Boston Dynamics’ sprinting robot, Cheetah, has now broken the land-speed record for humans, clocking speeds of 29.3 miles per hour, meaning not even the 27.79mph Usain Bolt can escape. Fortunately for us, it's got a fatal flaw; a balance problem that means it can only remain upright with a boom keeping it steady. Unfortunately, that's not going to be a problem for long, since field-testing on an independently upright version begins early next year.

Open Questions

• Using dlc

 ./dlc -e bits.c
 comment explicitly on every problem

 [taylorm@jazz710:datalab-handout> ./dlc bits.c
 dlc:bits.c:142:bitNor: Illegal operator (/)
 dlc:bits.c:142:bitNor: Illegal operator (+)
 dlc:bits.c:142:bitNor: Illegal operator (<<)

• T*U = T or U? (integer mult)
 – Just conventions for talking about math
 – Really just bit patterns

• Other questions about the lab?
1. 3
2. 3
3. 5
4. 3
5. 4
6. 2
7. 1

21 min
Problems considered for Quiz

• 2.17 (p. 61)
• What is -5 in two’s compliment with 4 bits?
 – 5 bits?
 – 6 bits?
 – See the pattern?
• 2+5, 4 bit answer in two’s compliment
• 5+5, 4 bit answer in two’s compliment
• 2.31
• 3*3, 3 bit answer, in unsigned and two’s compliment
• 5*3, 3 bit answer, in unsigned and two’s compliment
• 2.40
• 2.44
Aside

- Precision in Python
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number:
 \[
 \sum_{k=-j}^{i} b_k \cdot 2^k
 \]
Floating Point Representation

- **Numerical Form:**
 \[(-1)^s \ M \ 2^E \]
 - **Sign bit** \(s \) determines whether number is negative or positive
 - **Significand** \(M \) normally a fractional value in range \([1.0, 2.0)\).
 - **Exponent** \(E \) weights value by power of two

- **Encoding**
 - **MSB** \(s \) is sign bit \(s \)
 - **\(\text{exp} \)** field encodes \(E \) (but is not equal to \(E \))
 - **\(\text{frac} \)** field encodes \(M \) (but is not equal to \(M \))
Normalized Values

- Condition: \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \)

- Exponent coded as biased value: \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value \(\text{exp} \)
 - \(\text{Bias} = 2^{\text{e}-1} - 1 \), where \(\text{e} \) is number of exponent bits
 - Single precision: 127 (\(\text{Exp}: 1\ldots254, E: -126\ldots127 \))
 - Double precision: 1023 (\(\text{Exp}: 1\ldots2046, E: -1022\ldots1023 \))

- Significand coded with implied leading 1: \(M = 1.\text{xxx}...\text{x}_2 \)
 - \(\text{xxx}...\text{x} \): bits of \(\text{frac} \)
 - Minimum when 000...0 (\(M = 1.0 \))
 - Maximum when 111...1 (\(M = 2.0 - \varepsilon \))
 - Get extra leading bit for “free”
Normalized Encoding Example

- Value: Float $F = 15213.0$;
 - $15213_{10} = 11101101101101_2$
 - $= \text{[Diagram representation]}$

- Significand
 - $M = \text{[Diagram representation]}$
 - frac = \text{[Diagram representation]}

- Exponent
 - $E = \text{[Diagram representation]}$
 - Bias = \text{[Diagram representation]}
 - Exp = \text{[Diagram representation]}

- Result:
 - $s \text{ exp frac}$
Examples: 8 bit representation

- $k = 4$ (exponent)
- $n = 3$ (fraction bits)
- (bias = 7)

0 0001 000
0 0001 001
0 0111 000
0 1110 111