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ABSTRACT
When scaling systems to hundreds or thousands of agents,
the ability of agents to observe their environment and to co-
ordinate during decision making becomes increasingly diffi-
cult. This increased complexity frequently results in signifi-
cantly reduced system performance as the number of agents
in the system increases. We address this by introducing
the Factored action Reinforcement learning Agents in Co-
operative tasKs Exploiting Difference rewards (fracked)
algorithm, which conglomerates three existing multiagent
techniques to significantly improve coordination and scal-
ability within large multiagent systems. In particular, we
combine i) a Factored-Action Markov Decision Processes
(FA-FMDP) framework which exploits problem structure to
reduce observation and coordination requirements; ii) rein-
forcement learning which enables agents to learn from expe-
rience, and iii) agent-centric reward shaping (i.e., difference
rewards) which provide an implicit coordination mechanism
for agents during learning. We show that the fracked al-
gorithm outperforms reinforcement learning with global re-
wards and a standard learning automata method in two do-
mains containing up to 10,000 agents.
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General Terms
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1. INTRODUCTION
Coordinating the actions of multiple agents is a very diffi-

cult problem, particularly as scaling increases to hundreds or
thousands of agents — techniques which worked for small-
or medium-scale systems break down. Effective solutions
to the large-scale coordination problem must address two
key issues that are prevalent in these systems. First, the
solution must provide agents with access to the right infor-
mation or observations: too much information can be both
impractical and overwhelming, but too little information can
lead to inaccurate conclusions [2, 8, 19, 27]. Second, the
solution must enable agents to make local decisions that
are coordinated with the system-level objective — in mas-
sive multiagent systems, it is frequently impractical for all

agents to directly coordinate [27]. We address these issues
with the Factored action Reinforcement learning Agents in
Cooperative tasKs Exploiting Difference rewards (fracked)
algorithm, which uses a Factored Action Markov Decision
Process (FA-FMDP) framework to exploit problem struc-
ture and reduce the per-agent observation and coordination
requirements, and reinforcement learning with shaped dif-
ference rewards to enable coordination and decision making
within the context of the FA-FMDP.

As scaling increases within large multiagent systems, it
is typically impractical to assume that agents will maintain
full observability and complete system knowledge [27]. To
address this, it is common to exploit the underlying prob-
lem structure in order to decompose the system and reduce
the observation and coordination requirements for individ-
ual agents[14, 27]. One of the most popular approaches in-
volves decomposing a large Markov Decision Process (MDP)
into several smaller joint MDPs with localized rewards (a so-
called Factored Markov Decision Process (FMDP)) [14, 22,
33]. Although factorization reduces the coordination com-
plexity, solving an FMDP is still much more complex than
solving a disjoint set of MDPs in parallel. This is because
there is significant coupling between the local MDPs in an
FMDP framework. Thus, solving an FMDP still represents
a formidable coordination task for agents. In this work, we
use a particular type of FMDP known as a Factored-Action
FMDP to exploit the problem structure and reduce agent
observations and coordination requirements.

In addition to reducing the observations and coordination
requirements, we propose the use of reinforcement learning
coupled with agent-centric shaped rewards (i.e., difference
rewards) to address coordination and decision making for
agents within the context of the FA-FMDP. Reinforcement
learning addresses the temporal credit assignment problem
present within learning (how to assign credit for actions with
time-delayed rewards) and difference rewards address the
structural credit assignment problem (how should credit be
assigned to agents based upon their individual contributions
to the collective goal). Difference rewards have shown pre-
vious success in many domains, but they typically require
agents to have full observability. We reduce these observ-
ability requirements by establishing the problem within an
FA-FMDP framework which reduces the coordination and
observation requirements for agents within the system.

In this work, we introduce the fracked algorithm that
combines an FA-FMDP framework, reinforcement learning,
and difference rewards to promote coordination and scaling
in large multiagent systems. The fracked algorithm ad-



dresses three key issues present within these systems: i) it
reduces the per-agent observation and coordination require-
ments by exploiting problem structure, ii) it enables agent
decision making by using reinforcement learning, and iii) it
addresses the structural credit assignment problem by using
difference rewards. The remainder of this paper is struc-
tured as follows. Section 2 provides background information
on FA-FMDPs, reinforcement learning, difference rewards,
and learning automata. Section 3 introduces the two do-
mains used in this work. Section 4 outlines the fracked al-
gorithm. Section 5 contains empirical results demonstrating
the performance benefits of using our algorithm in a conges-
tion domain and a combinatorial optimization domain with
up to 10,000 agents. Finally, Section 6 provides discussion
and conclusions of this work.

