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Abstract—Despite their worst-case NEXP-complete planning
complexity, DEC-POMDPs remain a popular framework for
multiagent teamwork. This paper introduces effective team-
work under model uncertainty (i.e., potentially inaccurate
transition and observation functions) as a novel challenge for
DEC-POMDPs and presents MODERN, the first execution-
centric framework for DEC-POMDPs explicitly motivated by
addressing such model uncertainty. MODERN’s shift of coordi-
nation reasoning from planning-time to execution-time avoids
the high cost of computing optimal plans whose promised
quality may not be realized in practice. There are three
key ideas in MODERN: (i) it maintains an exponentially
smaller model of other agents’ beliefs and actions than in
previous work and then further reduces the computation-
time and space expense of this model via bounded pruning;
(ii) it reduces execution-time computation by exploiting BDI
theories of teamwork, and limits communication to key trigger
points; and (iii) it limits its decision-theoretic reasoning about
communication to trigger points and uses a systematic markup
to encourage extra communication at these points — thus
reducing uncertainty among team members at trigger points.
We empirically show that MODERN is substantially faster
than existing DEC-POMDP execution-centric methods while
achieving significantly higher reward.
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I. INTRODUCTION

Despite their NEXP-complete policy generation complex-
ity [1], Distributed Partially Observable Markov Decision
Problems (DEC-POMDPs) have become a popular paradigm
for multiagent teamwork [2], [3], [4], [5]. DEC-POMDPs
quantitatively express observational and action uncertainty,
and yet optimally plan communications and domain actions.

This paper focuses on teamwork under model uncertainty
(i.e., potentially inaccurate transition and observation func-
tions) in DEC-POMDPs. In many domains, we only have
an approximate model of agent observation or transition
functions. To address this challenge we rely on execution-
centric frameworks [6], [7], [8], which simplify planning in
DEC-POMDPs (e.g., by assuming cost-free communication
at plan-time), and shift coordination reasoning to execution
time. Execution-centric frameworks appear better-suited to
address model uncertainty as they (i) lead to provably
exponential improvement in worst-case complexity [4], [6];
(ii) avoid paying a high planning cost for a “high-quality”
DEC-POMDP policy that cannot be realized in practice; and

(iii) allow for coordination reasoning at execution-time to
mitigate model uncertainty.

Unfortunately, past work in execution-centric approaches
such as ACE-PJB-COMM (APC) [6] and MAOP-COMM
(MAOP) [7] assumes a correct world model, and the pres-
ence of model uncertainty exposes three key weaknesses in
that work. First, they maintain the entire team’s belief states
for execution-time reasoning, a costly undertaking that is not
well-justified given model uncertainty. Second, they reason
at execution-time about the right action and communication
before each decision step, leading to inefficient computa-
tion. Third, their detailed and expensive reasoning about
communication and action is based on the assumption of
an accurate model — again, given model uncertainty, such
precise computation is wasteful due to its inaccuracy.

This paper provides two sets of contributions. The first is a
new execution-centric framework for DEC-POMDPs called
MODERN (MOdel uncertainty in Dec-pomdp Execution-
time ReasoNing). MODERN’s key insight is that given
model uncertainty, it is wasteful to maintain a very detailed
model of other agents or the team’s belief states (it will be
inaccurate anyway) and reason in depth with such a detailed
model — the inferences will also be inaccurate. Instead,
model uncertainty drives MODERN to simplify modeling
and reasoning of other agents and boost communication at
key junctures instead.

MODERN is the first execution-centric framework for
DEC-POMDPs explicitly motivated by model uncertainty.
It is based on three key ideas. First, MODERN reasons with
an exponentially smaller model of other agents’ beliefs and
actions than the entire set of joint beliefs as done in previous
work [6], [7], [8]; then it further reduces the computation
time and space expense of this model via bounded pruning.
Second, MODERN reduces execution-time computation by:
(i) engaging in decision-theoretic reasoning about commu-
nication only at Trigger Points — instead of every agent
reasoning about communication at every step, only agents
encountering trigger points perform such reasoning; and
(ii) utilizing a pre-planned policy for actions that do not
involve interactions, avoiding on-line planning at every step.
Our approach has significant advantages in domains with
interaction-sparseness. Third, MODERN increases commu-
nication at trigger points by doing a markup of the expected



utility gain under the assumption that communication has
significant value in reducing uncertainty. We justify our de-
sign decisions in MODERN through a systematic empirical
evaluation. As our evaluation shows, MODERN outperforms
competing algorithms in terms of its run-time performance
while finding higher quality solutions.

