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1. INTRODUCTION
Despite their NEXP-complete policy generation complexity [1],

Distributed Partially Observable Markov Decision Problems
(DEC-POMDPs) have become a popular paradigm for multiagent
teamwork [2, 6, 8]. DEC-POMDPs are able to quantitatively ex-
press observational and action uncertainty, and yet optimally plan
communications and domain actions.

This paper focuses on teamwork under model uncertainty (i.e.,
potentially inaccurate transition and observation functions) in
DEC-POMDPs. In many domains, we only have an approximate
model of agent observation or transition functions. To address this
challenge we rely on execution-centric frameworks [7, 11, 12],
which simplify planning in DEC-POMDPs (e.g., by assuming cost-
free communication at plan-time), and shift coordination reasoning
to execution time. Specifically, during planning, these frameworks
have a standard single-agent POMDP planner [4] to plan a pol-
icy for the team of agents by assuming zero-cost communication.
Then, at execution-time, agents model other agentsąŕ beliefs and
actions, reason about when to communicate with teammates, rea-
son about what action to take if not communicating, etc. Unfortu-
nately, past work in execution-centric approaches [7, 11, 12] also
assumes a correct world model, and the presence of model uncer-
tainty exposes key weaknesses that result in erroneous plans and
additional inefficiency due to reasoning over incorrect world mod-
els at every decision epoch.

This paper provides two sets of contributions. The first is a
new execution-centric framework for DEC-POMDPs called MOD-
ERN (MOdel uncertainty in Dec-pomdp Execution-time ReasoN-
ing). MODERN is the first execution-centric framework for DEC-
POMDPs explicitly motivated by model uncertainty. It is based on
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three key ideas: (i) it maintains an exponentially smaller model of
other agents’ beliefs and actions than in previous work and then fur-
ther reduces the computation-time and space expense of this model
via bounded pruning; (ii) it reduces execution-time computation by
exploiting BDI theories of teamwork, thus limiting communication
to key trigger points; and (iii) it simplifies its decision-theoretic
reasoning about communication over the pruned model and uses a
systematic markup, encouraging extra communication and reduc-
ing uncertainty among team members at trigger points.

This paper’s second set of contributions are in opening up model
uncertainty as a new research direction for DEC-POMDPs and
emphasizing the similarity of this problem to the Belief-Desire-
Intention (BDI) model for teamwork [5, 9]. In particular, BDI
teamwork models also assume inaccurate mapping between real-
world problems and domain models. As a result, they emphasize
robustness via execution-time reasoning about coordination [9].
Given some of the successes of prior BDI research in teamwork,
we leverage insights from BDI in designing MODERN.

2. RELATED WORK
Related work includes DEC-POMDP planning that specifically

focuses on optimal communication [2, 6]. In addition to its lack of
investigation into model uncertainty, the policy generation problem
remains NEXP-complete, given general communication costs. Al-
though existing execution-centric approaches [7, 10, 11, 12] lead
to a provably exponential improvement in worst-case complex-
ity over optimal DEC-POMDP planners, they have also assumed
model correctness. Xuan and Lesser [12] studied the trade-offs be-
tween centralized and decentralized policies in terms of communi-
cation requirements, which differs from our own given its focus on
distributed MDPs rather than DEC-POMDPs, and its assumption
of model correctness. ACE-PJB-COMM (APC) [7] and MAOP-
COMM (MAOP) [11] rely on a single-agent POMDP planner at
plan-time, and agents execute the plan in a decentralized fashion,
communicating to avoid miscoordination at execution time. APC
and MAOP respectively use GrowTree and JointHistoryPool, the
set of possible belief nodes to reason about the entire team’s belief
space, which are different from our work. Williamson et al. [10]
also handle online policy computation that incorporates communi-
cation and reward shaping. Although their reward shaping is sim-
ilar to the markup function, MODERN differs from this research
since we use the markup function motivated by model uncertainty
to encourage communication in order to reduce uncertainty.

While BDI is unable to quantitatively reason about costs and un-
certainties, prior BDI works [5, 9] are related to our work in a sense
of execution-centric framework and emphasizing communication
at execution time, which will be explained more in Section 4.