2. BACKGROUND
Learning in large multiagent systems with large state-

action spaces can be extremely challenging, if not infeasi-
ble, without some form of exploitation of the problem struc-
ture to reduce the agent-to-agent coordination requirements
[12, 32, 33, 38]. Exploiting the underlying structure of a
problem has long been recognized as an important aspect in
representing sequential decision making tasks [37, 3]. One
popular application of exploiting structure involves factor-
ization within Markov Decision Processes (MDPs) that are
extremely large or intractable [7, 37]. An MDP can be bro-
ken down with respect to states (FS-FMDPs), actions (FA-
FMDPS), or both (FMDPs) [14, 21, 31]. These techniques
exploit system knowledge and problem structure in order to
simplify the problem’s representation [4, 7, 13, 22, 37]. In
this work, we use FA-FMDPs to exploit system structure
and reduce coordination complexity for agents [21, 24, 28].

FMDPs have been shown to work well in a number of sit-
uations including controlling teams of rovers, robots playing
robo-cup soccer, and vehicle traffic within a traffic grid [15,
22, 23]. There have been several methods proposed for solv-
ing FMDPs such as Coordinated Reinforcement Learning or
a coordination graph, which uses the dynamic Bayesian net-
work (DBN) structure, message passing schemes, and action
selection mechanisms (e.g., variable elimination and max-
plus) [15, 22, 23]. These techniques have typically relied
upon iterative message passing schemes between agents in
order to make decisions, which come with high communica-
tion, overheads and are frequently slow due to the message
passing process. In this work, we use techniques (i.e., rein-
forcement learning with difference rewards) which rely only
upon the agents having local observability and do not re-
quire explicit communication between agents.

2.1 Factored Action - Factored Markov Deci-
sion Processes

Factored Markov Decision Processes (FMDPs) represent
one approach to generalization, which exploits the underly-
ing structure of the problem in multiagent systems [31]. The
idea of representing a large MDP using a factored model
was first proposed by Boutilier et al. [4]. A factored MDP
is a mathematical framework for sequential decision prob-
lems in stochastic domains [14]. It thus provides an under-
lying semantics for the task of planning under uncertainty
[14]. FMDPs are a representation that allows exploitation
of the problem structure, allowing compact representations
of large multiagent systems [14]. We focus on Factored-

Action Factored Markov Decision Processes (FA-FMDPs),
but our algorithm could be extended into Factored-State
Factored Markov Decision Processes, representations that
are factored with respect to both states and actions.

Dean et al. [13, 21] included a description of the Factored-
Action FMDP framework, which we call FA-FMDP here-
after. An FA-FMDP is a tuple M = {X,A, T,R}. X =
[X1, ..., Xn] is a state vector of variables which collectively
define the states [21]. Similarly, A = [A1, ...Am] is a vector
of agent actions, which jointly define the system action [21].
The action space for M is Πm[Ai], where [Ai] denotes the
set of values for Ai [21]. T is the set of transition proba-
bilities and R is the system reward. The system structure
in a FA-FMDP is defined so that the system reward, R, is
decomposed into a set of localized rewards, Ri, such that
R =

∑
iRi. Each local reward, Ri, depends upon a subset

of the agents in the system, Γ(i).

2.2 Finite Action Learning Automata
Learning automata are a method commonly used to ad-

dress decision making in both stateful and state-less envi-
ronments [36]. The finite action learning automata (FALA)
can be defined as a quadruple (A,B, T ,p(k)), where A =
{a1, . . . , an} is a finite set of actions, B is a set of rewards or
reinforcements from the environment, and T : B × p(k) →
p(k+1) is the learning algorithm for updating the probabil-
ities vector p(k). p(k) is the probability vector at timestep
k, defined by p(k) = (p1(k), . . . , pn(k))T such that pi(k) ∈
[0, 1], i = 1, . . . , n and

∑k
i=1 pi(k) = 1.

This work uses FALA as a second learning mechanism
and adopts the linear reward-inaction(LR−I) algorithm as
our update mechanism [36]. When an agent takes action ai
at step k, we have following updating equations:

pi(k + 1) = pi(k) + λβ(k)(1− pi(k))

pj(k + 1) = pj(k)− λβ(k)pj(k), for j 6= i.
(1)

where λ ∈ (0, 1) is the learning rate and β(k) ∈ {0, 1} is
the reward or reinforcement from environments at step k.
We adopt a näıve method that if the reward that an agent
received after taking an action is greater than the average
rewards among all agents, the environmental feedback is
positive, otherwise negative. In other words, if the agent
achieves better than the average reward, it receives a posi-
tive feedback such that β(k) = 1. Otherwise, the reward is
β(k) = 0.

