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Abstract
This chapter discusses the difficult problem of eval-
uating deployed security-focused decision support
systems. In a security setting, one can never expect
the adversary to cooperate in evaluation, which dis-
allows many kinds of controlled studies. Further-
more, data is typically sparse — there are thank-
fully relatively few terrorist attacks on major in-
frastructure in the U.S. Still, evaluating security
measures is critical in ensuring efficient allocation
of security resources. We discuss a variety of ap-
proaches for evaluating such systems, using the de-
ployed ARMOR and IRIS systems as exemplars.
Taken as a whole, the evidence supports the effec-
tiveness of these systems, but there are clearly op-
portunities to improve our methods for assessing
the value proposition of all types of security sys-
tems.

1 Introduction
As discussed in other chapters of this book, there are an in-
creasing number of technically sophisticated tools to support
decision-making for security resource allocation in many dif-
ferent domains. In this chapter we discuss the question of
evaluating these deployed security systems, using examples
from our own research to illustrate some of the key chal-
lenges in doing evaluation for security systems. Two of the
primary difficulties are that (1) we cannot rely on adversaries
to cooperate in evaluation, which makes it difficult to validate
models, and (2) there is (thankfully) very little data available
about real-world terrorist attacks.
Despite the difficulties of comprehensive evaluation in se-

curity domains, it is only through asking the question “how
well does a system work?” that policy makers can decide
how to allocate finite resources to to different security mea-
sures. In this chapter we discuss the goals of security sys-
tems, the elements that comprise these systems, and different
approaches for evaluation. Every approach has drawbacks,
so in lieu of an ideal test we advocate a comprehensive style
of evaluation that uses diverse metrics and data to perform
cost-benefit analysis for the complete system. We also em-
phasize that the focus of the evaluation is not ”is system X
the perfect security system?” which is an impossible standard.

Rather, the relevant question is which of the available alter-
natives should be used; providing strong evidence that one
alternative is superior to other approaches is often feasible,
even when providing exact quantitative measures of value is
not. As a community, we must strive to perform the best pos-
sible evaluations using the tools and data available, but we
cannot let the absence of an ideal evaluation prevent us from
deploying effective technologies. However, we must also rec-
ognize weaknesses in the current evaluations, and view these
as opportunities to develop new techniques and gather new
data to improve our understanding of the value of different
approaches for security.
Section 2 will provide a brief background on the security

applications discussed in this chapter in the context of evalu-
ation — more detailed descriptions of these systems are pro-
vided in other chapters of the book. Section 3 describes the
three steps involved in formulating a decision support system
for security: abstracting the model, solving the model, and
then accurately deploying the solution. Section 4 describes
the different types of evaluations that have been conducted
on two systems in our case study. Section 5 will discuss the
goals of a deployed security system and the inherent difficul-
ties in measuring the performance of such a system. For in-
stance, unlike many types of technical applications, a security
system does not have binary behavior; no security system is
able to provide 100% protection and it does not make sense to
say that it “does” or “does not” work. Instead, systems must
be evaluated on basis of risk reduction, often through indirect
measures such as increasing adversary cost and uncertainty,
or reducing the effectiveness of an adversaries’ attack.
Section 6 discusses the pros and cons of different evalua-

tion techniques, tying together the discussion in Sections 3–
5. Related work is discussed in Section 7. Finally, Section 8
ends the chapter with a discussion of future work, both in
terms of enhancing the evaluation of our specific applications,
as well as the challenge of security evaluation in general.

2 Background: ARMOR and IRIS
The importance of security games as a research topic is driven
by the recent development and deployment of several applica-
tions that assist major security organizations with making re-
source allocation decisions using algorithmic analysis based
on game theory. These include the ARMOR system deployed
at the LAX International Airport (LAX) [Pita et al., 2008]



to assist the Los Angeles World Airport policy (LAWA) and
the IRIS system deployed by the Federal Air Marshals Ser-
vice (FAMS) [Tsai et al., 2009]. While these systems share
a similar approach in that they apply game-theoretic mod-
eling techniques and emphasize randomized, unpredictable
scheduling of security resources and activities, each system
poses unique challenges in system design, modeling and so-
lution techniques, and evaluation. ARMOR was the first sys-
tem developed using this methodology, and has the longest
deployment history — our discussion of evaluation in this
chapter will focus largely on ARMOR with additional dis-
cussion of more recent systems where appropriate.
The ARMOR system has been deployed since 2007 by the

Los Angeles World Airports (LAWA) police at LAX, the fifth
busiest airport in the United States (and largest destination),
serving 70–80 million passengers per year. LAX is consid-
ered a primary terrorist target on the West Coast and mul-
tiple individuals have been arrested for plotting or attempt-
ing to attack LAX [Stevens et al., 2009]. Police have de-
signed multiple “rings” of protection for LAX, including ve-
hicular checkpoints, police patrols of roads, and inside ter-
minals (some with bomb-sniffing canine units, also known as
K9 units), passenger screening, and baggage screening. Due
to the high demands on LAX security, due in part to the large
physical area and high density of passenger and cargo traffic,
police do not have enough resources (e.g., officers and K9
units) to provide constant security for every area and event
at the airport. This limitation leads to the question of how
best to allocate the limited resources to improve security at
the airport.
ARMOR addresses two specific security problems by

increasing the unpredictability of security schedules and
weighting defensive strategy based on targets’ importance.
First, there are many roads that are entry points to LAX.
When and where should vehicle checkpoints be set up on
these roads? Pertinent information includes typical traf-
fic patterns on inbound roads, the areas each road accesses
within LAX, and areas of LAX which may have more or less
importance as terrorist targets. Second, how and when should
the K9 units patrol the eight terminals at LAX? Here it is im-
portant to consider the time-dependent passenger volumes per
terminal, as well as the attractiveness of different terminals.
In both cases, a predictable pattern can be exploited by an
observant attacker.
The approach taken by ARMOR uses game-theoretic mod-

els to derive scheduling strategies for the police resources.
This is modeled as a Bayesian Stackelberg game [Conitzer
and Sandholm, 2006], in which the police (e.g., defenders)
must commit to a (randomized) security policy. Each pos-
sible attacker type observes the security policy and then se-
lects and optimal attack strategy based on their preferences
(i.e., utilities or utility payoff matrices). The solution to this
game is called a Strong Stackelberg Equilibrium, and yields
an optimal randomized strategy for the policy. ARMOR uses
an algorithm called DOBSS [Paruchuri et al., 2008] to solve
these game instances and recommend schedules for check-
points and canine patrols to the LAWA police. The schedules
account for three key factors: (1) attackers are able to observe
the security policy using surveillance, (2) attackers change

their behavior in response to the security policy, and (3) the
risk/consequence of an attack varies depending on the target.
The IRIS system was designed to address scheduling prob-

lems faced by the Federal Air Marshals Service (FAMS).
FAMS is charged with law enforcement and anti-terrorism
on commercial airline flights, which is accomplished primar-
ily by placing armed marshals on individual flights. There
are tens of thousands of flights operated by US airlines each
day, and the FAMS lack the resources to place marshals on
every flight. This leads to a similar resource allocation chal-
lenge to that addressed by ARMOR: how best to place the
available marshals on the possible flights to maximize secu-
rity. In addition to the overall constraint on the number of air
marshals available, this problem is complicated by the pres-
ence of complex physical and temporal constraints on which
flight tours the air marshals can feasibly fly, as well as other
idiosyncratic constraints. Flights are also diverse in the po-
tential risk and consequence of a terrorist attack against the
flight, based on many factors including the source and desti-
nation airports, aircraft size, and flight path. The schedules
produced by IRIS must optimize over all of these constraints
and variations in flight valuation, resulting in a significantly
more complex problem space than for the ARMOR sched-
uler [Kiekintveld et al., 2009]

