• For Friday: 334 – 364

• Bomb lab?
int Sum(int *Start, int Count) {
 int sum = 0;
 while (Count) {
 sum += *Start;
 Start++;
 Count--;
 }
 return sum;
}

Compare to 4.6, p346
Circuits and HCL

- HCL: Hardware Control Language
 - Describes control logic in processor designs

```cpp
bool eq = (a && b) ++ (!a && !b);
354, fig 4.10
```

```cpp
bool Eq = (A == B);
356, fig 4.12
```

```cpp
bool out = (s && a) ++ (!s && b);
355, fig 4.11
```
ALU: Arithmetic Logic Unit

• Four-way mux:

 int Out4 = [
 : A;
 : B;
 : C;
 : D;
];
ALU: Arithmetic Logic Unit

• **Four-way mux:**

```c
int Out4 = [
    !s1 && !s0      : A; #00
    !s1             : B; #01
    !s0             : C; #10
    1                : D; #11
];
```
ALU: Arithmetic Logic Unit

- Four-way mux:

 int Out4 = [
 !s1 && !s0 : A; #00
 !s1 : B; #01
 !s0 : C; #10
 1 : D; #11
];

- ALU

 0: +
 1: -
 2: &
 3: ^
Where do Gates Come From?

- Mechanical: Charles Babbage, Analytical Engine
- Vacuum Tubes
Transistors

- $V_{RC} = I_{CE} \times R_C$, the voltage across the load (the lamp with resistance R_C)
- $V_{RC} + V_{CE} = V_{CC}$, the supply voltage shown as 6V
Simple Memory

• Cross-coupled NOR gates
 – S-R latch (set, reset latch)
 – Unclocked
 – S = 1 means Q should be 1
 – R = 1 means !Q should be 1
 – S = 1 && R=1?

• D flip-flop (also a D latch)
 – Inputs: data value, D, clock signal, C
 – Outputs: Q, and !Q
 – C = 1 means open, C=0 means closed
Registers: Sequential Circuits

• Combinational Circuit: No internal storage

• Input, State, Output
 – State and output changed on rising edge

• Register File (p. 362)
 – Read ports: srcA/valA, srcB/valB
 – Write port: valW + dstW
 – Clock
 – “val” and “dst” are registers: {0-7, F}
 – Race conditions
Random-Access Memory

- Input: read or write? write
- Input: Address, data in
- Output: data out
- Clock
- Error flag