This paper’s second set of contributions is in opening
up model uncertainty as a new research direction for DEC-
POMDPs and emphasizing the similarity of this problem to
the Belief-Desire-Intention (BDI) model for teamwork [9],
[10]. In particular, BDI teamwork models also assume
inaccurate mapping between real-world problems and do-
main models. As a result, they emphasize robustness via
execution-time reasoning about coordination [10]. Given
some of the successes of prior BDI research in teamwork,
we leverage insights from BDI in designing MODERN.

II. DESIGN DECISIONS

During planning, MODERN has a standard single-agent
POMDP planner [11] plan a policy for the team of agents
by assuming zero-cost communication. The resulting policy,
provided to each agent, would be optimal if agents fully
communicated at each time step (zero cost communication);
but given non-zero-cost communication, agents must selec-
tively communicate. Thus, at execution-time, agents model
other agents’ beliefs and actions so as to reason about when
to communicate with teammates, reason about what action
to take if not communicating, etc.

MODERN’s design is driven by the model uncertainty,
and thus MODERN simplifies modeling and reasoning about
other agents by maintaining a bounded approximate model
(compared to previous work [6], [7] which maintains a very
detailed model). Instead, MODERN boosts communication
at trigger points. As shown in our experimental results, it is
precisely due to this aggressive reliance on communication
rather than detailed reasoning that MODERN outperforms
its competitors who are much more reliant on their models
of other agents. We describe these ideas in the following.
Modeling Other Agents: In contrast with the complete
tree of joint beliefs in [6], [7], MODERN maintains an
approximate and exponentially smaller set of beliefs to
model other agents via (i) Individual estimate of joint Beliefs
(IB) and (ii) Bounded Pruning.

IB is a concept used in MODERN to decide whether
or not communication would be beneficial and to choose
a joint action when not communicating. IB can be con-
ceptualized as a subset of team beliefs that depends on an
agent’s local history. IBt describe the set of nodes of the
possible belief trees of depth t. Each node θ in IBt has a
tuple consisting of 〈b(θ),h(θ),a(θ), p(θ)〉, where b(θ) is
a probability distribution over the set of joint states given
that h(θ), h(θ) is the joint observation history, a(θ) is the
joint action obtained from a given policy tree, and p(θ) is
the likelihood of observing h(θ).

Although IB is exponentially smaller than previous work
in [6], [7], the number of possible beliefs in IB grows
rapidly, particularly when agents choose not to communicate
for long time periods. Hence, we propose a new pruning
algorithm that provides further savings. In particular, it keeps
a fixed number of most likely beliefs per time step in IB. Our
pruning method first expands beliefs using the Bayes update
rule and then selects the most likely belief at each time step
until the selected number of beliefs reaches a pre-defined
upper-limit. This reduced belief set is used to detect trigger
points and reason about communication in MODERN. Note
that MODERN uses a sync action in communication (dis-
cussed below) that is useful to ensure that all agents create an
identical belief. This provides a way to ascertain the team’s
joint status and avoid miscoordination.
Using IB to Detect Trigger Points: The policy provided
to each agent from MODERN’s planning maps the agent
team’s joint observation to joint actions. Unlike [6] or [7],
MODERN does not require agents to reason from scratch
about what action or communication to execute at every time
step. Instead, agents follow the provided policy, mapping
their own observation in the policy to their own action,
except at “trigger points”. Trigger points include any situa-
tion involving ambiguity in mapping an agent’s observation
to its action in the joint policy. The key idea is that in
sparse interaction domains, agents will not have to reason
about coordination at every time step and only infrequently
encounter trigger points, thus significantly reducing the
burden of execution-time reasoning.

Using trigger points to reason about communication is
similar to the use of joint commitments in BDI teamwork
to reason about communication [10]. Indeed, ask and tell
in MODERN share some similarity to the initiation and
termination (respectively) of joint commitments to trigger
communication in BDI teamwork [9], [10].
How to Reason — The Markup Function: MODERN’s
reasoning about communication is governed by the following
formula: f(κ, t) · (UC(i) − UNC(i)) > σ, where κ is a
markup rate, t is a time step, UC(i) is the expected utility
of agent i if agents were to communicate, UNC(i) is the
expected utility of agent i when it does not communicate,
and σ is a given communication cost. The two novelties
in MODERN’s reasoning are how it computes UC(i) and
UNC(i), and how it uses the markup function f(κ, t). Both
of these are motivated by model uncertainty.

In MODERN, agents reason if communication would
be beneficial. If they communicate, all agents synchronize
local observation histories. Thus, all agents reach a spe-
cific belief node, θ, and can choose a joint action for the
team. Otherwise, if no agent chooses to communicate, each
agent chooses the best locally optimal action based on
estimated most likely actions of other agents. Computation
of UC(i)− UNC(i) is performed as following:



UC(i) =
∑
θ∈IBi

p(θ) · V (b(θ),a(θ)) ,

UNC(i) = max
ai∈Ai

UIBi
(〈ai, a∗−i〉),

a∗−i = a−i(θ
∗) s.t. θ∗ ∈ Θ,

UIBi
(a) =

∑
θ∈IBi

p(θ) · V (b(θ),a).