3 Formulating the Problem
Having introduced ARMOR and IRIS, we now describe the
basic elements of these decision-support tools, and the pro-
cess used to design them. In each case, the complete sys-
tem includes a domain model based on expert elicitation, a
game-theoretic solution algorithm used to analyze the model,
and a software application designed around the algorithm that
allows data inputs, visualization of the solution, and so on.
To fully evaluate the system we must evaluate each of these
components, as well as the way the system is actually used
in practice (e.g., how the recommended solutions are imple-
mented by the security forces).
We focus first on the process of formulating a model of

the domain, since this is the basis for all subsequent analysis.
This model must have sufficient detail that it can provide use-
ful decision support, it must accurately represent the domain,
and it must not be so complex that it is intractable for analy-
sis. The problem of computing a solution is discussed in the
next section and is the most familiar to computer scientists.
While other chapters have discussed the computational diffi-
culties in solving complex security problems, our discussion
considers more broadly the assumptions behind the solution
methods. A system may be theoretically sound, but badly
flawed if it is implemented poorly. The third and final step
we discuss is implementing (and verifying) the system in a
real-world setting.

3.1 Abstracting the Real World Problem
The first step of developing a defensive measure is to deter-
mine what particular attack vector should be addressed. For
example, the ARMOR system was designed to counteract a
perceived defensive shortcoming at LAX, as identified in a
Rand study [Stevens et al., 2009]. In order to construct a



model that can be solved, the real problem must be formu-
lated as a quantitative problem. In the case of ARMOR, this
involved focusing on a fixed number of checkpoint positions
that could be either covered or not covered. How many offi-
cers were at a checkpoint, or the skills of the particular offi-
cers is abstracted away.
In order to decide how important the different checkpoints

were, they were assigned values based on their proximity and
road layout relative to the terminals. The terminals, in turn,
were evaluated by experts who estimated the utilities to the
defenders if an attacker successfully attacked a terminal, or
was caught attempting to attack a particular terminal. The
experts also estimated the utilities to the attackers if they suc-
cessfully attacked a terminal, or were caught attacking a par-
ticular terminal.
Formulating a real world problem as a solvable quantita-

tive model requires abstraction, which by definition causes a
loss of information. However, the goal is to minimize the loss
of precision so that the optimal solution to the model will be
near-optimal on the physical problem. The formulation cho-
sen will also constrain the policy space. In ARMOR, check-
points are constrained to last at least a certain amount of time,
due to the time of setting up a checkpoint. Thus ARMOR
could not schedule checkpoint #1 to be set up at 9:00 am and
taken down at 9:05 am. The selection of this constrained so-
lution space may also impact the optimality of the solution in
the real world.
In addition to modeling the utilities for attacks, one often

wishes to attempt to model deterrence. One method is to test
an attacker’s optimal option with and without defense. If the
attacker changes actions to a lower-valued action, s/he can be
considered to be deterred. Another option is to consider that
the attacker may choose to not attack at all, or attack a target
that is outside the scope of the security system in question. In
a game-theoretic setting, one option is to add a “stay at home”
action to the attacker’s action space. A second option would
be to add an “attack another target” option. In the case of
ARMOR, this could include the action ”attack another target
in Los Angeles,” or ”attack another airport in the U.S.” Notice
that from the point of LAWA, these three possible actions are
equivalent as they are all instances of successful deterrence
with respect to LAX. However, for the city of Los Angeles or
for the U.S. federal government, the “stay at home” action is
clearly superior.

3.2 Solution Concepts and Computational
Considerations

The previous section focused on the challenge of generating
an abstract model of real-world problem that accurately repre-
sents the underlying situation. Once this model is generated,
the next stage is to analyze this model to determine the best
course of action (strategy) for the security forces. Given the
complexity of the models we need fast computational meth-
ods to perform this analysis and generate recommendations.

Potential Solution Concepts
Given a precise mathematical model of a strategic interaction,
the game theory literature provides many powerful tools for
analyzing the model to make predictions and strategy recom-

mendations. Unfortunately, there are many different solution
concepts that may be applied in different situations, and it is
not obvious which is the “best” solution method to use. The
starting point is typically a form of Nash equilibrium, which
predicts how player should act given that they are perfectly
rational, and all players have exact common knowledge of
the game model (including the possible actions, sequence of
moves, payoffs for different outcomes, etc.). In real-world
situations, these assumptions are often too strong, since play-
ers may be uncertain about different aspects of the game, or
may not make mathematically optimal choices due to lim-
its on their reasoning capabilities or other factors. Different
solution concepts can be applied based on different assump-
tions about knowledge and rationality, but it is an important
open question how well the solution concept and underlying
assumptions correspond to the real world situation, and this
must be evaluated empirically.
There are alternatives to game theoretic equilibrium solu-

tions methods that should also be evaluated as candidates.
The simplest is the uniform random strategy: given a set of
possible security actions, take each of them with equal prob-
ability. This has the appeal of simplicity, and being com-
pletely unpredictable (by definition). It also make absolutely
no assumptions about the adversary, so there is no chance that
these assumptions may be incorrect or exploitable. However,
it does not take into account the value of different actions,
and may waste limited resources by performing less valu-
able actions too often. A weighted randomization can po-
tentially account for this by selecting more valuable actions
more frequently. The key question here is how to determine
the weights for the randomization; in effect, a game-theoretic
solution is one answer to how to find these weights in a prin-
cipled way, since a game-theoretic solution is an instance of
weighted randomization. There may be simpler approaches
to finding a weighted randomization in some cases that could
also be candidate strategies. Our evaluations of ARMOR and
similar systems, discussed in subsequent sections, have con-
sistently shown that game-theoretic solutions are superior to
both uniform randomization and simple weighted randomiza-
tion strategies.
The final point to mention regarding solution concepts is

whether or not the attackers are assumed to be fully ratio-
nal. For instance, in classical game theory settings, human
behavior can be fully predicted if the utilities of the actors
are known. In practice, however, humans are often not true
“homo-economous” actors, but may make suboptimal deci-
sions based on non-infinite reasoning abilities.
ARMOR’s game-theoretic model uses strong assumptions

about the attacker’s rationality to predict how they will be-
have and optimize accordingly. Humans often do not al-
ways conform to the predictions of strict equilibrium models
(though some other models offer better predictions of behav-
ior [Erev et al., 2002]). In addition, ARMOR assumes that an
attacker can perfectly observe the security policy, which may
not be possible in reality.

