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ABSTRACT

This work introducedHuman-Agent TransfefHAT), an algorithm
that combines transfer learning, learning from demoristiaand
reinforcement learning to achieve rapid learning and higtqp-
mance in complex domains. Using experiments in a simulated
robot soccer domain, we show that human demonstrations-tran
ferred into a baseline policy for an agent and refined usiig re
forcement learning significantly improve both learning g¢irand
policy performance. Our evaluation compares three algwiit ap-
proaches to incorporating demonstration rule summartesrans-

fer learning, and studies the impact of demonstration tualid
quantity, as well as the effect of combining demonstratifsom
multiple teachers. Our results show that all three transfeth-
ods lead to statistically significant improvement in pemfance
over learning without demonstration. The best performamas
achieved by combining the best demonstrations from twdierac

Categories and Subject Descriptors
1.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance
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1. INTRODUCTION

Agent technologies for virtual agents and physical robots a
rapidly expanding in industrial and research fields, emgldjreater
automation, increased levels of efficiency, and new apipdics.
However, existing systems are designed to provide nichgisnb
to very specific problems and each system may require signtfic
effort to develop. The ability to acquire new behaviors tiyio
learning is fundamentally important for the developmergerieral-
purpose agent platforms that can be used for a variety o task

Existing approaches to agent learning generally fall into ¢at-
egories: independent learning through exploration armieg from
labeled training data. Agents often learn independentiynfex-
ploration viaReinforcement learnin@RL) [25]. While such tech-
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nigues have had great success in offline learning and s&ftamr
plications, the large amount of data and high exploratiores they
require make them intractable for most real-world domains.

On the other end of the spectrum &earning from demonstra-
tion (LfD) algorithms [1]. These approaches leverage the vast ex
perience and task knowledge of a person to enable fast tegrni
which is critical in real-world applications. However, hamteach-
ers provide particularly noisy and suboptimal data due ffedi
ences in embodiment (e.g., degrees of freedom, action pedd
limitations of human ability. As a result, final policy perfoance
achieved by these methods is limited by the quality of thasktt
and the performance of the teacher.

This paper proposes a novel approach: usdrBhsfer learning
methods [28] to combine LfD and RL and achieve both fast learn
ing and high performance in complex domains. In transfenieg,
knowledge from asource tasks used in aarget taskto speed up
learning. Equivalently, knowledge from a source agent edue
speed up learning in a target agent. For instance, knowledge
been successfully transferred between agents that bathffee
ent length poles [19], that solve a series of mazes [5, 34ihatr
play different soccer tasks [29, 31, 32]. The key insightrafhsfer
learning is that previous knowledge can be effectively eeugven
if the source task and target task are not identical. Thisltem
substantially improved learning times because the agetanger
relies on an uninformed (arbitrary) prior.

In this work, we show that we can effectively transfer knadge
from a human to an agent, even when they have different percep
tions of state. Our methojuman-Agent TransfgHAT): 1) allows
a human teacher to perform a series of demonstrations ik a2ps
uses an existing transfer learning algoritHRule Transfef27], to
learn rule-based summaries of the demonstration, andejraties
the rule summaries into RL, biasing learning while alsoveilhgy
improvement over the transferred policy.

We perform empirical evaluation ofAT in a simulated robot
soccer domain. We compare three algorithms for incorpugatile
summaries into reinforcement learning, and compare legmpér-
formance for multiple demonstration source, quantity, qudlity
conditions. Our findings show statistically significant mpement
in performance for all variants ofAT over learning with no prior.
Additionally, we find that exposure even to suboptimal destia
tion training data results in significant improvements awrdom
exploration, and combining demonstrations from multiplachers
leads to the best performance.

2. BACKGROUND

This section provides background on the three key techrique
discussed in this paper: reinforcement learning, learfiorg demon-
strations, and transfer learning.



2.1 Reinforcement Learning

Reinforcement learning is a common approach to agent learn-
ing from experience. We define reinforcement learning usieg
standard notation of Markov decision processes (MDPSs). [26]
every time step the agent observes its state S as a vector ok
state variables such that= (x1,x2,...,zx). The agent selects
an action from the set of available actioAsat every time step. An
MDP’s reward functionR : S x A — R and (stochastic) transition
functionT : S x A — S fully describe the system’s dynamics. The
agent will attempt to maximize the long-term reward deteediby
the (initially unknown) reward and transition functions.

A learner chooses which action to take in a state via a policy,
w : S — A. Policy = is modified by the learner over time to
improve performance, which is defined as the expected tetal r
ward. Instead of learning directly, many RL algorithms instead
approximate the action-value functiof), : S x A — R, which
maps state-action pairs to the expected real-valued retarthis
paper, agents learn using Sarsa [17, 20], a well known baiively
simple temporal difference RL algorithm, which learns toreate
Q(s, a). While some RL algorithms are more sample efficient than
Sarsa, this paper will focus on Sarsa for the sake of clarity.

Although RL approaches have enjoyed multiple past sucsesse
(e.g., TDGammon [30], inverted Helicopter control [12]daagent
locomotion [18]), they frequently take substantial amsurftdata
to learn a reasonable control policy. In many domains, cblle
ing such data may be slow, expensive, or infeasible, matiyahe
need for ways of making RL algorithms more sample-efficient.

2.2 Learning from Demonstration

Learning from demonstrationesearch explores techniques for
learning a policy from examples, or demonstrations, predidy a
human teacher. LfD can be seen as a subset of Supervised Learn
ing, in that the agent is presented with labeled training catd
learns an approximation to the function which produced tita.d

Similar to reinforcement learning, learning from demoattmn
can be defined in terms of the agent’s observed states and ex-
ecutable actions € A. Demonstrations are recorded as temporal
sequences of state-action pairs(fso, ao), .., (st, a+)}, and these
sequences typically only cover a small subset of all posstites
in a domain. The agent’s goal is to generalize from the detnans
tions and learn a policy : S — A covering all states that imitates
the demonstrated behavior.

Many different algorithms for using demonstration dataetarh
7w have been proposed. Approaches vary by how demonstrations
are performed (e.g., teleoperation, teacher followingekihetic
teaching, external observation), the type of policy leagmnethod
used (e.g., regression, classification, planning), andnagsons
about degree of demonstration noise and teacher inteitgdty.
Across these differences, LfD techniques possess a nurfikey o
strengths. Most significantly, demonstration leverages/ést task
knowledge of the human teacher to significantly speed upilegr
either by eliminating exploration entirely [6, 13], or bycfgsing
learning on the most relevant areas of the state space [22hob-
stration also provides an intuitive programming interféoe hu-
mans, opening possibilities for policy development to agents-
experts.

However, LfD algorithms are inherently limited by the gpali
of the information provided by the human teacher. Algorisiyp-

of the teacher, learning from demonstration must be conabivith
learning from experience.

Most similar to our approach is the work of Smart and Kaethlin
which shows that human demonstration can be used to bgotstra
reinforcement learning in domains with sparse rewards ipializ-
ing the action-value function using the observed stateémracand
rewards [22]. In contrast to this approach, our work usesatem
stration data to learn generalized rules, which are thed tesbias
the reinforcement learning process.

2.3 Transfer Learning

The insight behindransfer learning(TL) is that generalization
may occur not only within tasks, but alsaross tasksallowing an
agent to begin learning with an informative prior insteadedjing
on random exploration.

Transfer learning methods for reinforcement learning cans:
fer a variety of information between agents. However, maayd-
fer methods restrict what type of learning algorithm is ubgd
both agents (for instance, some methods require tempdfaf-di
ence learning [29] or a particular function approximatd?][® be
used in both agents). However, when transferring from a Imjiha
is impossible to copy a human’s “value function” — both besgu
the human would likely be incapable of providing a completd a
consistent value function, and because the human wouldklguic
grow wary of evaluating a large number of state-action pairs

This paper useRule Transfe27], a particularly appropriate
transfer method that is agnostic to the knowledge repratent
of the source learner. The ability to transfer knowledgeveen
agents that have different state representations andtfionads a
critical ability when considering transfer of knowledgetween a
human and an agent. The following steps summarize Rule fErans

la: Learn apolicy (7 : S — A) in the source task.Any type of
reinforcement learning algorithm may be used.

1b: Generate samples from the learned policyAfter training
has finished, or during the final training episodes, the agent
records some number of interactions with the environment in
the form of (.S, A) pairs while following the learned policy.

2: Learn a decision list (Ds : S +— A) that summarizes the
source policy. After the data is collected, a propositional
rule learner is used to summarize the collected data to ap-
proximate the learned policy by mapping states to actions.
This decision list is used as a type of inter-lingua, allayvin
the following step to be independent of the type of policy
learned (step 1a).

3: Use D, to bootstrap learning of an improved policy in the
target task. For instance, previous work [27] provided three
ways of leveraging this knowledge; two of these methods are
discussed later in Sections 3.1 and 3.2.