V (b,a) is the expected utility when an action a is taken at
belief state b. a∗−i is agent i’s estimate of the most likely
action of all other agents. This is greedily selected using the
most likely observation sequence for all other agents, Θ,
at every time step. UC(i) is calculated by considering two-
way synchronization, which emphasizes the benefits from
communication. UNC(i) is computed based on the individual
evaluation of heuristically estimated actions of other agents.

The markup function, f(κ, t), helps agents to reduce un-
certainty among team members by marking up the expected
utility gain from communication rather than perform precise
local computation over erroneous models — the markup
in essence selectively boosts communication. In this work,
we use an exponential markup rate, f(κ, t) = κt. Because
uncertainty among team members increases as time passes,
the markup rate should increase according to the time step.

III. EMPIRICAL VALIDATION

We evaluate the performance of MODERN and show
some preliminary results compared to two previous tech-
niques: APC [6] and MAOP [7]. The planning time for all
algorithms is identical and thus we only measure the aver-
age execution-reasoning time per agent. Noise in transition
matrix and observation matrix follow a Dirichlet distribution
(which is not known by the planner or the agents). The level
of model error is represented by a parameter α (

∑L
i βi) in

Dirichlet distribution: error increases as α decreases. We
evaluate MODERN under four different amounts of error by
varying α from 10 to 10000. The experiments were run on
Intel Core2 Quadcore 2.4GHz CPU with 3GB main memory.
All techniques were evaluated for 600 independent trials
throughout this section. We report the average rewards.
Comparison — Solution Quality: We compared the aver-
age rewards achieved by all algorithms for three different
communication costs in two small grid domains and the
dec-tiger domain1. The communication costs are selected
proportional to the expected value of the policies: 5%, 20%,
and 50%. The time horizon was set to 3 in this set of
experiments.

In Table I, σ in column 1 displays the different communi-
cation cost and α in column 2 represents the level of model
error. Columns 3–6 display the average reward achieved by
each algorithm in the 1×5 grid domain. Columns 7–10 show

1The domain details are described in [12].

the results in the 2×3 grid domain. Columns 11–14 are for
the multi-agent tiger domain. For the markup function in
MODERN (MD in Table I), κ1=1.0 and κ2=1.25 were used.
We performed experiments with a belief bound of 10 nodes
per time-step for our algorithm.

Table I shows that MODERN (columns 3–4, and 7–
8) significantly outperformed APC (columns 5 and 9) and
MAOP (columns 6 and 10) in the grid domains that have
sparse interactions. MODERN received statistically signif-
icant improvements (via t-tests, p < 0.01), relative to
other algorithms. In the highly-coupled tiger domain, APC
(column 13) had slightly higher reward than MODERN
(columns 11–12) when communication cost (σ) was low
(5%, rows 3–6) or medium (20%, rows 7–10), but the
difference was only about 10% in reward. However, when
σ was high (50%, rows 11–14), MODERN outperformed
APC. In particular, even at this high σ, MODERN selectively
utilized communication to successfully perform a joint task,
and thus it achieved higher reward. MAOP (column 14)
showed the worst results regardless of α and σ.

In these small domains, the average reward in MODERN
was similar regardless of the markup rate (columns 3–
4, 7–8, and 11–12). Indeed, without carefully tuning κ
(e.g., κ=1.0), MODERN’s rewards were still statistically
significantly higher than others.
Comparison — Runtime: Here, we compare the average
(execution) runtime per agent of the algorithms. MODERN
used 10 belief nodes for the bounded pruning (for small
domains, this limit was never reached). Communication cost
was 5% of the expected utility. The maximum runtime per
trial was set to 1,800 seconds. In the tiger domain, all
algorithms showed similar results. In small 1×5 and 2×3
grid domains, MODERN and APC took similar amounts of
time. The runtime of MAOP was 1.39–1.89 times that of
MODERN’s runtime in both domains, where this difference
was statistically significant (via t-tests, p < 0.01). In a
scaled-up 2×3 grid domain with longer time horizon (T=5),
MAOP was not able to finish running within the time limit.
APC uses a particle filtering technique to improve speed, but
even with only one particle, APC exceeded the time limit to
finish a trial, whereas MODERN took less than 125 seconds.