Algorithmic Goals
Computer science often focuses on developing highly effi-
cient algorithms with low worst-case complexity (or prov-



ing that such efficient algorithm are not possible for a par-
ticular problem). For instance, a computer scientist may ask
“can a solution be found in time polynomial in the number
of joint actions” or “can a solution be found with an amount
of memory polynomial in the number of joint actions?” Dif-
ferent methods for solving games can be compared against
each other by measuring their running time, their memory
usage, their scalability, etc. However, when discussing real
world problems, a more pertinent question is “can a solution
be found given our constraints?”
In the ARMOR system, schedules for checkpoints are gen-

erated once a week on a standard desktop computer. This
means that, given the ARMOR problem definition, the solu-
tion method must be able to finish within one week with a
relatively pedestrian processor and less than 4GB of memory
available. Thus, speeding up a solution method from nine
days to three days is much more important than working to
speed up the system from a run time of three days down to
a single day.1 Thus the standard metrics for evaluating algo-
rithms may be less important than the practical requirements
of a given model. Of particular note is that the worst-case
complexity of the algorithms is largely irrelevant; the practi-
cal performance on typical instance is far more important.
Optimality proofs (or approximation guarantees) are also

highly valuable in real-world applications. Without such
guarantees it is difficult to build confidence in the system, and
there is a legitimate concern that if an adverse event occurs it
could be attributed to a poor-quality solution. While such
proofs are often necessary, they are not sufficient to prove
that a security system works. First, those in non-technical
fields (who are necessarily part of the system’s funding, im-
plementation, and staffing), may not value the results of a
proof as highly as a mathematician. Second, just because the
model has been optimally solved does not mean that the cor-
rect problem was modeled (Section 3.1) or that the solution
was correctly implemented (Section 3.3).

3.3 Implementing the Solution
The final element to consider is how the tool is actually used
in practice. Any decision support system requires inputs from
human users, and and the recommendations it makes must
be implemented by the users as well. Problems at the inter-
face between humans and the computer system may cause
the overall system to be ineffective, even if the computer sys-
tem is theoretically perfect! Based on our personal experi-
ence with implemented systems, we believe that a tight loop
between the modelers, system developers, and end users is
critical to a successful system. For instance, if those building
the model do not understand how the solution will be im-
plemented, they may not account for key factors in the real
world problem. Likewise, if assumptions made when solving
the model are violated, any optimality guarantees are invali-
dated.
For example, the ARMOR system schedules checkpoints

at certain times. During our discussions with LAWA, we
heard anecdotal evidence that before ARMOR, some check-

1Of course, faster run times make the system easier to work with,
particularly in pre-deployment testing phases.

points were typically not manned during the middle of the
day because they were in direct sunlight and uncomfortably
hot. This is precisely the kind of predictable behavior that
an adversary could exploit, and which the ARMOR system is
designed to avoid. However, ARMOR produced a schedule
calling for one of these checkpoints to be manned during the
middle of the day and the schedule was violated, the assump-
tions made by ARMOR would be invalidated. (To the best of
our knowledge, this has not happened. In fact, we have heard
that officers stationed to such checkpoints previously com-
plained to the scheduling officer, but now complaints have
been reduced because it was “the computer’s decision,” rather
than the decision of a senior officer.)
While the above guideline is true of all deployed systems,

security presents two unique challenges. First, those who per-
form the modeling and solving steps may not be able to make
site visits and fully understand the proposed deployment. For
instance, a game theory expert who is working on developing
safe convoy routes for patrols in Iraq is unlikely to want to
travel to Baghdad given the security risks. Further, in some
cases, the full details of the defensive operation may not be
available to the modelers or model solvers for security rea-
sons, and they must work under assumptions that those with
appropriate security clearances independently verify.
Second, data related to the deployed configuration and per-

formance of the system may be classified or sensitive, and
not available to researches. For instance, when working with
the FAMS, we have developed a solution method that takes
the utility matrices as input and outputs a schedule. However,
as academic computer scientists, we do not have clearance to
see the true utility matrices used by the FAMS, nor are we
able to view the schedules produced by the production sys-
tem. This enforced disconnect means that it is impossible for
all members of the designing team to understand the full op-
eration, and thus implementation and verification details fall
most heavily on those security clearance to see the full pic-
ture.
Other questions related to implementation can best be an-

swered through interviews and surveys of users. For instance:
• Do the users understand the day to day use of the sys-
tem?

• Do users consistently enter correct inputs?
• Do users follow the recommendations of the system?
• What happens if there are unanticipated events (e.g.,
flight cancellations/delays, emergency situations, people
call in sick, etc.)? Does the decision support system ef-
fectively handle such situations?

4 Evaluation Case Studies
Having introduced two examples of decision support systems
for security and discussed the components of these systems,
we now explore some of the existing evaluations we have per-
formed on these systems. Latter sections of this chapter will
refer back to these examples when discussing the overall ef-
fectiveness of the systems and delving into the strengths and
weaknesses of different types of evaluations and metrics.



Figure 1: This figure compares ARMOR strategies (which
use the DOBBS algorithm) and policies representative of pre-
vious methods where adversaries have the option to attack
once every 25 days.

4.1 Comparison with Previous Best Practices
The most straightforward type of evaluation is to assume that
the model is correct, and evaluate different potential strate-
gies using the model. In particular, we can test the solu-
tions used in ARMOR and IRIS against simpler randomiza-
tion approaches, such as uniform random or simple heuris-
tic weighted randomization. We can also test against strate-
gies designed to replicate the best practices used by secu-
rity forces. For example, by comparing the schedules gen-
erated by ARMOR with the previous scheduling practices at
LAX [Cruz, 2009], we can answer the question “does AR-
MOR improve security” with more confidence.
There are some clear differences in ARMOR schedules and

the previous scheduling practices at LAX. First, in the pre-
vious scheduling system, all checkpoints remained in place
for an entire day, whereas checkpoints are now are moved
throughout the day according to ARMOR’s schedule (adding
to the adversary’s uncertainty). Second, before ARMOR only
a single checkpoint was manned on any given day; multiple
checkpoints are now used (due in part to an increased secu-
rity budget). Third, a fixed sequence of checkpoints was de-
fined (i.e., checkpoints 2, 3, 1, etc.), to create a static map-
ping from date to checkpoint. This sequence was not opti-
mized according to the importance of different targets and
the sequence would repeat (allowing the attacker to anticipate
which checkpoint would be manned on any given day).
The LAX officers informed us that they previously gen-

erated checkpoint schedules based on a cyclic strategy with
random perturbations. A study of past schedules showed that
patterns remained evident despite these random perturbations
— no checkpoint was repeated for two consecutive days.
Therefore, we also compared the ARMOR strategy against
two strategies: (1) a “cyclic” strategy where the checkpoints
were scheduled in a cyclic order on all inbound roads and,
(2) a “restricted uniform.” strategy which was a uniformly
random strategy with the additional restriction that no check-
point was repeated on two consecutive days.
Our first experiments attempt to replicate as closely as pos-

sible the scheduling policies in use at LAX prior to ARMOR.
Police officers place one checkpoint on any of the five in-

Figure 2: This figure shows that ARMOR (powered by
the DOBBS algorithm) can outperform the baseline solution
method, even using many fewer K9 units, which may achieve
substantial cost savings. The x-axis shows the results from
seven different days, and the y-axis shows the expected util-
ity for the different scheduling methods.

bound roads, and the rewards of the terminals were randomly
chosen between 1 and 10. We vary the duration for which
the adversary can make observations from 0 to 100 days, in
increments of 25 days. We averaged our results over 100 tri-
als. In these simulations, we assume that the adversary can
use simple pattern recognition techniques to recognize pat-
terns in the checkpoint schedules. The adversary maintains
a history of observed checkpoints and generates confidence
intervals over sequences of observations.
Figure 1 shows our experimental results. The x-axis rep-

resents the number of observations available to the adversary,
and the y-axis represents the average defender reward. The
ARMOR strategy has a higher average defender reward com-
pared to the other two strategies. The reason is that the adver-
sary can better predict the defender action in case of ‘cyclic’
and ‘restricted uniform’ strategies as compared to the AR-
MOR strategy. Therefore, simple pattern recognition tech-
niques are sufficient for the adversary to exploit the patterns
in the cyclic and restricted uniform strategies. These patterns
can be avoided by the use of uniformly random strategies, but
a uniform random strategy does not take into account the dif-
ferent preferences over targets of the defender. ARMOR pro-
vides weights for the different targets such that the average
defender reward is the highest when compared against both
cyclic and restricted uniform strategies. Additionally, AR-
MOR strategies are not just weighted random since they also
account for the fact that the adversary observes the defender’s
strategy and then makes an informed rational choice.
Comparing schedules generated by ARMOR against a

benchmark uniform random schedule shows that ARMOR’s
schedule is muchmore efficient. For example, Figure 2 shows
the expected reward for the police using ARMOR’s schedule
(calculated using DOBSS) compared with a uniform random
benchmark strategy in the canines domain. ARMOR is able



to make such effective use of resources that using three ca-
nines scheduled with DOBSS yields higher utility than using
six canines with uniform random scheduling!
Scheduling for the FAMS domain has undergone multi-

ple mathematical tests using real-world schedules and with-
stood expert scrutiny, but the exact results of these tests are
not released. Figure 3(a) shows the results of a mathematical
evaluation done with hypothetical payoffs, to better measure
the success of the system. Results show the expected payoff
when scheduling a single air marshal in the FAMS domain
over 20, 100, and 200 schedules. In these experiments, this
equated to 10, 50, and 100 flights, with half as “departures”
and half as “return” flights for the air marshals. The x-axis in
these graphs show the expected payoff for IRIS, 6 different
methods of weighting the schedules, uniform random, and no
coverage (i.e., the single air marshal protects no planes).
In the full FAMS problem, there are too many schedules

to enumerate and it is difficult to decide how to weight the
flights, even if enumerated. This weighting is a simple way
of determining which schedules to cover, and may improve
the performance of the defender relative to uniform random.
In these simple tests, the problem space was small enough
that all schedules could be easily enumerated.
Utilities are generated as random numbers drawn uni-

formly from the ranges of numbers as follows:
• Defender payoff for covering a flight that is attacked:
[+5000, +10000]

• Defender payoff for not covering a flight that is attacked:
[-10000, -5000]

• Attacker payoff for attacking a flight that is not covered:
[+5000, +10000]

• Attacker payoff for attacking a flight that is covered: [-
10000, -5000]

The six naive weighted random strategies are as follows. In
all cases a mixed probability distribution is obtained by nor-
malizing these weights.
Max. of attacker reward The weight of a schedule is the

maximum of the attacker rewards for a successful attack
over all flights covered in the schedule.

Min. of attacker penalty The weight of a schedule is the
minimum of the attacker penalty for a failed attack over
all flights covered in the schedule.

Min. of defender penalty The weight of a schedule is the
minimum of defender penalties for a successful attack
over all flights covered in the schedule.

Max. of defender reward The weight of a schedule is the
maximum of defender rewards for capturing an attacker
over for all flights covered in the schedule.

Sum of defender penalties The weight of a schedule is the
sum of the defender penalties for a successful attack over
all flights covered in the schedule.

Sum of defender rewards The weight of a schedule is sum
of defender rewards for capture over all flights covered
in the schedule.

4.2 Mathematical Sensitivity Analysis
The analyses in the previous section compare the effective-
ness of different scheduling policies, but do so based on all
of the assumptions in the model (e.g., that the actions and
payoffs are correctly specified for both players, and that the
attacker is perfectly rational). To build more confidence in
the approach, we must also validate the model itself. A first
step in this is to better understand the impact of the different
assumptions using sensitivity analysis.
In this type of evaluation, important parameters of the

model are varied to test how the output of the model changes
to different inputs. One important input to the ARMOR
model is the distribution of different types of attackers. For
example, some attackers may be highly organized and moti-
vated, while others are amateurish and more likely to surren-
der. Different types of attackers can be modeled as having
different payoff matrices. Changing the percentages of each
attacker can help show the system’s sensitivity to assumptions
regarding the composition of likely attackers, and (indirectly)
the system’s dependence on precise utility elicitation. In Fig-
ure 4(a)–4(c), there are two adversary types with different re-
ward matrices. Figure 4(a) demonstrates that DOBSS has a
higher expected utility than that of a uniform random strategy
on a single checkpoint, regardless of the percentage of “type
one” and “type two” adversaries. Figures 4(b) and (c) shows
that DOBSS again dominates uniform random for two and
three checkpoints, respectively.
Further sensitivity analysis can be applied to other param-

eters of the model. The payoffs that describe the preferences
of the two players for different outcomes are a very important
set of parameters. These parameters are estimates of the true
utilities determined through elicitation sessions with experts.
Unfortunately, it is known that game-theoretic models can
be quite sensitive to payoff noise [Kiekintveld and Wellman,
2008], and arbitrary changes in payoffs can lead to arbitrary
changes in the optimal schedule. There is some evidence that
ARMOR is robust to certain types of variations. In one ex-
periment, we multiplied all of the defender’s negative payoffs
for successful attacks by a factor of four, essentially increas-
ing the impact of a successful attack. We found that in the one
and three checkpoint case, the strategies were unchanged. In
the two checkpoint case the actions were slightly different,
but the overall strategy and utility were unchanged. Unfortu-
nately, there is also evidence that this does not generalize to
all payoffs in security games. Kiekintveld et al. [Kiekintveld
et al., 2011] show that in general, adding small amounts of
noise to the attacker’s payoffs in security games can cause
large deviations in the defender’s payoffs (though the changes
in the optimal strategy are less drastic).

4.3 Human Trials
Another set of assumptions in the game models use for AR-
MOR and IRIS is that the attackers are perfectly rational, and
will always choose the mathematically optimal attack strat-
egy. To test the sensitivity of the solutions to variations in hu-
man behavior, we have run a series of controlled laboratory
experiments with human subjects [Pita et al., 2009]. In these
experiments, subjects play a “pirates and treasure” game de-
signed to simulate an adversary planning an attack on an LAX



Figure 3: These graphs show the results of scheduling with the IRIS algorithm called ASPEN vs. other possible scheduling
methods. In the case of (a) 20, (b) 100, and (c) 200 schedules, the IRIS scheduling method is superior. Results are averaged
over 30 independent trials each.

(a) 1 checkpoint (b) 2 checkpoints (c) 3 checkpoints

Figure 4: This figure compares ARMOR’s schedules (generated by the algorithm named DOBBS) with a uniform random
baseline schedule. Figures a–c show the utility of schedules for 1–3 vehicle checkpoints varying the relative probability of two
different attacker types. The x-axes show the probability of the two attacker types (where 0 corresponds to 0% attack type 2,
and 100% attack type 1) and y-axes show the expected utility of ARMOR and a uniform random defense strategy.

terminal, shown in Figure 5. Subjects are given information
about the payoffs for different actions and the pirates’ strategy
for defending their gold (analogous to the security policy for
defending airport terminals). Subjects receive cash payments
at the conclusion of the experiment, based on their perfor-
mance in the game.
These experiments have provided additional support for

quality of ARMOR’s schedules against human opponents.
First, they suggest that the assumptions imposed by the game-
theoretic model are reasonable. Second, we have tested many
conditions, varying both the payoff structure and the observa-
tion ability, ranging from no observation of the defense strat-
egy to perfect observation. The results show that ARMOR’s
schedules achieve higher payoffs than the uniform random
benchmark across all of the experimental conditions tested,
often by a large margin.2 These results demonstrate that AR-
MOR schedules outperform competing methods when play-

2New defense strategies developed in this work show even better
performance against some (suboptimal) human adversaries by ex-
plicitly exploiting the attacker’s weaknesses.

ing against human adversaries.

4.4 Arrest Data
Ideally, we would be able to use data from the operation of
a deployed system to provide further validation of the mod-
eling assumptions. For example, in the case of ARMOR we
might be interested in the number of attacks prevented by the
system. Unfortunately, such data is very limited in the case of
ARMOR; there have been 0 major attacks on the airport, but
it is impossible to say howmany attacks would have occurred
without ARMOR.
We were able to obtain some data on the arrest record at

ARMOR checkpoints. Though the use of such data has mul-
tiple caveats (see Section 5 for more discussion), it can still
provide some useful information. We received summarized
and actual reports from the LAX police regarding the number
of violations that they detected at checkpoints in 2007, 2008
and January 2009. For example, we received the following
report for January 2009:
1. January 3, 2009: Loaded 9mm pistol discovered



Figure 5: Screenshot of the “pirates and treasure” game

2. January 3, 2009: Loaded 9mm handgun discovered (no
arrest)

3. January 9, 2009: 16 handguns, 4 rifles, 1 pistol, and 1
assault rifle discovered— some fully loaded

4. January 10, 2009: 2 unloaded shotguns discovered (no
arrest)

5. January 12, 2009: Loaded 22cal rifle discovered
6. January 17, 2009: Loaded 9mm pistol discovered
7. January 22, 2009: Unloaded 9mm pistol discovered (no
arrest)

Figure 6 tabulates the number of violations for the year prior
to the deployment of ARMOR and during 2008 when AR-
MOR was in use. The x-axis breaks down the violations into
different types and the y-axis represents the number of vio-
lations. The number of violations is substantially higher at
LAX after ARMOR was deployed than in the preceding pe-
riod. For example, only 4 drug related offenses were detected
before the deployment of ARMOR while 30 such offenses
were detected after the deployment. While we must be care-
ful about drawing too many conclusion from this data due
to the large number of uncontrolled variables (for example,
the number of checkpoints was not consistent during this pe-
riod), the ARMOR checkpoints do appear to be effective on
this measure.

4.5 Qualitative Expert Evaluations
Given the sparseness and limitations of the available data
from the field, evaluations of the system by security experts
become a very important source of information. Though they
are typically qualitative in nature, they are one of the few
ways to gather evidence on the quality of the modeling as-
sumptions and the effectiveness of the holistic system, as it
is actually deployed and used on a day-to-day basis. Secu-
rity procedures at LAX are subject to numerous internal and
external security reviews (not all of which are public). The
available qualitative reviews indicate ARMOR is both effec-
tive and highly visible.

Figure 6: This figure shows how the number of arrests in three
categories changed before and after the ARMOR deployment
at LAX.

Director James Butts of the LAWA police reported that
ARMOR “makes travelers safer” and even gives them “a
greater feeling of police presence” [Murr, 2007]. Erroll
Southers, Assistant Chief of LAWA police, told a Congres-
sional hearing that “LAX is safer today than it was eighteen
months ago,” due in part to ARMOR. A recent external study
by Israeli transportation security experts concluded that AR-
MOR was a key component of the LAX defensive setup. The
ARMOR team has also been awarded Letters of Commenda-
tion from the city of Los Angeles in recognition of the ef-
forts towards securing the Los Angeles International Airport.
Thus, the domain experts have been highly supportive of AR-
MOR, and it would be very hard to deploy the system with-
out their support. They are also likely to identify potential
problems with the system quickly. While such studies are not
very useful for quantifying ARMOR’s benefit, they all sug-
gest that the domain experts believe that ARMOR generates
better schedules as compared to their previous approaches.
ARMOR was designed as a mixed initiative system that

allows police to override the recommended policies. In
practice, users have not chosen to modify the recommended
schedules, suggesting that users are confident in the outputs.
While such studies are not very useful for directly quantify-
ing ARMOR’s benefit, it would be very hard to deploy the
system without the support of such experts. Furthermore, if
there were an “obvious” problem with the system, such ex-
perts would likely identify it quickly.
Expert opinions have emphasized that an important bene-

fit of the system is its transparency and visibility which con-
tribute to deterrence. ARMOR assumes that adversaries are
intelligent and have the ability to observe the security pol-
icy: knowing about the system does not reduce its effective-
ness. The deployment of ARMOR has been quite visible:
ARMOR has been covered on local TV stations (including
FOX and NBC), in newspapers (including the LA Times and
the International Herald Tribune), and in a national magazine



(Newsweek).
The IRIS system has been tested both qualitatively and

quantitatively, but the results of these tests are restricted.
However, James B. Curren, special assistant in the office of
Flight Operations at the Federal Air Marshals Service, has
affirmed the effectiveness of IRIS:

We have tested IRIS and found it to be applicable to
our needs in creating uncertainty as to FAM pres-
ence on selected city pairs of flights. After exten-
sive testing we have implemented IRIS on a trial
run of flight selections and have continued to ex-
pand the number of flights scheduled using IRIS.
Our exact use of IRIS is sensitive information and
we can only state that we are satisfied with IRIS
and confident in using this scheduling approach.

Furthermore, internal governmental studies have both recom-
mended that random scheduling be implemented, which is
precisely what IRIS accomplishes [GAO, 2009]3:

Because the number of air marshals is less than
the number of daily flights, FAMS’s operational ap-
proach is to assign air marshals to selected flights it
deems high risk–such as the nonstop, long-distance
flights targeted on September 11, 2001. In assign-
ing air marshals, FAMS seeks to maximize cover-
age of flights in 10 targeted high-risk categories,
which are based on consideration of threats, vul-
nerabilities, and consequences. In July 2006, the
Homeland Security Institute, a federally funded re-
search and development center, independently as-
sessed FAMS’s operational approach and found it
to be reasonable. However, the institute noted that
certain types of flights were covered less often than
others. The institute recommended that FAMS
increase randomness or unpredictability in select-
ing flights and otherwise diversify the coverage of
flights within the various risk categories. As of Oc-
tober 2008, FAMS had taken actions (or had on-
going efforts) to implement the Homeland Security
Institute’s recommendations. GAO found the insti-
tute’s evaluation methodology to be reasonable.

5 Goals for Security Decision Support
Systems

Any security system can be evaluated using a wide variety of
metrics, including both costs and benefits. For the purposes
of analysis, we divide benefits into two categories: direct and
indirect. Direct benefits speak to benefits which may be mea-
sured, such as
• reduced security costs,
• attacks prevented or mitigated during execution,
• increased numbers of attackers caught, or
• reduced damage from successful attacks.
In contrast, indirect benefits include
3This report is a public version of the restricted report GAO-09-

53SU.

• attacks prevented through deterrence,
• increased attacker planning time,
• increased requirements for a successful attack,
• improved public perceptions of security, or
• improved (qualitative) assessments of security by ex-
perts.

Regardless of how such benefits are partitioned, some are
easier to directly measure than others. However, all of them
speak to the idea of defender utility: given a finite amount of
resources, how can the defender maximize security per dol-
lar spent? As discussed previously, no security system can be
100% effective — there is always a chance that given enough
resources and planning, and adversary may compromise a
system. A system may, however, require higher amounts of
equipment, manpower, and/or planning in order to compro-
mise it, relative to having the system disabled. Thus the ques-
tion becomes not “is the system effective,” but “is system A
more effective than system B,” or “howmuch does the system
improve defensive capabilities per dollar spent?” We next
elaborate upon two of these themes: utility and deterrence.

5.1 Security per Dollar
Evaluating security systems requires a full cost-benefit anal-
ysis that takes a comprehensive view of both the benefits and
the costs of the system. There is always additional defensive
capability that could be purchased — another guard could be
hired, one more piece of technology could be installed or up-
graded, etc. Of course, additional security typically comes
with diminishing returns, and there is a policy decision to be
made about how many resources to devote to security. Im-
proving the efficiency of security can be used to either 1)
increase defensive abilities on a fixed budget, and/or 2) de-
crease expenditure for a fixed defensive capability. Such in-
creases in efficiency are the primary goal of decision support
systems like ARMOR and IRIS.
Recall that Figure 6 showed how the defender’s utility

changed with different numbers of K9 units. Such a graph
of the trade-off between defensive capability and cost can al-
low policy makers to more easily see the trade-off between
money and security when using the ARMOR system. More
important, one can easily see how much ARMOR helps in-
crease security relative to uniform random (or other random-
ization strategies), which is a critical factor when deciding
whether or not to implement a given security technique. It di-
rectly follows that countermeasure investments with the high-
est cost-effectiveness ratio should be implemented first, as-
suming that there is no inter-dependence between proposed
measures. [Edmunds and Wheeler, 2009] Determining ex-
actly how much safer ARMOR makes the airport is a very
difficult question, but as we will discuss in the following sec-
tions, arguing that ARMOR improves safety on a per-office
basis (and thus “safety per dollar” spent) is not difficult.

5.2 Threat Deterrence
A key goal of many security systems is deterrence: an ef-
fective system will not only identify and prevent successful



attacks, but will also dissuade potential attackers. Unfortu-
nately, it is typically impossible to directly measure the de-
terrence effect. To measure deterrence directly, one needs to
know how many attacks did not occur due to security, a gen-
erally unmeasurable counterfactual.
In all cases relevant to this chapter, we assume that the at-

tacker is adaptive, and does not act blindly, but takes the de-
fender’s actions into account. It is only through this adapt-
ability that defensive measures could deter an attacker. For
instance, one could model the uncertainty due to chance or
attacker choices via an event tree model or a decision tree
model [Edmunds and Wheeler, 2009]. We choose to focus
on game theoretic methods as they have strong mathemati-
cal underpinnings and are ideally suited to reasoning about
adaptable, rational, actors. Game models naturally factor in
deterrence, in that an intelligent attacker is assumed to switch
to a different strategy if the defender uses security resources
to make the original strategy undesirable.
How to best understand and accurately model deterrence is

a topic of current research in the threat assessment commu-
nity [Taquechel, 2010]. For instance, for a threat (i.e., a de-
fensive measure) to be an effective deterrent, it must be cred-
ible in the eyes of the attacker [Berejikian, 2002], which may
involve complex signalling effects between the parties [Ger-
son and Boyars, 2007]. As mentioned above, ARMOR has
been well-publicized in the popular press. While there are
many other less public security measures employed at LAX,
ARMOR may lead a potential attacker to decide not to attack
LAX and instead stay at home and not attack. Another possi-
ble outcome of ARMOR’s publicity is that an attacker select
a more vulnerable target. While this is a win from the stand-
point of LAX, it may or may not be an improvement for Los
Angeles, the state of California, or the United States, depend-
ing on the target selected. However, if LAX is not targeted
due to deterrence measures, the eventual target is presumably
less attractive to the attackers, resulting in a net increase in
the defender’s utility.

6 Types of Evaluation
This section of the chapter ties together the discussion of the
previous sections, showing how the different evaluations per-
formed on ARMOR and IRIS help to verify that the goals of
the security system are achieved.

6.1 Model-Based/Algorithmic
The first type of evaluations (and the most natural for com-
puter scientists) are based on analysis of the model and the
underlying algorithms. Given assumptions about the attacker
(e.g., the payoff matrix is known), game theoretic tools can
be used to determine the attacker’s expected payoff. Ad-
ditionally, deterrence can be measured by including a “stay
home” action, returning neutral reward. These types of anal-
yses speak to such concerns.
First, the sensitivity of the solution method can be exam-

ined. No model will be perfect, but a solution to that model
would ideally be robust to small imperfections in the model.
This type of analysis is able to speak to the potential impact
of different kinds of abstraction and modeling error on the
final solution.

Second, the utility of the solution method can be directly
estimated from algorithmic evaluations. For instance, the at-
tacker resources vs. expected attacker utility and the defender
resources vs. expected defender utility can both be estimated.
To the extend that the model is correct, these utilities can be
determined exactly, providing an important tool to both pol-
icy makers and security professionals when decidingwhat de-
fensive measures to implement.
Finally, the underlying algorithms can be evaluated, both to

prove correctness (or a close approximation), and to evaluated
the computational effort required to compute a solution for
problems with different sizes and properties.

6.2 Cost/Benefit Analysis
Another type of analysis, which can combine both algo-
rithmic results and those from the implementation, is a full
cost/benefit analysis of the deployed system. For instance,
the cost of implementation and maintenance on the system
can be directly measured. The benefit of the system can be
measured both by changes in the defenders’ utility (e.g., Fig-
ure 2) and in terms of less tangible factors (such as such as
quantifying increases in travel time or a decrease in civil lib-
erties).
A system-wide cost/benefit analysis can help security pro-

fessionals decide where to allocate finite resources in order
to best protect the entire area by changing staffing levels
and/or implementing new security measures. Additionally,
such studies can provide important information to other sites
that may consider deploying a new security measure, such as
ARMOR. The ultimate goal of this analysis is to answer the
questions “how useful is this defensive measure?” and “how
does utility change for different levels of defender / attacker
resources?”

