I refuses
to recognise teh existence of teh monday
• Floating point standard: machine not compiler
 – GPUs

• Practice problem:
 – 2.34

(Shift practice)
Decimal Numbers

• 1234.5678
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2-7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111₁₂</td>
</tr>
</tbody>
</table>

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form $0.\overline{111111}_2$ are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$

• Limitations?
Representable Numbers

- **Limitation**
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3$</td>
<td>$0.010101010101[01]..._2$</td>
</tr>
<tr>
<td>$1/5$</td>
<td>$0.001100110011[0011]..._2$</td>
</tr>
<tr>
<td>$1/10$</td>
<td>$0.0001100110011[0011]..._2$</td>
</tr>
</tbody>
</table>

Example: Patriot Missile in 1st Gulf War
Heard of them?

- 6-bit IEEE-like format
IEEE Floating Point

- **IEEE Standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- **Driven by numerical concerns**
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

■ Numerical Form:

\[(−1)^s \ M \ 2^E\]

- Sign bit \(s \) determines whether number is negative or positive
- Significand \(M \) normally a fractional value in range \([1.0, 2.0)\).
- Exponent \(E \) weights value by power of two

■ Encoding

- MSB \(s \) is sign bit \(s \)
- \(\text{exp} \) field encodes \(E \) (but is not equal to \(E \))
- \(\text{frac} \) field encodes \(M \) (but is not equal to \(M \))
Precisions

- Single precision: 32 bits
 - s: 1 bit, exp: 8 bits, frac: 23 bits

- Double precision: 64 bits
 - s: 1 bit, exp: 11 bits, frac: 52 bits

- Extended precision: 80 bits (Intel only)
 - s: 1 bit, exp: 15 bits, frac: 63 or 64 bits
Normalized Values

- **Condition:** $\text{exp} \neq 000...0$ and $\text{exp} \neq 111...1$

- **Exponent coded as biased value:** $E = \text{Exp} - \text{Bias}$
 - Exp: unsigned value exp
 - $\text{Bias} = 2^{e-1} - 1$, where e is number of exponent bits
 - Single precision: 127 ($\text{Exp: 1...254, E: -126...127}$)
 - Double precision: 1023 ($\text{Exp: 1...2046, E: -1022...1023}$)

- **Significand coded with implied leading 1:** $M = 1.\text{xxx...x}_2$
 - xxx...x: bits of frac
 - Minimum when $000...0$ ($M = 1.0$)
 - Maximum when $111...1$ ($M = 2.0 - \varepsilon$)
 - Get extra leading bit for “free”
Normalized Encoding Example

- Value: \(\text{Float } F = 15213.0; \)
 - \(15213_{10} = 11101101101101_2 \)
 \[\begin{array}{c}
 0 \quad \text{sign bit} \\
 11101101101101_2 \\
 \end{array} \]

- Significand
 - \(M = \)
 - \(\text{frac} = \)

- Exponent
 - \(E = \)
 - \(\text{Bias} = \)
 - \(\text{Exp} = \)

- Result:
 \[\begin{array}{c}
 0 \quad \text{sign bit} \\
 \text{exp} \\
 \text{frac} \\
 \end{array} \]
Tiny Floating Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity