- Project 2, question 5:
 - Grade based on avg. score for won games
- layout
- commands.txt
Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2’s
- Start with 3 showing
- After each card, you say “high” or “low”
- New card is flipped
- If you’re right, you win the points shown on the new card
- Ties are no-ops
- If you’re wrong, game ends

- Why not use expectimax?
 - #1: get rewards as you go
 - #2: you might play forever!
High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: $T(s, a, s')$:
 - $P(s'=4 \mid 4, \text{Low}) = 1/4$
 - $P(s'=3 \mid 4, \text{Low}) = 1/4$
 - $P(s'=2 \mid 4, \text{Low}) = 1/2$
 - $P(s'\text{=done} \mid 4, \text{Low}) = 0$
 - $P(s'=4 \mid 4, \text{High}) = 1/4$
 - $P(s'=3 \mid 4, \text{High}) = 0$
 - $P(s'=2 \mid 4, \text{High}) = 0$
 - $P(s'\text{=done} \mid 4, \text{High}) = 3/4$
 - ...

- Rewards: $R(s, a, s')$:
 - Number shown on s' if $s \neq s'$
 - 0 otherwise

- Start: 3
Example: High-Low

- 3, Low
 - T = 0.5, R = 2
 - T = 0.25, R = 3
 - T = 0, R = 4
 - T = 0.25, R = 0

- 3, High

4
Each MDP state gives an expectimax-like search tree.

- A state s gives rise to a transition $T(s,a,s') = P(s'|s,a) R(s,a,s')$.

- A q-state (s,a) is a pair of a state s and an action a.

- A transition (s,a,s') is called a transition.

- $T(s,a,s') = P(s'|s,a)$ and $R(s,a,s')$.
17.2.1:
Anthony, Aaron, Greg, Kevin T.

17.2.2:
Bobby, Kumera, Maytee, Sam, Tong

17.2.3:
Chris, Dave, Nick, Tim

17.3:
Kayo, Kevin M., Ryan, Shannon