2.4 Additional Related Work

This section briefly summarizes three additional lines Gftesl

work.

Within psychologybehavioral shaping21] is a training proce-
dure that uses reinforcement to condition the desired hehav
a human or animal. During training, the reward signal isafit

ically assume the dataset to contain high quality dematietis
performed by an expert. In reality, teacher demonstratinag be
ambiguous, unsuccessful, or suboptimal in certain aretiedtate
space. A naively learned policy will likely perform poorly such
areas [2]. To enable the agent to improve beyond the perforena

tAdditionally, if the agents in the source and target task dise

ferent state representations or have different availattierss, the

decision list can be translated via inter-task mappings 227 (as

step 2b). For the current paper, this translation is notsszog, as
the source and target agents operate in the same task.



used to reinforce any tendency towards the correct behdwibis
gradually changed to reward successively more difficuitnelets

of the task. Shaping methods with human-controlled rewhade
been successfully demonstrated in a variety of softwaretame
plications [3, 7]. An alternate form of shaping is to change task
over time, or construct a task sequence for an agent to trejd&
36]. In contrast to shaping, LfD allows a human to demonstrat
complete behaviors, which may contain much more infornmatio
than a sequence of rewards or suggested tasks.

Most similar to our approach is the recent work by Knox and
Stone [9] which combines shaping with reinforcement lezgni
Their TAMER [8] system learns to predict and maximize a reward
that is interactively provided by a human. The learned hunean
ward is combined in various ways with Sarsg(providing signif-
icant improvements. The primary difference betweem and this
method is that we focus on leveraging human demonstratidier
than estimating and integrating a human reinforcementsign

as will be learned in the Independent Learning phase, o2jreaty
differences between the agent or task in the demonstratiaaep
are small enough that they can be ignored in the indepeneamt-|
ing phase. Instead of transferring between different tasks fo-
cuses on transferring between different agents with diffemter-
nal representations. For instance, it is not possible tectlir use
a human’s “value function” inside an agent because 1) theamisn
knowledge is not directly accessible and 2) the human haffea-di
ent state abstraction than the agent.

We next present three different ways thatr can use a decision
list to improve independent learning.

3.1 Value Bonus

The intuition behind th&/alue Bonusnethod [27] is similar to
that of shaping in that the summarized policy is used to adet a r
ward bonus to certain human-favored actions. When the agent
reaches a state and calculatgés, a), the Q-value of the action

The idea of transfer between a human and an agent is somewhasuggested by the summarized policy is given a constant d@us

similar toimplicit imitation [15], in that one agent teaches another
how to act in a task, biHAT does not require the agents to have the
same (or very similar) representations.

Allowing for such shifts in representation gives additibfiex-
ibility to an agent designer; past experience may be tramsfe
rather than discarded if a new representation is desirepreRen-
tation transfer is similar in spirit taAT in that both the teacher and
the learner function in the same task, but very differertinégues
are used since the human'’s “value function” cannot be djrect
amined.

High-level adviceand suggestions have also been used to bias
agent learning. Such advice can provide a powerful leartong
that speeds up learning by biasing the behavior of an ageht an
reducing the policy search space. However, existing methgal-
cally require either a significant user sophistication.(é¢tge human
must use a specific programming language to provide advidg [1
or significant effort is needed to design a human interfacg.,(e
the learning agent must have natural language processilitieab
[10]). Allowing a teacher to demonstrate behaviors is pedike in
domains where demonstrating a policy is a more naturaldaotem
than providing such high-level advice.

3. METHODOLOGY

In this section we presemAT, our approach to combining LfD
and RL.HAT consists of three steps, motivated by those used in
Rule Transfer:

Demonstration The agent performs the task under the teleoper-
ated control by a human teacher, or by executing an existing
suboptimal controller. During execution, the agent resord
all state-action transitions. Multiple task executionsyrha
performed.

Policy Summarization HAT uses the state-action transition data
recorded during the Demonstration phase to derive rules sum
marizing the policy. These rules are used to bootstrap au-
tonomous learning.

Independent Learning The agent learns independently in the task
via reinforcement learning, using the policy summary tsbia
its learning. In this step, the agent must balance expbpitin
the transferred rules with attempting to learn a policy that
outperforms the transferred rules.