2.3 Reinforcement Learning
Reinforcement learning is frequently been used through-

out the multiagent literature to address the decision making
problem for agents [5, 23, 34, 35]. Reinforcement learning
addresses the temporal credit assignment problem present
within learning. In this paper, each agent is an ε-greedy
reinforcement learner using Q-learning updates [34]. The
domains considered in this work are stateless, similar to a
multi-agent, multi-armed bandit. This simplifies the rein-
forcement learning framework, eliminating the concept of
state. Agents in this work use table-based immediate reward
reinforcement learning, equivalent to a ε-greedy Q-learners
with a discount rate of 0 [34]. On every timestep, an agent
executes an action and then receives a reward evaluating
that action. After taking an action and receiving a reward,



an agent updates its Q table as:

Q(a)← Q(a) + α(r −Q(a)) (2)

where a is the agents’ action selection, r is the reward re-
ceived for taking action a, α is the learning rate, and Q is the
value associated with taking action a. At every timestep the
agent chooses the action with the highest table value with
probability 1 − ε and chooses a random action with proba-
bility ε.

2.4 Difference Rewards
Difference rewards are a type of shaping reward in the

form [6, 9, 16, 18, 17, 40]:

Dj ≡ R(z)−R(z−j + cj) (3)

where R is the system objective, z is the complete system
state vector, and z−j contains all the variables not affected
by agent j. Because this work focuses on stateless domains,
the vector z is a vector of actions. To construct z−j , all
actions in z that are affected by agent j are replaced with
the fixed constant cj (a counterfactual action). Difference
rewards are directly aligned with the system objective, R,
regardless of the choice of cj because the second term does
not depend on j’s actions [18]. Furthermore, they provide
a learning signal that often leads to faster learning — the
second term of D removes much of the effect of other agents
(i.e., noise) from j’s reward.

In many situations it is possible to use a cj that is equiv-
alent to taking agent j out of the system, which causes the
second term to be independent of j (i.e. the system per-
formance without agent j), and therefore Dj evaluates the
agent’s contribution to the global performance. There are
two key advantages to using Dj : First, because the second
term removes a significant portion of the impact of other
agents in the system, it provides an agent with a “cleaner”
signal than the global reward [18]. Second, because the sec-
ond term does not depend on the actions of agent j, any ac-
tion by agent j that improvesD, also improvesR (the deriva-
tives of D and R with respect to agent j are the same) [18].

The expected difference reward (EDR) is given by:

EDRj ≡ R(z)− Ezj [R(z)|z−j ] (4)

where Ezj [R(z)|z−j ] gives the expected value of R over the
possible actions of agent j. Because this term does not de-
pend on the immediate actions of j, this utility is still aligned
with R [1]. Furthermore, because it removes noise from
an agent’s private utility, EDR yields far better learnability
than does R [18]. This noise reduction is due to the subtrac-
tion which, to a first approximation, eliminates the impact
of other agents on the learning signal of agent j. The ma-
jor difference between EDR and D is how they handle zj .
EDR provides an estimate of agent j’s impact by sampling
all possible actions of agent j, whereas D removes agent j
from the system.

3. DOMAINS
Our framework is empirically validated in two domains:

the first is a congestion domain based upon previous work
done by Kok et al. [22] and the second is a combinatorial
optimization problem based upon the Defect Combination
Problem introduced elsewhere [18].

3.1 Gaussian Squeeze Domain
Often agents need to allocate resources in such a way that

enough resources are allocated to accomplish a goal, but not
too many resources are allocated as to be wasteful. This
problem is also similar to congestion domains, where we do
not want too much traffic on a particular route, but we still
want that route to be sufficiently used. In this section we de-
scribe an abstract version of this problem, where the action
of agent j is a choice allocation quantity xj , and the goal
of the system is to have a sum of allocations

∑
j xj that is

neither too high or too low. The penalty for miss-allocation
is defined by a scaled Gaussian. Given the sum of actions
x =

∑
j xj , the reward is as follows:

xe
−(x−µ)2

σ2 , (5)

where µ and σ are mean and sigma parameters describing
approximately how much total allocation we want and how
important it is for the allocation to be close to its desired
value.

In the above problem there is only one target allocation
value and all agents are participating in the problem. In this
paper, we will use a more complex version of this problem
in which there are multiple allocation targets and a subset
of agents is participating in each target. Each target i has
its own mean µi and its own sigma, σi. For each target,
a subset of agents participates, Ci, such that the sum of
allocated resources xi for each target i is xi =

∑
j∈Ci xj .