6.3 Relative Benefit
Measuring the relative benefit of defensive measures is simi-
lar to measuring the absolute utility, as described in the pre-
vious section. However, an important difference is that such
measurements may be less brittle to model inaccuracies. For
instance, when deciding whether or not to implement AR-
MOR, a site may consider the absolute utility of ARMOR us-
ing a cost/benefit analysis, which depends on the assumptions
about the attacker. A relatively simple analysis could instead
look at how utility will be changed by a proposed security
method.
For instance, Figure 1 shows how the utility of ARMOR

compares to different scheduling strategies. A relative benefit
analysis makes it easier to answer the question “should this
measure be implemented?” and may be particularly useful
when discussing security with professionals who are leery of
implementing decision-theoretic methods.

6.4 Human Behavioral Experiments
Human psychological studies can help to better simulate at-
tackers in the real world (e.g., Figure 5). Evaluations on an
abstract version of the game may test base assumptions, or
a detailed rendition of the target in a virtual reality setting
with physiological stress factors could test situated behavior.
Human subjects may allow researchers to better simulate the



Summary of Evaluation Types
Evaluation Problem Formulation Goal Accomplishments

Abstraction Solution Implementation Direct Benefit Indirect Benefit
Algorithmic ! ! ! !
Cost/Benefit ! !
Relative Benefit ! !

Human Experiments ! ! !
Operational Record ! !

High Level Evaluations ! ! ! !

Table 1: This table summarizes the types of experiments we have conducted on our security systems and show how they help
verify the problem formulation and/or that the system is accomplishing its goals.

actions of attackers, who may not be fully rational. Human
tests suffer from the fact that participants are not drawn from
the same population as the actual attackers (i.e., undergradu-
ate college students).
In some situations, it may be possible to conduct realistic

human studies in the true setting, i.e., employ a “red team.”
Such tests can use qualified security personnel attempt to
probe security defenses provides realistic information in life-
like situations using the true defenses (including those that
are not visible). However, such a test is very difficult to con-
duct as some security must be alerted (so that the team is not
endangered) while remaining realistic, the tests are often not
repeatable, and a single test is likely unrepresentative. To
the extent that such tests are feasible, they would speak to
both the implementation of the system and how well it ac-
complishes its direct goals.

6.5 Operational Record

Analysis of the operational record of a system provides con-
firmation that the system works, but is not as useful as one
may initially think. Ideally, the system would be enabled and
disabled for randomized periods of time, allowing for a care-
ful study of the system. Unfortunately, this is typically infea-
sible.
Consider the ARMOR system: that there are arrests result-

ing from the system shows that the system does allow rule
breakers to be caught. However, comparing the number of ar-
rests before and after ARMOR may or may not be useful. For
instance, if the number of arrests increases, this could be an
indication that ARMOR is more effective than the previous
system. However, it could also mean that more people are
violating the rules during this time period, and in fact a lower
number of criminals are caught. In the opposite case, a lower
number of arrests could mean that deterrence from ARMOR
is convincing more criminals to stay away. Or, a lower num-
ber of arrests could mean that more people are circumventing
the system. Without knowing the number of criminals that
are not caught, it is impossible to tell how well a particular
piece of the security is performing.
An additional complication is that, thankfully, most se-

curity threats are very low-frequency events. This means
that data is collected relatively infrequently, making analy-
sis of the operational record more sparse than in other (non-
security) deployed applications.

6.6 High-level Evaluations
While computer scientists traditionally prioritize precise, re-
peatable studies, this is not always possible in the security
community; computer scientists are used to quantitative eval-
uations in controlled studies, whereas security specialists are
more accepting of qualitative metrics on deployed systems.
For instance, Lazaric [1999] summarized a multi-year airport
security initiative by the FAAwhere the highest ranked evalu-
ation methodology (of seven) relied on averaging qualitative
expert evaluations.
Assuming the high-level evaluation is appropriately done,

it may address the abstraction and implementation questions
arising from problem formulation, as well as address both di-
rect and indirect goals. While these studies generally do not
produce quantitative numbers that can be used to determine
the utility of a security measure, they may uncover flaws
in that measure, or in the security of the entire system as a
whole. If no such flaws are found, the study may support
the hypothesis that the security measure in question does im-
prove overall security. As with the other types of evaluation,
the goal is not to prove that the system works, but to provide
evidence towards this effect.

7 Related Work
Security is a complex research area, spanning many disci-
plines, and policy evaluation is a persistent challenge. Many
security applications are evaluated primarily on the basis of
theoretical results; situated evaluations and even laboratory
experiments with human subjects are relatively rare. In ad-
dition, existing general methodologies for risk and security
evaluation often rely heavily on expert opinions and qualita-
tive evaluations.
Lazarick [1999] is a representative example which re-

lies heavily on expert opinions. In the study, seven
tools/approaches used to evaluate airport security were com-
pared as part of a competitive bidding process. At the end of
the multi-year security initiative, the highest ranked evalua-
tion methodology relied on averaging qualitative expert eval-
uations.
A second example of a high-level methodology for per-

facility and regional risk assessment, such as described by
Baker [2005]. The methodology relies heavily on expert
opinions and evaluations from local technical staff/experts,
similar to Lazarick [1999]. The three key questions in the
methodology are: (1) Based on the vulnerabilities identified,



what is the likelihood that the system will fail? (2) What are
the consequences of such failure (e.g., cost or lives)? (3) Are
these consequences acceptable? Such an approach enumer-
ates all vulnerabilities and threats in an attempt to determine
what should (or must) be improved. There is no quantitative
framework for evaluating risk.
Many in the risk analysis community have recently argued

for game theory as a paradigm for security evaluation, with
the major advantage that it explicitly models the adaptive be-
havior of an intelligent adversary. Cox [2008] provides a de-
tailed discussion of the common “Risk = Threat × Vulner-
ability × Consequence” model, including analysis of an ex-
ample use of the model. There are several arguments raised
as weaknesses of the approach, including (1) the values are
fundamentally subjective (2) rankings of risk are often used,
but are insufficient (3) there are mathematical difficulties with
the equation, including dependencies between the multiplied
terms, and (4) the model does not account for adaptive, in-
telligent attackers. One of the main recommendations of the
paper is to adopt more intelligent models of attacker behavior,
instead of more simple, static, risk estimates.
Bier et al. [2009] provide a high-level discussion of game-

theoretic analysis in security applications and their limita-
tions. The main argument is that the adaptive nature of the
terrorist threat leads to many problems with static models —
such models may overstate the protective value of a policy by
not anticipating an attacker’s options to circumvent the pol-
icy. They explicitly propose using quantitative risk analysis to
provide probability/consequence numbers for game-theoretic
analysis.
Beir [2007] performs a theoretical analysis of the implica-