In contrast to transfer learningiAT assumes that either 1) the
demonstrations are executed on the same agent, in the sskpe ta

For the firstC episodes, the learner is forced to execute the ac-
tion suggested by the rule set. This is effectively changfiegini-
tialization of the Q-value function, or, equivalently [3®Foviding

a shaping reward to the state-action pairs that are selégtéide
rules.

We useB = 10 andC' = 100 to be consistent with past work [27];
the Q-value for the action chosen by the summarized polithbei
given a bonus of +10 and agents must execute the action chgsen
the summarized policy for the first 100 episodes.

3.2 Extra Action

The Extra Actionmethod [27] augments the agent so that it can
select gpseudo-actionWhen the agent selected this pseudo-action,
it executed the action suggested by the decision list. Thatagay
either execute the action suggested by the transferred, rofat
can execute one of the “base” MDP actions. Through explomati
the RL agent can decide when it should 1) follow the transeférr
rules by executing the pseudo-action or 2) execute a base MDP
action (e.g., the transferred rules are sub-optimal). Wereagent
to always execute the pseudo-action, the agent would negen |
but would simply mimic the demonstrated policy.

As with the Value Bonus algorithm, the agent initially extssu
the action suggested by the decision list, allowing it tineste the
value of the decision list policy. We again set this perioth¢al 00
episodes = 100).

3.3 Probabilistic Policy Reuse

The third method used iBrobabilistic Policy Reusebased on
the w-reuse Exploration Strategy [4, 5]. In Probabilistic Pglic
Reuse, the agent will reuse a policy with probability explore
with probabilitye, and exploit the current value function with prob-
ability 1 — ¢ — . By decayingy over time, the agent can initially
leverage the decision list, but then learn to improve on jitoisi-
ble. Note that Probabilistic Policy Reuse is similar to theant
TAMER+RL method #7 [9], where the agent tries to execute the ac-
tion suggested by the learned human shaping reward, rdtaer t
follow a transferred policy.



Figure 1: This diagram shows the distances and angles used to
construct the 13 state variables used for learning with 3 kegers
and 2 takers. Relevant objects are the 3 keepers (K) and the
two takers (T), both ordered by distance from the ball, and the
center of the field.

4. EXPERIMENTAL VALIDATION

L kick o

keepers 010 takers play on 1238

Figure 2: This figure shows a screenshot of the visualizer ude
for the human to demonstrate a policy in 3 vs. 2 Keepaway.
The human controls the keeper with the ball (shown as a hollow
white circle) by telling the agent when, and to whom, to pass.
When no inputis received, the keeper with the ball executesie
Hol d action, attempting to maintain possession of the ball.

To learn Keepaway with Sarsa, each keeper is controlled by a

This section first discusses Keepaway [24], a simulatedtrobo separate agent. Many kinds of function approximation haenb

soccer domain and then explains the experimental methggolo
used to evaluatgAT.

4.1 Keepaway

successfully used to approximate an action-value funétiéteep-
away, but a Gaussian Radial Basis Function ApproximatiddHR
has been one of the most successful [23]. All weights in th& RB
function approximator are initially set to zero; every iglitstate-

Keepawayis a domain with a continuous state space and signifi- action value is zero and the action-value function is unifoEx-

cant amounts of noise in the agent’s actions and sensorste@me

periments in this paper use the public versions 11.1.0 dRtitmCup

the keepers attempts to maintain possession of the ball within a Soccer Server [14], and 0.6 of UT-Austin's Keepaway play2s.

20m x 20m region while another team, ttakers attempts to steal
the ball or force it out of bounds. The simulator places theypl
ers at their initial positions at the start of each episodkerds an
episode when the ball leaves the play region or is taken axeay f
the keepers.

The keeper with the ball has the option to either pass thetdall
one of its two teammates or to hold the ball. 3vs. 2 Keepaway
(3 keepers and 2 takers), the state is defined by 13 handestlec
state variables (see Figure 1) as defined in [24]. The revaaticet
learning algorithm is the number of time steps the ball reman
play after an action is taken. The keepers learn in a constlai
policy space: they have the freedom to decide which actidakie

4.2 Experimental Setup

In the Demonstration phase efaT, Keepaway players in the
simulator are controlled by the teacher using the keybodis
allows a human to watch the visualization and instruct thepke
with the ball to execute thidol d, Pass, or Pass, actions. Dur-
ing demonstration, we record al, (@) pairs selected by the teacher.
Itis worth noting that the human has a very different repmegéon
of the state than the learning agent. Rather than observitg a
dimensional state vector like the RL agent, the human usésua v
alizer (Figure 2). It is therefore critical that whateverthead used
to glean information about the human'’s policy does not nexjifie

only when in possession of the ball. Keepers not in possessio agent and the human to have identical representationstef sta

of the ball are required to execute tRecei ve macro-action in
which the player who can reach the ball the fastest goes tbate
and the remaining players follow a handcoded strategy tmtget

open for a pass.

