probability distribution for a set of random variables, \(X_1, \ldots, X_n \) gives the probability of every combination of values (an \(n \)-dimensional array with \(v^n \) values if all variables are discrete with \(v \) values, all \(v^n \) values must sum to 1): \(P(X_1, \ldots, X_n) \)

<table>
<thead>
<tr>
<th></th>
<th>positive</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>circle</td>
<td>square</td>
<td>circle</td>
</tr>
<tr>
<td>red</td>
<td>0.20</td>
<td>0.02</td>
</tr>
<tr>
<td>blue</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

The probability of all possible conjunctions (assignments of values to some subset of variables) can be calculated by summing the appropriate subset of values from the joint distribution.

\[
P(red \wedge circle) = 0.20 + 0.05 = 0.25
\]

\[
P(red) = 0.20 + 0.02 + 0.05 + 0.3 = 0.57
\]

Therefore, all conditional probabilities can also be calculated.

\[
P(positive \mid red \wedge circle) = \frac{P(positive \wedge red \wedge circle)}{P(red \wedge circle)} = \frac{0.20}{0.25} = 0.80
\]
Probabilistic Classification

• Let \(Y \) be the random variable for the class which takes values \(\{y_1, y_2, \ldots, y_m\} \).

• Let \(X \) be the random variable describing an instance consisting of a vector of values for \(n \) features \(<X_1, X_2, \ldots, X_n> \), let \(x_k \) be a possible value for \(X \) and \(x_{ij} \) a possible value for \(X_i \).

• For classification, we need to compute \(P(Y=y_i \mid X=x_k) \) for \(i=1 \ldots m \).

• However, given no other assumptions, this requires a table giving the probability of each category for each possible instance in the instance space, which is impossible to accurately estimate from a reasonably-sized training set.

 – Assuming \(Y \) and all \(X_i \) are binary, we need \(2^n \) entries to specify \(P(Y=\text{pos} \mid X=x_k) \) for each of the \(2^n \) possible \(x_k \)’s since \(P(Y=\text{neg} \mid X=x_k) = 1 - P(Y=\text{pos} \mid X=x_k) \).

 – Compared to \(2^{n+1} - 1 \) entries for the joint distribution \(P(Y, X_1, X_2, \ldots, X_n) \).
Bayes Theorem

\[P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)} \]

Simple proof from definition of conditional probability:

\[P(H \mid E) = \frac{P(H \land E)}{P(E)} \quad \text{(Def. cond. prob.)} \]

\[P(E \mid H) = \frac{P(H \land E)}{P(H)} \quad \text{(Def. cond. prob.)} \]

\[P(H \land E) = P(E \mid H)P(H) \]

QED: \[P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)} \]
P(cancer) = 0.008 \hspace{1cm} P(!cancer) = 0.992
P(+ | cancer) = 0.98 \hspace{1cm} P(- | cancer) = 0.02
P(+ | !cancer) = 0.03 \hspace{1cm} P(- | !cancer) = 0.97

What do we say if the test returns positive?

MAP: Maximum *a posteriori* hypothesis