3. PROBLEM STATEMENT
DEC-POMDPs have been used to tackle real-world multi-

agent collaborative planning problems under transition and
observation uncertainty, which are described by a tuple
〈I, S, {Ai}, {Ωi}, T,R,O,b0〉, where I = {1, ..., n} is a finite
set of agents, and S = {s1, ..., sk} is a finite set of joint states.
Ai is the finite set of actions of agent i, A =

∏
i∈I Ai is the set

of joint actions, where a = 〈a1, ..., an〉 is a particular joint ac-
tion (one individual action per agent). Ωi is the set of observations
of agent i, Ω =

∏
i∈I Ωi is the set of joint observations, where

o = 〈o1, ..., on〉 is a joint observation. T : S × A × S 7→ R is
the transition function, where T (s′|s,a) is the transition probabil-
ity from s to s′ if joint action a is executed. O : S×A×Ω 7→ R is
the observation function, where O(o|s′,a) is the probability of re-
ceiving the joint observation o if the end state is s′ after a is taken.
R(s,a, s′) is the reward that agents get by taking a from s and
reaching s′, and b0 is the initial joint belief state.

Here, we assume the presence of model uncertainty, which is
modeled with a Dirichlet distribution [3]. A separate Dirichlet dis-
tribution for the observation and transition function is used for each
joint state, action, and observation. An L-dimensional Dirichlet
distribution is a multinomial distribution parameterized by positive
hyper-parameters β = 〈β1, . . . , βL〉 that represents the degree of
model uncertainty. The probability density function is

f(x1, ..., xL;β) =

∏L
i=1 x

βi−1
i

B(β)
, B(β) =

∏L
i=1 Γ(βi)

Γ(
∑L
i=1 βi)

,

and Γ(z) =
∫∞
0
tz−1e−tdt is the standard gamma function. The

maximum likelihood point can be easily computed: x∗i = βi∑L
j=1 βj

,

for i = 1, ..., L. Let Ts,a be the vector of transition probabilities
from s to other states when a is taken and Os′,a be the vector of
observation probabilities when a is taken and s′ is reached. Then
Ts,a ∼ Dir(β) and Os′,a ∼ Dir(β′), where β and β′ are two
different hyper-parameters.

We assume that the planner is not provided the precise amount of
model uncertainty (i.e., the precise amount of uncertainty over tran-
sition or observation uncertainty). Our goal is effective teamwork,
i.e., achieving high reward in practice, at execution time.

4. SUMMARY OF DESIGN DECISIONS
MODERN’s design is explicitly driven by model uncertainty,

leading to three major key ideas. First, MODERN maintains an
exponentially smaller model of other agents’ beliefs and actions
than the entire set of joint beliefs as done in previous work via In-
dividual estimate of joint Beliefs (IB); then it further reduces the
computation-time and space expense of this model via Bounded
Pruning. IB is a concept used in MODERN to decide whether or
not communication would be beneficial and to choose a joint action
when not communicating. IB can be conceptualized as a subset of
team beliefs that depends on an agent’s local history, leading to an
exponential reduction in belief space compared to GrowTree men-
tioned earlier. However, the number of possible beliefs in IB still
grows rapidly, particularly when agents choose not to communicate
for long time periods. Hence, we propose a new pruning algorithm
that provides further savings. In particular, it keeps a fixed number
of most likely beliefs per time step in IB.

Second, MODERN reduces execution-time computation by: (i)
engaging in decision-theoretic reasoning about communication
only at Trigger Points — instead of every agent reasoning about
communication at every step, only agents encountering trigger
points perform such reasoning; and (ii) utilizing a pre-planned pol-

icy for actions that do not involve interactions, avoiding on-line
planning at every step. Note that trigger points include any situa-
tion involving ambiguity in mapping an agent’s observation to its
action in the joint policy. The key idea is that in sparse interaction
domains, agents will not have to reason about coordination at ev-
ery time step and only infrequently encounter trigger points, thus
significantly reducing the burden of execution-time reasoning.

Lastly, MODERN’s reasoning relies on two novelties — how
it computes the expected utility gain and how it uses the Markup
Function. In particular, MODERN’s reasoning about communi-
cation is governed by the following formula: f(κ, t) · (UC(i) −
UNC(i)) > σ, where κ is a markup rate, t is a time step, UC(i)
is the expected utility of agent i if agents were to communicate,
UNC(i) is the expected utility of agent i when it does not commu-
nicate, and σ is a given communication cost. UC(i) is calculated by
considering two-way synchronization, which emphasizes the ben-
efits from communication. UNC(i) is computed based on the indi-
vidual evaluation of heuristically estimated actions of other agents.
The markup function, f(κ, t), helps agents to reduce uncertainty
among team members by marking up the expected utility gain from
communication rather than perform precise local computation over
erroneous models.
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