Note that these are overlapping sets, and that a single agent
can participate in multiple targets. The full reward is a sum
of target rewards:

R =
∑
i

xie
−(xi−µi)

2

σ2
i (6)

3.2 Multi-Target Defect Combination Problem
Many real world sensing applications require large sets of

disparate sensing devices to coordinate their actions in order
to collectively optimize their network attenuation, coverage
areas, and sensing schedules [10, 30, 39]. In this domain,
a set of sensing devices must coordinate their schedules to
optimize their aggregated attenuation over a set of targets
within an environment. Sensing agents are deployed so that
each can observe a subset of the targets — the agents must
work together to collectively optimize the accuracy of their
sensor readings over these targets. This domain is a type
of Defect Combination Problem (DCP) introduced in [18]
(although similar domains aiming to minimize Bayesian un-
certainty in sensor networks for multi-target tracking have
also been proposed [25]). This problem assumes that there
is a set of imperfect sensors, X, which have constant attenu-
ations due to manufacturing defects or imperfections. Each
of the sensors, xj , has an associated attenuation, ζj , which
can be positive or negative in its reading. If agent j takes
tries to measure the actual value, A, it instead produces a
value of A+ ζj . The agents must learn how to best choose a



Figure 1: In the Multi-Target Defect Combination Problem,
a set of imperfect sensors (blue squares) are in an environ-
ment with multiple observation targets (red triangles). The
sensors each have different attenuations and each sensor can
only observe a subset of the targets. Here, we represent the
coverage region of each sensor node by a circle of a given
radius. Each sensor can observe any targets that fall within
its radius. The goal of the sensors is to optimize their aggre-
gated accuracy of the observations across all of the targets
(Equations 7).

subset of sensors that minimizes the aggregated attenuation
of the combined readings for the set of targets within the
domain:

R =

M∑
i=1

∣∣∣∣∣
N∑

j=1

nj,iζj

∣∣∣∣∣
N∑

j=1

nj,i

(7)

where R is the aggregated attenuation (system reward) of
the combined sensor readings over the set of M targets, ζj is
the attenuation of a particular sensor j, N is the number of
sensors, and nj ∈ {0, 1} is an indicator based upon whether
sensor j chooses to be on or off.

This is an NP-complete optimization problem [18] and
simply choosing the single sensor with the best attenuation
for each target is an inadequate solution, as is choosing the
best K sensors (1 ≤ K ≤ N). To illustrate this, consider
the case where there is a single target (M = 1) and there
are 6 sensing devices whose attenuations are ζ1 = −0.19,
ζ2 = 0.54, ζ3 = 0.1, ζ4 = −0.14, ζ5 = −0.05, and ζ6 = 0.21.
Choosing only the best sensor ζ5 would yield an aggregated
attenuation of |0.05|, while choosing sensors ζ3, ζ4, and ζ5
would yield an aggregated attenuation of |0.03|, which is bet-
ter than the single best sensing device ζ5 alone. This is still
not the optimal solution in this 6 sensor case however, as
combining sensors ζ1 and ζ6 results in an aggregated atten-
uation of |0.01|. In this problem, individual sensors acting
independently without coordinating their actions can dras-
tically decrease the system performance. Consider the case
where sensors ζ1 and ζ6 are turned on in conjunction with
sensor ζ2, the aggregated attenuation jumps to from |0.01|
to |0.18|. Finding good solutions requires a great deal of
coordination between sensors, as any one sensor can heavily
impact the system performance.1

1The DCOP [26] framework is a popular, and important,
framework for solving coordination problems. However, be-

Algorithm 1 – fracked: Given a large joint multiagent
system, exploit symmetries within the problem by framing
as a Factored MDP framework and use reinforcement learn-
ing and difference rewards.

Given a set of N sensing agents and M sub-objectives
Frame as an FA-FMDP framework
for Run = 1→ RunMax do

for Episode = 1→ EpisodeMax do
Agents Select Actions (ε-greedy)
Calculate System Performance:

R =
∑M

i=1Ri

Calculate Agent Rewards:
Dj′ =

∑
i∈Cj′

Ri −
∑

i∈Cj′

Ri,−j′

or
EDRj′ =

∑
i∈Cj′

Ri − E[
∑

i∈Cj′

Ri|aj′ ]

