Project 1

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DFS</td>
<td>(2)</td>
</tr>
<tr>
<td>2. BFS</td>
<td>(1)</td>
</tr>
<tr>
<td>3. UCS</td>
<td>(2)</td>
</tr>
<tr>
<td>4. A*</td>
<td>(3)</td>
</tr>
<tr>
<td>5. Corners</td>
<td>(2)</td>
</tr>
<tr>
<td>6. Corners Heuristic</td>
<td>(3)</td>
</tr>
<tr>
<td>7. foodHeuristic</td>
<td>(5)</td>
</tr>
<tr>
<td>8. Suboptimal Search</td>
<td>(2)</td>
</tr>
<tr>
<td>Extra day: 10%</td>
<td></td>
</tr>
</tbody>
</table>

Out of 20 points

Only 30% of final grade

5-6 projects in total

Extra day: 10%
Minimax Properties

- Optimal against a perfect player. Otherwise?

- Time complexity?
 - \(O(b^m) \)

- Space complexity?
 - \(O(bm) \)

- For chess, \(b \approx 35, m \approx 100 \)
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $\alpha-\beta$ reaches about depth 8 – decent chess program
Evaluation Functions

- Function which scores non-terminals

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- e.g. \(f_1(s) = (\text{num white queens} - \text{num black queens}) \), etc.
Evaluation for Pac-Man?

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 and so on.

Why do we want to do this for multiplayer games?

Note: wrongness of eval functions matters less and less the deeper the search goes!
Minimax Example

```
3  12  8  2  4  6  14  5  2
```

Pruning in Minimax Search
Alpha-Beta Pruning

- **General configuration**
 - We’re computing the MIN-VALUE at \(n \)
 - We’re looping over \(n \)’s children
 - \(n \)’s value estimate is dropping
 - \(a \) is the best value that MAX can get at any choice point along the current path
 - If \(n \) becomes worse than \(a \), MAX will avoid it, so can stop considering \(n \)’s other children
 - Define \(b \) similarly for MIN
Alpha-Beta Pruning Example

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above
Alpha-Beta Pruning Example

Starting a/b

Raising a

Lowering b

Raising a

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above
Minimax with alpha-beta pruning on a two-person game tree of 4 plies

What move will Max take, and what is its utility? Which nodes will Alpha/Beta pruning leave unexpanded?
function Max-Value(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 $v \leftarrow -\infty$
 for a, s in Successors(state) do $v \leftarrow \max(v, \text{Min-Value}(s))$
 return v

function Max-Value(state, α, β) returns a utility value
 inputs: state, current state in game
 α, the value of the best alternative for MAX along the path to state
 β, the value of the best alternative for MIN along the path to state
 if Terminal-Test(state) then return Utility(state)
 $v \leftarrow -\infty$
 for a, s in Successors(state) do
 $v \leftarrow \max(v, \text{Min-Value}(s, \alpha, \beta))$
 if $v \geq \beta$ then return v
 $\alpha \leftarrow \max(\alpha, v)$
 return v
Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
 - Important: children of the root may have the wrong value
- Good child ordering improves effectiveness of pruning
- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless…
- This is a simple example of metareasoning (computing about what to compute)
Expectimax Search Trees

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly

- Can do **expectimax search**
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate **expected utilities**
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children

- Later, we’ll learn how to formalize the underlying problem as a **Markov Decision Process**
Maximum Expected Utility

- Why should we average utilities? Why not minimax?

- Principle of maximum expected utility: an agent should choose the action which maximizes its expected utility, given its knowledge.

- General principle for decision making
- Often taken as the definition of rationality
- We’ll see this idea over and over in this course!

- Let’s decompress this definition…
Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes

Example: traffic on freeway?
- Random variable: \(T = \) whether there’s traffic
- Outcomes: \(T \) in \{none, light, heavy\}
- Distribution: \(P(T=\text{none}) = 0.25, P(T=\text{light}) = 0.55, P(T=\text{heavy}) = 0.20 \)

- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one

- As we get more evidence, probabilities may change:
 - \(P(T=\text{heavy}) = 0.20, P(T=\text{heavy} \mid \text{Hour=8am}) = 0.60 \)
 - We’ll talk about methods for reasoning and updating probabilities later