To be consistent with past work [23], our Sarsa learners use
a = 0.05, ¢ = 0.10, and RBF function approximation. After
conducting initial experiments with five values¥f we found that
1 = 0.999 was at least as good as other possible settings. In the

For policy learning, the Keepaway problem is mapped onto the Policy Summarization Phase, we use a simple propositiarial r

discrete-time, episodic RL framework. As a way of incorpera
ing domain knowledge, the learners choose not from the simul
tor's primitive actions but from a set of higher-level maerctions
implemented as part of the player [24]. These macro-actams
last more than one time step and the keepers have oppoggituti
make decisions only when an on-going macro-action terregmat
Keepers can choose il d (maintain possessionPass: (pass
to the closest teammate), afdss. (pass to the further team-
mate). Agents then make decisions at discrete time stepsn(wh
macro-actions are initiated and terminated).

learner to generate a decision list summarizing the potiegt (s,
it learns to generalize which action is selected in everiektd-or
these experiments, we use JRip, as implemented in Weka [35].
Finally, when measuring speedup in RL tasks, there are many
possible metrics. In this paper, we measure the succesamof
along three related dimensions. The initial performananadgent
in a target task may be improved by transfer. Sughrapstart
(relative to the initial performance of an agent learningheut the
benefit of any prior information), suggests that transféméorma-
tion is immediately useful to the agent. In Keepaway, thegstart



is measured as the average episode reward (correspondihg to
average episode length in seconds), averaged over 1,086depi
without learning. The jumpstart is a particularly impottametric
when learning is slow and/or expensive.

The final reward acquired by the algorithm at the end of the
learning process (at 30 simulator hours in this paper) atdic the
best performance achieved by the learner. This value is atedp
by taking the average of the final 1,000 episodes to accoutihéo
high degree of noise in the Keepaway domain.

The total reward accumulated by an agent (i.e., the area under
the learning curve) may also be improved. This metric messur
the ability of the agent to continue to learn after transken is
heavily dependent on the length of the experiment. In Keepaw - ExtraAction —x—

. . Probabilistic Policy Reuse =
the total reward is the sum of the average episode durati@vesy Teacher Demonstration

integral hour of training: 0 5 10 15 20 25 30
Training Time (simulator hours)

Episode Duration (seconds)

No Prior -&-
Value Bonus -

Z (average episode reward at training hour

t:0—n Figure 3: This graph summarizes performance of Sarsa learn-
where the experiment lasis hours and each average reward is ing in Keepaway using four different algorithms. One demon-
computed by using a sliding window over the past 1,000 episbd stration of 20 episodes was used for all threelAT learners. Er-

ror bars show the standard error in the performance.

5. EMPIRICAL EVALUATION | Method | Jumpstart] Final | Total Reward]
This section presents results showing thatr can effectively No Prior N/A 14.3 380

use human demonstration to bootstrap RL in Keepaway agents. Value Bonus 0.57 15.1 401
To begin, we recorded a demonstration from a teacBebject Extra Action -0.29 16.0 407

A) which lasted for 20 episodes (less than 3 minutes). Next, we | propabilistic Policy Reuse  -0.30 15.2 111

used JRip to summarize the policy with a decision list. THe fo
lowing rules were learned, whestate, represents th&'" state
variable, as defined in the keepaway task [23]: Table 1: This table shows the jumpstart, final reward and totd
. reward metrics for Figure 3. Values in bold have statisticaly
> 74. 3 < 5. e . . . ;
If (staten > 74.84 andsstate; < 5.99 and significant differences in comparison to the No Prior method

stater; < 76.26) — Action=1 (p < 0‘05)_
elseif (state1n > 53.97 and states < 5.91 and
stateg > 8.45 and states < 7.06) — Action=1

. While the final reward performance of the all four methods is
elseif (states < 4.84 and stateo > 7.33 and very similar (only Extra Action has a statistically signéit® im-
stateiz > 43.66 and states < 5.57) — Action= 2 provement over No Prior), the total reward accumulated kjnede
else — Action= 0 algorithms is significantly higher than with No Prior leargi This
result is an indication that although the same final perfoceas
achieved in the long term because the learning algorithrblesta