tions of a Bayesian Stackelberg security game very similar
to the one solved by ARMOR, although most of the analysis
assumes that the defender does not know the attacker’s pay-
offs. The primary goal is to examine intuitive implications
of the model, such as the need to leave targets uncovered in
some cases so as not to drive attackers towards more valuable
targets. There are no “real world” evaluation of the model.
Other work [Bier et al., 2008] considers high-level budget al-
location (e.g., to large metropolitan areas). While the study
uses real data, its focus is not model evaluation but the impli-
cations resulting from the model.
Game theory does have much to offer in our view, but

should not be considered a panacea for security evaluation.
One difficulty is that human behavior often does not cor-
respond exactly to game-theoretic predictions in controlled
studies. Weibull [2004] describes many of the complex issues
associated with testing game-theoretic predictions in a labo-
ratory setting, including a discussion of the ongoing argument
regarding whether people typically play the Nash equilibrium
or not (a point discussed at length in the literature, such as in
Erev et al. [2002]). This is one reason we believe behavioral
studies with humans are an important element for security
system evaluation.
Many of the issues we describe in acquiring useful real-

world data for evaluation purposes are mirrored in other types
of domains. Blundell and Costa-Dias [2009] describe ap-
proaches for experimental design and analysis of policy pro-
posals in microeconomics, where data is limited in many of

the same ways: it is often not possible to run controlled ex-
periments and many desired data cannot be observed. They
describe several classes of statistical methods for these cases,
some of which may be valuable in the security setting (though
data sensitivity and sparse observations pose significant addi-
tional challenges). In truth, it is often hard to evaluate com-
plex deployed systems in general — in our field a test of the
prototype often suffices (c.f., Scerri et al. [2008]).
Jacobson et al. [2005] describe a deployed model for

screening airline passenger baggage. The model includes de-
tailed information regarding estimated costs of many aspects
of the screening process, including variables for probability
of attack and cost of a failed detection, but these are noted
to be difficult to estimate and left to other security experts
to determine. One particularly interesting aspect of the ap-
proach is that they perform sensitivity analysis on the model
in order to assess the effect of different values on the overall
decisions. Unfortunately, the authors have little to say about
actually setting the input values to their model; in fact, there
is no empirical data validating their screening approach.
Kearns and Ortiz [2003] introduce algorithms for a class of

“interdependent” security games, where the security invest-
ment of one player has a positive externality and increases
the security of other players. They run the algorithms on data
from the airline domain but do not directly evaluate their ap-
proach, instead looking at properties of the equilibrium solu-
tion and considering the broad insight that this solution yields
regarding the benefits of subsidizing security in such games.
Lastly, the field of fraud detection [Kou et al., 2004],

encompassing credit card fraud, computer intrusion, and
telecommunications fraud, is also related. Similar to the
physical security problem, data is difficult to access, re-
searchers often do not share techniques, and deterrence is
difficult (or impossible) to measure. Significant differences
include:
1. Humans can often classify (in retrospect) false positives
and false negatives, allowing researchers to accurately
evaluate strategies.

2. Companies have significant amounts of data regarding
known attacks, even if they do not typically share the
data outside the company. Some datasets do exist for
common comparisons (c.f., the 1998 DARPA Intrusion
Detection Evaluation data4).

3. The frequency of such attacks is much higher than
physical terrorist attacks, providing significant train-
ing/evaluation data.

4. Defenders can evaluate multiple strategies (e.g., classi-
fiers) on real-time data, whereas physical security may
employ only, and evaluate, one strategy at a time.

8 Conclusions
This chapter has discussed existing evaluations of the de-
ployed ARMOR and IRIS systems. These results show how
such systems can be reasonably evaluated, and in particular

4For data and program details, see http://www.ll.mit.
edu/mission/communications/ist/index.html.



show that ARMOR works well in theory, and that security
experts agree it is beneficial. In many ways, this level of eval-
uation goes beyondwhat is typical of applications, even those
deployed in real-world settings. Overall, we find strong evi-
dence to support the use of ARMOR over previous methods.
Another point worth stressing is that ARMOR and IRIS are

relatively easy to use. ARMOR in particular has been instru-
mental in aiding the police forces to efficiently and more con-
veniently generate schedules to deploy more and more units.
For example, consider a situation when only 2 canines need
to be scheduled for 2 hours each over any of the 7 termi-
nals. Each canine could be assigned to any of the 7 terminals
each hour, making the search space as large as 74(= 2401)
combinations. This search space grows exponentially with
the number of canines and the number of hours for which
the schedule needs to be generated, making it impractical for
human schedulers. Thus, ARMOR has played a significant
role in reducing, if not completely eliminating, the work of
officers who manually constructed patrolling schedules. Ad-
ditionally, the use of ARMOR has also made it possible for
the security officers to update the generated schedules, in case
more resources become available or new constraints need to
be incorporated. Furthermore, even though ARMOR was de-
signed as a mixed initiative system, users have chosen not to
modify ARMOR schedules in practice, which suggests that
the output schedules are indeed high-quality, and that domain
experts have not chosen to ‘tweak’ the system’s decisions.
These added benefits have themselves been a contributing
factor towards the continued use of schedules generated by
ARMOR. Most importantly, when considering the cost of im-
plementing a decision support system, it is important to con-
sider ways in which the system may actually reduce security
costs.
While none of the evaluation tests presented can calculate a

measure’s utility with absolute accuracy, understanding what
each test can provide will help evaluators better understand
what tests should be run on deployed systems. The goal of
such tests will always be to provide better understanding to
the “customer,” be it researchers, users, or policy makers. By
running multiple types of tests, utility (the primary quantity)
can be approximated with increasing reliability.
At a higher level, thorough cost-benefit analyses can pro-

vide information to policy makers at the inter-domain level.
For instance, consider the following example from Tengs and
Graham [1996]:

To regulate the flammability of children’s clothing
we spend $1.5 million per year of life saved, while
some 30% of those children live in homes with-
out smoke alarms, an investment that costs about
$200,000 per year of life saved.

While such a comparative cost-benefit analysis is beyond the
scope of the current study, these statistics show how such an
analysis can be used to compare how effective measures are
across very different domains, and could be used to compare
different proposed security measures.
In the future we plan to use this framework to help de-

cide which evaluation tests are most important to determin-
ing the utility of a deployed, security-focused decision sup-

port system. Additionally, we intend to continue collaborat-
ing with security experts to determine if our evaluations are
sufficiently general to cover all existing types of security tests.
Currently, the majority of our evaluations have been con-

ducted on the ARMOR system. However, we intend to con-
tinue testing IRIS and other newly-developed domains, to
both better evaluate the domains, and to attempt to discover
or improve evaluation techniques in the context of deployed
systems.
Finally, a new type of decision support system is currently

being developed at the TEAMCORE lab, which will focus
on scheduling patrols on the LA subway system to look for
ticketless travelers. While this application can still be framed
as a security problem, we expect that there will be much more
data available. In particular, we will both have more events
when “attackers” are caught using the subway systemwithout
a ticket and we may be able to enable and disable the system
on different days. An additional attractive option is that we
may be able to occasionally have 100% coverage, allowing
us to measure the ground truth, and how the deterrence effect
impacts the number of ticketless travelers over time.
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