We then ran experiments in the larger grid domain with
increased time horizons. We tested the algorithm under two
different communication costs: 5% and 50%. MAOP and
APC (with 1 particle) could not solve the problem within the
given time limit for even the shortest time horizon — while
MODERN took significantly less time than other algorithms.
In particular, when T=8, MODERN takes less than 150
seconds with σ=5% and about 1500 seconds with σ=50%,
which are still lower than the time limit. As the time horizon
increased, MODERN obtained higher rewards (9.8–15.7),
since there was more time for agents to recover from any
failed actions. With σ=50%, MODERN took more time than
with σ=5%, although still scaling linearly with time horizon.



1×5 Grid 2×3 Grid Dec-Tiger
σ α MD(κ1) MD(κ2) APC MAOP MD(κ1) MD(κ2) APC MAOP MD(κ1) MD(κ2) APC MAOP

5%

10 5.36 5.38 -1.20 1.52 5.28 5.30 -2.25 -0.36 11.45 11.36 12.56 -3.09
50 5.24 5.11 -1.20 1.49 5.28 5.33 -2.04 -0.68 10.95 10.94 11.92 -3.44
100 5.16 5.20 -1.20 1.47 5.02 5.03 -1.85 -0.63 11.18 11.23 12.33 -3.37

10000 4.46 4.38 -1.20 1.13 4.62 4.61 -1.80 -0.78 10.92 10.96 11.92 -3.51

20%

10 4.70 4.65 -1.20 0.38 4.62 4.68 -1.20 -1.47 8.35 8.41 10.70 -5.69
50 4.58 4.71 -1.20 0.28 4.62 4.66 -1.20 -1.72 7.59 7.56 10.64 -6.13
100 4.50 4.46 -1.20 0.28 4.36 4.40 -1.20 -1.68 8.09 8.11 10.55 -6.04

10000 3.80 3.71 -1.20 -0.12 3.96 3.91 -1.20 -1.86 7.77 7.73 10.31 -6.21

50%

10 3.38 3.39 -1.20 -1.90 3.30 3.29 -1.20 -3.69 0.24 0.17 -6.0 -11.78
50 3.26 3.25 -1.20 -2.15 3.30 3.34 -1.20 -3.80 -0.81 -0.80 -6.0 -12.40
100 3.18 3.16 -1.20 -2.12 3.04 3.06 -1.20 -3.79 -1.42 -1.39 -6.0 -12.27

10000 2.48 2.52 -1.20 -2.61 2.64 2.62 -1.20 -4.01 -1.18 -1.26 -6.0 -12.51

Table I
COMPARISON MODERN (MD) WITH APC AND MAOP: AVERAGE PERFORMANCE IN SMALL DOMAINS

IV. CONCLUSIONS AND RELATED WORK

This paper aims to open a new area of research for DEC-
POMDPs: in many real-world domains, we will not have
a perfect model of the world, and hence DEC-POMDPs
must address model uncertainty. To combat model uncer-
tainty, we presented a new framework called MODERN that
simplifies DEC-POMDP planning (significantly reducing its
complexity) and instead relies on agents’ execution-time
reasoning. There are three major new ideas in MODERN’s
execution time reasoning: (i) it avoids excessive reliance on
a complete model by maintaining an approximate model of
other agents by bounded pruning, resulting in exponentially
smaller beliefs compared to previous work, (ii) it reduces
computational burden by exploiting BDI teamwork and
sparse interactions between agents to limit reasoning about
communication, and (iii) it marks up the expected gain
in utility to reduce uncertainty among team members by
boosting communication. We justified our design decisions
in MODERN via an empirical evaluation that considers
several factors including communication costs and markup
rates in different domains. We showed that not only is
MODERN faster than existing algorithms, it also achieves
significantly superior solution quality.

We have discussed related work throughout the paper and
specifically in terms of comparing the performance of MOD-
ERN to other execution-centric approaches, specifically [6]
and [7], illustrating MODERN’s superior performance. In-
deed, MODERN maintains exponentially smaller models of
other agents than [6], [7], performs significantly less compu-
tation because it uses trigger points that are absent in [6], [7],
and uses markup functions to further boost its performance
that is absent in other previous work. Other execution-centric
approaches include Xuan and Lesser’s work [8]; however,
that focuses on DEC-MDPs rather than DEC-POMDPs and
also does not handle model uncertainty. BDI teamwork ap-
proaches [9], [10] did focus on execution-centric reasoning,
but they lacked the explicit representation of costs and un-
certainties, the main strength of the DEC-POMDP approach.
Other DEC-POMDP approaches have focused on reasoning
about optimal communication at planning time [2], [4], but

again there is no explicit discussion of model uncertainty in
that work; and as a result it remains focused on planning-
centric (which has a NEXP-complete complexity) rather than
an execution-centric approach. Indeed, we expect handling
model uncertainty via execution-centric approaches will be
more and more critical that as we transition DEC-POMDPs
to the real-world.
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