frac vs. frak

M=1.xxxxxxxxxxx

http://www.youtube.com/watch?v=r7KcpgQKo2I
Normalized Values

- Condition: $\exp \neq 000...0$ and $\exp \neq 111...1$

- Exponent coded as **biased value**: $E = \ Exp - \ Bias$
 - $\ Exp$: unsigned value \exp
 - $\ Bias = 2^{e-1} - 1$, where e is number of exponent bits
 - Single precision: 127 ($\ Exp: 1...254$, $E: -126...127$)
 - Double precision: 1023 ($\ Exp: 1...2046$, $E: -1022...1023$)

- Significand coded with implied leading 1: $M = 1 \ . \ xxx...x_2$
 - $xxx...x$: bits of $\frac{\text{frac}}{}$
 - Minimum when $000...0$ ($M = 1.0$)
 - Maximum when $111...1$ ($M = 2.0 - \varepsilon$)
 - Get extra leading bit for “free”
Denormalized Values

- **Condition:** $\text{exp} = 000...0$
- **Exponent value:** $E = -\text{Bias} + 1$ (instead of $E = 0 - \text{Bias}$)
- **Significand coded with implied leading 0:** $M = 0 . \text{xxx...x}_2$
 - xxx...x: bits of frac
- **Cases**
 - $\text{exp} = 000...0, \ \text{frac} = 000...0$
 - Represents value 0
 - Note distinct values: $+0$ and -0 (why?)
 - $\text{exp} = 000...0, \ \text{frac} \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced
Special Values

- **Condition:** exp = 111...1
 - **Case:** exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
 - **Case:** exp = 111...1, frac \neq 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
Rounding Binary Numbers

Binary Fractional Numbers
- “Even” when least significant bit is 0
- “Half way” when bits to right of rounding position = 100...₂

Examples
- Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Creating Floating Point Number

- **Steps**
 - Normalize to have leading 1
 - Round to fit within fraction
 - Postnormalize to deal with effects of rounding

- **Case Study**
 - Convert 8-bit unsigned numbers to tiny floating point format
 - Example Numbers
 - 128 10000000
 - 15 00001101
 - 33 00010001
 - 35 00010011
 - 138 10001010
 - 63 00111111
Creating Floating Point Number

Steps
- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study
- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers
 - 128 10000000
 - 15 00001101
 - 33 00010001
 - 35 00010011
 - 138 10001010
 - 63 00111111
Creating Floating Point Number

- **Steps**
 - Normalize to have leading 1
 - Round to fit within fraction
 - Postnormalize to deal with effects of rounding

- **Case Study**
 - Convert 8-bit unsigned numbers to tiny floating point format
 - **Example Numbers**
Integer	Binary	Float
128	10000000	0 1110 000
15	00001101	0 1010 101
33	00010001	0 1011 000
35	00010011	0 1011 010
138	10001010	0 1111 000
63	00111111	0 1100 1111 → 0 1101 000
• 2.84, a/b