While not the focus of this work, we found it interesting thiag learn the task in all cases, high performance is achiéastrby
policy was able to be summarized with only four rules, obtejn using a small number of demonstrations. This difference tmn
over 87% accuracy on when using stratified cross-validation best observed by selecting an arbitrary threshold of epishola-

Finally, agents are trained in 3 vs. 2 Keepaway without using tion and comparing the number of simulation hours each algor
transfer rules (No Prior), using the Value Bonus, using tlke E  takes to achieve this performance. In the case of a threstidld

tra Action, or using the Probabilistic Policy Reuse methaul seconds, we see that No Prior learning takes 13.5 hours,arechp
learning algorithms were executed for 30 simulator hoursdgs- t010.1, 8.57 and 7.9 hours for Value Bonus, Extra Action amdhP
sor running time of roughly 2.5 hours) to ensure convergence abilistic Policy Reuse respectively. These results shaw titans-
Figure 3 compares the performance of the four methods, aver- ferring information viaHAT from the human results in significant
aged over 10 independent trials. Using 20 episodes of eeesf improvements over learning without prior knowledge.
data fromSubject Awith HAT can improve the jumpstart, the fi- Section 5.1 will explore how performance changes with diffe
nal reward, and the cumulative reward. The horizontal Imée ent types or amounts of demonstration, while Section 5@idises
figure shows the average duration of the teacher's demdiosira  how teacher ability affects learning performance. In atttfar ex-
episodes; all four of the RL-based learning methods impupan periments we use the Probabilistic Policy Reuse methodwast
and outperform the human teacher. The performance of tfe-dif  not dominated by either of the other two methods. Addititynat
ent algorithms is measured quantitatively in Table 1, wisegsifi- some trials with other methods we found that the learnerccsiairt
cance is tested with a Student’s t-test. with a high jumpstart but fail to improve as much as othetgris/e

2 . . . posit this is due to becoming stuck in a local minimum. Howeve
Recall that the reward in Keepaway is +1 per time step, where a e .
time step is a 10th of a simulator second. Thus, the rewarthéor because) explicitly decays the effect from the rules, this phenom-

first hour of training is alway$0 x 60 x 10 = 36000 — a met- ena was never observed when using Probabilistic Policy&eus
ric for the total reward over time must account for the rewaed
episodeand simply summing the total amount of reward accrued is *Throughout this paper, t-tests are used to calculate Signife,
not appropriate. defined a® < 0.05.




5.1 Comparison of Different Teachers

Above, we used a single demonstration data set to evaludte an
compare three algorithms for incorporating learned rui&s iiein-
forcement learning. In this section, we examine how dermanst
tions from different people impact learning performancedin-
gle algorithm, Probabilistic Policy Reuse. Specificallg @ompare
three different teachers:

1. Subject AThis teacher has many years of research experi-
ence with the Keepaway task. (The same as Figure 3.)

2. Subject BThis teacher is new to Keepaway, but practiced for
approximately 100 games before recording demonstrations.

3. Subject C This teacher is an expert in LfD, but is new to
Keepaway. The teacher practiced 10 games before recording
demonstrations.

Each teacher recorded 20 demonstration episodes whilegtryi
to play Keepaway to the best of their ability. Figure 4 sumpes
the results and compares performance of using these thneende
stration sets against learning the Keepaway task withoutaa p
All reported results are averaged over 10 learning trialsbld 2
presents summary of the results, highlighting statidticsignifi-
cant changes in bold.

[ Method | Jumpstart] Final | Total Reward]
No Prior N/A 14.3 380
Subject A -0.30 15.2 411
Subject B 3.35 15.7 423
SubjectC| 0.15 | 16.2 424

Table 2: This table shows the jumpstart, final reward and totd

reward metrics for Figure 4, where all HAT methods use Prob-
abilistic Policy Reuse with 20 episodes of demonstrated pla
Values in bold have statistically significant differencesn com-

parison to the No Prior method.

All three HAT experiments outperformed learning without a bias
from demonstration, with statistically significant impewsaents in
total reward. However, as in any game, different Keepawayeqrs
have different strategies. While some prefer to keep thidrbahe
location as long as possible, others pass frequently betkeep-
ers. As a result, demonstrations from three different teeclked to
different learning curves. Demonstration data frBobjects Aand
Cresulted in a low jumpstart, whigubject B demonstration gave
the learner a significant jumpstart early in the learningpss. The
final reward also increased for all threer trials, with statistically
significant results in the case &ubjects Band C. These results
indicate thaHAT is robust to demonstrations from different people
with varying degrees of task expertise.

