- Project 2
 - Anticipated Score?
 - 3 min for 10 runs

- Normative vs. Descriptive
- Optimizer’s Curse / Post-decision disappointment
 - Fig 16.3
 - 95% Confidence Interval
 - Mutual Funds, Winner’s Curse

- Predictable Irrational (like economics!)
 - Anchoring: $1M plane voucher
 - Updating probabilities

- How similar to search?
- How different?

- How to make decisions?
Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
Grid World

- The agent lives in a grid
- Walls block the agent’s path
- The agent’s actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small “living” reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*
Grid Futures

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s,a,s') \)
 - Prob that a from s leads to s'
 - i.e., \(P(s' \mid s,a) \)
 - Also called the model
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where we don’t know the transition or reward functions
Keepaway

- http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/swf/learn360.swf

- SATR
- S_0, S_0
What is Markov about MDPs?

- Andrey Markov (1856-1922)

- “Markov” generally means that given the present state, the future and the past are independent

- For Markov decision processes, “Markov” means:

\[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0) = P(S_{t+1} = s' | S_t = s_t, A_t = a_t)
\]
Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal.
- In an MDP, we want an optimal policy $\pi^* : S \rightarrow A$.
 - A policy π gives an action for each state.
 - An optimal policy maximizes expected utility if followed.
 - Defines a reflex agent.

Optimal policy when $R(s, a, s') = -0.03$ for all non-terminals s.

![Diagram showing optimal policy]
Example Optimal Policies

R(s) = -0.01
R(s) = -0.03
R(s) = -0.4
R(s) = -2.0