• Final (optional) project
 – 30% of final grade was from projects
 – We’ve had 4 projects
 – Each was worth 7.5 of final grade

 – This project can help as much as 5 points on final grade:
 – Exceptional (A+): +5
 – Good (A): +4
 – Pretty Good (A-): +3
 – B+: +2
 – B: +1

• Projects: this Friday (hopefully)
• Search
• Genetic Algorithms
• Adversarial Search
• MDPs
• Reinforcement Learning
• Probabilistic Reasoning
• Bayesian Networks
• Particle Filters
• Neural Networks: Classification
• Classical Planning
• Ethics & Philosophy

NEAT, UCT, +1 more?
• AI Game Programming Wisdom
• State of the Art AI in Games
• Compared to search
• Scheduling: baseball games, navy yard
• PDDL
• Closed-world assumption

• Why is it that fluents are not allowed to have negation, such as - At(p, JFK)? After all, aren't we implementing these using boolean variables anyway? If the answer is that negation is a (unary) function, then my question is why is it that we cannot reason with function. The book does not really give an example where functions can break our convenient treatment of fluents using set operations.
State Space

- **Representation**
 - States described by propositions or ground predicates
 - Sparse encoding (database semantics): all unstated literals are false
 - Unique names: each object has its own single symbol

States:
- On(C, A)
- On(A, Table)
- On(B, Table)
- Clear(C)
- Clear(B)
On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

ACTION: Move(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y)
POSTCONDITIONS: On(b,y), Clear(x)
¬On(b,x), ¬Clear(y)

ACTION: Move(C,A,Table)
PRECONDITIONS: On(C,A), Clear(C), Clear(Table)
POSTCONDITIONS: On(C,Table), Clear(A)
¬On(C,A), ¬Clear(Table)
Start and Goal States

Start State

- On(C, A)
- On(A, Table)
- On(B, Table)
- Clear(C)
- Clear(B)
- Block(A)
- ...

Goal State

- On(B, C)
- On(A, B)

Important: goal satisfied by any state which entails goal list

[MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]
Planning Problems

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)

Sparse encoding, but complete state spec

ACTION: MoveToTable(b,x)
PRECONDITIONS: On(b,x), Clear(b), Block(b), Block(x), (b≠x)
POSTCONDITIONS: On(b,Table), Clear(x)
¬On(b,x)

Goal
On(B, C)
On(A, B)

Set of goal states, only requirements specified (think unary constraints)

Which goal first?

Action schema, instantiates to give specific ground actions
Practice

Action(Fly(p, from, to),
 PRECOND: At(p, from) ^ Plane(p) ^ Airport(from) ^ Airport(to)
 Effect: ~At(p, from) ^ At(p, to)
• What are all applicable concrete instances of Fly (p, from, to) for state:
 At(P1,JFK) ^ At(P2,SFO) ^ Plane(P1) ^ Plane(P2) ^ Airport(JFK) ^ Airport(SFO)