An important factor to consider with any algorithm that lesar
from human input, is whether combining demonstrations fram
or more different teachers helps the agent to learn fastetether
exposure to possibly conflicting demonstrations from déffe teach-
ers slows the learning process. In the following evaluatiercom-
pared five demonstration types:

1. Subject A (2Q)Set of the original 20 demonstrations by Sub-
ject A: average duration of 10.4 seconds/episode

2. Subject A (10) Set of 10 randomly selected demonstrations
by Subject A: average duration 7.5 seconds/episode

3. Subject C (20)Set of the original 20 demonstrations by Sub-
ject C : average duration of 11.3 seconds/episode

16

0000

12
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Episode Duration (seconds)

No Prior g
Subject A o
Subject B ——

Subject C =
25

4

10 15 20
Training Time (simulator hours)
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Figure 4: This graph summarizes performance of no prior
learning and Probabilistic Policy Reuse learning using deron-

strations from three different teachers. Each teacher per-
formed demonstrations for 20 episodes. Error bars show the
standard error in performance across 10 trials.

4. Subjects A + C Best (20)The 10 best (longest) demonstra-
tion episodes each from Subjects A and C: average duration
of 17.2 and 18.0 seconds/episode, respectively

5. Subjects A + C Worst (20)The 10 worst (shortest) demon-
stration episodes each from Subjects A and C: average dura-
tion of 4.6 seconds/episode for both

This analysis provides insight about the impact of comignin
demonstrations from multiple teachers (conditions 1 ands.34v
and 5) and the impact of demonstration quantity (condities.2)
and quality (condition 4 vs. 5). Figure 5 presents a comparcf
the five learning conditions, and Table 3 summarizes thdteesu

| Method | Jumpstart] Final | Total Reward]
Subject A (20) 030 | 15.2 411
Subject A (10) 223 | 15.8 407
Subject C (20) 015 | 16.2 424
Subjects A + C Best 2.15 15.7 431
Subjects A + C Wors 0.37 16.1 419

Table 3: This table shows the jumpstart, final reward and totd

reward metrics for Figure 5, where all HAT methods use Prob-
abilistic Policy Reuse with 20 demonstrated episodes. Vads in

bold have statistically significant differences in compaison to
the No Prior method (not shown).

With respect to learning from multiple teachers, resultewsh
that combining data from different subjects leads to penforce
as good as or better than learning from a single teacher. iCond
tion Subjects A + C Begperforms better than eith&ubject Aor
Subject Calone, and significantly outperforms all other methods
in the group, in large part due to the early lead it has duesto it
high jumpstart. ConditiorBubjects A + C Worsshows no statis-
tically significant change in performance between it andnieg
from Subject Aor Subject Calone? This result is significant be-
cause it indicates that while quality is important, as shawyrthe

“Note that because we have few subjects, our claims of signifie
are limited to results from demonstrations with the threlgiestts
tested. Future work will generalize our findings by congiulgr
many more subjects.
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Figure 5: This graph summarizes performance of Probabilisic
Policy Reuse learning using five different demonstration gs.
Error bars show the standard error in performance across 10
trials.

difference betweeBSubjects A + C BestndWorst any demonstra-
tion is beneficial. The fact that the worst demonstratioiklead
to performance well abovido Prior learning is an indication that
exposure to any training data is better than random exjdorat

In fact, quantity of demonstration may matter more than qual
ity, as shown by the comparison of conditions 1 and 2. Reducin

the number of demonstrations by half resulted in a signifidan
crease in jumpstart. Although performance eventually veied
to achieve a final reward comparable to that of the other nastho
achieving that result took longer and there is a statidyicignifi-
cant difference between the total reward of the two conaiitio

Most significantly, we highlight that all demonstrationsked meth-

ods, regardless of data source, quantity or quality, redut statis-
tically significant performance improvements o Prior learn-
ing. This critical result indicates thataT learning can benefit from
variable degrees of demonstration quality. The algoritto@sdnot
require the teacher to be a task expert and easily surpdespsrt
formance of the teacher. In the following section, we furtbe-
plore the effects of suboptimal demonstrations.

