Will you light my candle?

Besides getting a 1-lecture relief from listening to Matt, what was the point of Monday’s lecture?
Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers:
 - 128 10000000 0 1110 000
 - 138 10001010 0 1111 000
<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Floating-Point Value</th>
<th>Scientific Notation</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1000 0000</td>
<td>1.000 x 2^7</td>
<td>1 x 2^7</td>
<td>128</td>
</tr>
<tr>
<td>138</td>
<td>1000 1010</td>
<td>1.001 x 2^7</td>
<td>(1+1/8) x 2^7</td>
<td>144</td>
</tr>
<tr>
<td>130</td>
<td>1000 0010</td>
<td>1.000 x 2^7</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>1000 0111</td>
<td>1.000 x 2^7</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>1000 1011</td>
<td>1.001 x 2^7</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>1001 1000</td>
<td>1.010 x 2^7</td>
<td>(1+1/4) x 2^7</td>
<td>160</td>
</tr>
</tbody>
</table>
2.84a (will look at b later)

k-bit exponent, n-bit fraction

A) V=7.0

E = 2, M=1.11
frac = 1100...0
Exp = 1000...01

bias = 2^{(e-1)}-1 = 2^{(k-1)}-1 = 0111...1

To represent E=0, need to have Exp=bias: 0111...1
To represent E=2, need to have Exp=bias+10 = 1000...1
FP Multiplication

\((-1)^{s_1} M_1 \ 2^{E_1} \ x \ (-1)^{s_2} M_2 \ 2^{E_2}\)

- **Exact Result:** \((-1)^{s} M \ 2^{E}\)
 - Sign \(s\): \(s_1 \^ s_2\)
 - Significand \(M\): \(M_1 \ * \ M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit `frac` precision

- **Implementation**
 - Biggest chore is multiplying significands
Mathematical Properties of FP Mult

- **Compare to Commutative Ring**
 - Closed under multiplication?
 - Multiplication Commutative?
 - Multiplication is Associative?
 - 1 is multiplicative identity?
 - Multiplication distributes over addition?

- **Monotonicity**
 - $a \geq b \land c \geq 0 \Rightarrow a \cdot c \geq b \cdot c$?
Mathematical Properties of FP Mult

■ Compare to Commutative Ring
 ▪ Closed under multiplication? Yes
 ▪ But may generate infinity or NaN
 ▪ Multiplication Commutative? Yes
 ▪ Multiplication is Associative? No
 ▪ Possibility of overflow, inexactness of rounding
 ▪ 1 is multiplicative identity? Yes
 ▪ Multiplication distributes over addition? No
 ▪ Possibility of overflow, inexactness of rounding

■ Monotonicity
 ▪ \(a \geq b \) & \(c \geq 0 \) \(\Rightarrow \) \(a \times c \geq b \times c \)? Almost
 ▪ Except for infinities & NaNs
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} \ + \ (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \(E_1 > E_2 \)

Exact Result: \((-1)^s \ M \ 2^E \)
- Sign \(s \), significand \(M \):
 - Result of signed align & add
- Exponent \(E \): \(E_1 \)

Fixing
- If \(M \geq 2 \), shift \(M \) right, increment \(E \)
- if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
- Overflow if \(E \) out of range
- Round \(M \) to fit frac precision
Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? Yes
 - But may generate infinity or NaN
 - Commutative? Yes
 - Associative? No
 - Overflow and inexactness of rounding
 - 0 is additive identity? Yes
 - Every element has additive inverse Almost
 - Except for infinities & NaNs

- Monotonicity
 - $a \geq b \Rightarrow a+c \geq b+c?$ Almost
 - Except for infinities & NaNs
Floating Point in C

- **C Guarantees Two Levels**
 - `float` single precision
 - `double` double precision

- **Conversions/Casting**
 - Casting between `int`, `float`, and `double` changes bit representation
 - `Double/float → int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
 - `int → double`
 - Exact conversion, as long as int has ≤ 53 bit word size
 - `int → float`
 - Will round according to rounding mode
Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

1. $x == (\text{int})(\text{double}) x$
2. $x == (\text{int})(\text{float}) x$
3. $f == (\text{float})(\text{double}) f$
4. $d == (\text{double})(\text{float}) d$
5. $f == -(-f)$;
6. $1.0/2 == 1/2.0$
7. $d \times d >= 0.0$
8. $(f+d)-f == d$

int x = ...;
float f = ...;
double d = ...;

Assume neither d nor f is NaN
Floating Point Puzzles

• For each of the following C expressions, either:
 – Argue that it is true for all argument values
 – Explain why not true

1. \(x \) == \(\text{(int)}(\text{double}) \) \(x \)
2. \(x \) == \(\text{(int)}(\text{float}) \) \(x \)
3. \(f \) == \(\text{(float)}(\text{double}) \) \(f \)
4. \(d \) == \(\text{(double)}(\text{float}) \) \(d \)
5. \(f \) == \(-(-f) \)
6. 1.0/2 == 1/2.0
7. \(d \times d \) >= 0.0
8. \((f+d)-f \) == \(d \)

Assume neither \(d \) nor \(f \) is NaN

```
int x = ...;
float f = ...;
double d = ...;
```
• 2.88 a, b-e
Moore’s “Law”

• # transistors per chip would double every year for next 10 years
 – Turns out, it’s more like every 18 month

• Storage also follows an exponential curve

• What critical improvements are sub-exponential (linear)?
Turning C into Object Code

- Code in files `p1.c p2.c`
- Compile with command: `gcc -O p1.c p2.c -o p`
 - Use optimizations (`-O`)
 - Put resulting binary in file `p`

\[
\begin{align*}
\text{text} & \quad \rightarrow \quad \text{C program (p1.c p2.c)} \\
\text{text} & \quad \rightarrow \quad \text{Asm program (p1.s p2.s)} \\
\text{binary} & \quad \rightarrow \quad \text{Object program (p1.o p2.o)} \\
\text{binary} & \quad \rightarrow \quad \text{Executable program (p)} \\
\end{align*}
\]