5.2 Impact of Teacher Ability on Learning

In the above experiments, all three teachers demonstrated t

task to their best ability. In this evaluation, we alter theda-
tion environment to make the teacher’s demonstrationsrémtiy
suboptimal. Specifically, we compare three types of dematigh:

Episode Duration (seconds)
o,

4%/ Subject B ——
/ Subject B, Limited Actions o
Subject B, Fast Demonstration =

0 5 10 15 20 25 30
Training Time (simulator hours)

Figure 6: This graph summarizes performance of Probabilisic
Policy Reuse learning using three sets of demonstrationsdm
Subject B recorded under different simulator conditions: nor-
mal, fast and with limited actions. Each demonstration seton-
sists of 20 episodes. Error bars show the standard error in e
formance across 10 trials.

and Table 4 summarizes the results. Importantly, we se@ alogii
poor teacher performance does not negatively impact thiegfara
formance of the agent. The data further supports our editigf
ings that in the long-term, Probabilistic Policy Reuse earth the
task regardless of the initialization method, and thereoistatis-
tically significant difference in final reward values betwesmndi-
tions 1 and 2, and conditions 1 and 3. Statistically signifiadif-

ferences are observed, however, in the rate of learningy, With

respect to jumpstart and total reward, indicating that ptibval

demonstrations slow the learning process. However, evénthe
added handicaps, learning from human data shows stallig8az

nificant improvements ové¥o Prior learning.

| Method | Jumpstart] Final | Total Reward]
Subject B 3.35 15.7 423
Limited Actions -1.26 16.0 404
Fast Demonstration -2.37 16.0 401

Table 4: This table shows the jumpstart, final reward and to-
tal reward metrics for Figure 6, where all HAT methods use
Probabilistic Policy Reuse. All demonstrations are 20 epes,
recorded by Subject B. Values in bold have statistically sigif-

icant differences in comparison to the No Prior method (not

1. Subject BSame as above: average duration 10.5 sec./episodeshown).

2. Subject B FastSimulator speed during training was increased
to approximately 5 times faster than real time: average-dura
tion 4.3 seconds/episode

3. Subject B Limited ActionsThe teacher was limited to exe-
cuting only two actiondHol d andPass, disallowing passes
to the further keeper: average duration 5.2 seconds/episod

6. FUTURE WORK AND CONCLUSION

This paper has introducethTt, a novel method to combine learn-
ing from demonstration with reinforcement learning by lagng
an existing transfer learning algorithm. Using empiricadlaation
in the Keepaway domain we showed that given training data fro
just a few minutes of human demonstratiefaT can increase the
(Subject B Fagtor by providing the learning agent with demonstra- learning rate of the task by several simulation hours. Wéuated
tions of only a subset of the state/action spa®ebfect B Limited three different variants which used different methods &slthéarn-
Actiong. The handicapping effects were successful, reducing the ing with the human’s demonstration. All three methods penfed
average duration of the teacher’'s demonstration episogl@sobe statistically significantly better than learning withowtrdonstra-
than half. tion. Probabilistic Policy Reuse consistently performetkast as

Figure 6 presents a comparison of the three learning conditi ~ well as the other methods, likely because it explicitly baks ex-

The two test conditions are designed to handicap the teacidae-
duce the quality of demonstrations, either by affectingtiea time



ploiting the human’s demonstration, exploring, and expigithe
learned policy. Additional evaluation using demonstnagidrom
different teachers, combined demonstrations from meltipach-
ers, and suboptimal demonstrations all showed #aat is robust

to variations in data quality and quantity. The best leaymarfor-
mance was achieved by combining the best demonstrations fro
two teachers.

One of the key strengths of this approach is its robustnetss. |
is able to take data of good or poor quality and use it well with
out negative effects. This is very important when learnirarf
humans because it can naturally handle the noisy, subdpdiata
that usually occurs with human demonstration. Its abilitydeal
with poor teachers opens up opportunities for non-expensus

In order to better understanthT and possible variants, the fol-
lowing questions should be explored in future work:

e Is it possible to identify the characteristics that make sete
of demonstrations lead to better learning performance than
another? Can we identify what influences jumpstart (e.g.,
Subject B’s high jumpstart in Figure 4).

e Rather than performing 1-shot transfer, coudr be ex-
tended so that the learning agent and teacher could itezate b
tween learning autonomously and providing additional demo
strations?

e In this work, the human teacher and the learning agent had
different representations of state, and in one case haet-diff
ent action sets. WIlHAT still be useful if the teacher and
agent are performing different tasks? How similar does the

(11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

demonstrated task need to be to the autonomous learning task22)

for HAT to be effective?
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