Perform Value Updates:
Q(a)← Q(a) + α(r −Q(a))

end for
end for

4. THE FRACKED ALGORITHM
This section introduces the fracked algorithm, allowing

effective learning in large multiagent systems by reducing
observability and coordination requirements for individual
agents and addressing the structural credit assignment prob-
lem through shaped rewards. The two domains used in this
paper are stateless, making the agents action-value learners
(i.e., the limiting case of the single-state FA-FMDP). The
reward decomposition from R to local rewards, Ri, is based
upon localized joint-actions and localized rewards Ri only
depend upon a subset of the agents Γ(i) (see Section 2.1).
This decomposition means that agents are only required to
coordinate with other agents in their own localized subset.
Unfortunately, even with this decomposition these localized
joint-actions quickly become intractable as the number of
agents increases. Our algorithm avoids the computational
costs associated with requiring agents to enumerate their lo-
cal joint-actions by only requiring agents to enumerate only
their own actions, exploiting the reward decomposition de-
fined by the FA-FMDP structure.

Exploiting structure within a problem to reduce both the
observability and coordination requirements for agents is
critical within large multiagent systems. In the domains
of this work, it is possible to decompose the system reward
R into a set of M localized rewards Ri, each of which only
depend upon a subset of the agents in the system, Γ(i), such

that R =
∑M

i=1 Ri [14]. Here, each agent j is involved with
a subset Cj of the M localized rewards, and therefore each
agent only needs to coordinate directly with the subsets of
agents Γ(i) involved in each of its localized rewards i ∈ Cj .
In this setting, each agent’s individual reward function rj is
comprised upon the localized rewards Ri to which the agent
is contributing, such that rj =

∑
i∈Cj Ri. Agents optimizing

their individual rewards, rj within the FA-FMDP structure,
will simultaneously be acting to optimize the system-level
objective R [4, 7, 22].

Although the FA-FMDP structure reduces coordination

cause the rewards for different agents actions are not known
a priori, a learning, rather than planning, method is re-
quired.



requirements and establishes local rewards for agents, it
does not address decision making. Reinforcement learning
enables agent decision making and addresses the temporal
credit assignment problem. In this work, agents use re-
inforcement learning to iteratively improve their decisions
based upon their individual rewards, rj . Although rein-
forcement learning addresses the temporal credit assignment
problem, it does not directly address the structural credit
assignment problem. The problem of how agents should be
assigned reward becomes increasingly complex as the num-
ber of agents, and groups of agents, increases. We address
this shortcoming by using agent-specific difference rewards
which were designed specifically to address the structural
credit assignment problem within large multiagent systems.

Difference rewards are agent-specific shaped rewards that
were designed to address the structural credit assignment
problem in multiagent systems. These rewards have been
shown to work well in a number of domains including coor-
dinating networks of satellites, controlling swarms of UAVs,
and managing air traffic [1, 18]. Although these rewards
have been shown to work well within a number of prob-
lem settings they have high observability requirements. We
address this shortcoming by casting the problems into an
FA-FMDP framework, which defines localized coordination
requirements and rewards for agents. Agents using differ-
ence rewards only require local observability within the FA-
FMDP structure. We will now derive difference rewards for
agents within the GSD and the MTDCP. Expected Differ-
ence Rewards can be similarly derived, but are excluded for
brevity.

4.1 Agent-Centric Rewards for GSD
The system reward R in the GSD can be represented by

a combination of M local rewards Ri as follows:

R =

M∑
i=1

Ri =

M∑
i=1

xie
−(xi−µi)

2

σ2
i (8)

where M is the total number of local rewards in the system
(each Ri is a congestion problem, and each agent simulta-
neously participates in Cj localized rewards), xi is the sum
of the actions of the agents associated with local reward i
(xi =

∑
∀j∈Γ(i) xj , where Γ(i) is the subset of agents in-

volved with local reward i), µi is the mean of Gaussian i,
and σ2

i is the variance of Gaussian i. In this setting, the
goal of each individual agent is to optimize its own set of
localized reward functions , Cj′ , as follows:

rj′ =
∑

i∈Cj′

Ri =
∑

i∈Cj′

xie
−(xi−µi)

2

σ2
i (9)

where rj is the individual reward for agent j′, which is the
sum of all of its Cj′ local rewards, M is the total number
of targets in the system, xi is the sum of the actions of the
agents associated with Ri (xi =

∑
∀j∈Γ(i) xj , where Γ(i) is

the subset of agents involved with Ri), µi is the mean of
Gaussian i, and σ2

i is the variance of Gaussian i.
Given each agent’s individual reward rj′ , their difference

reward can be derived by combining Equations 3 and 9,
where the system reward R in Equation 3 is replaced with
the individual reward rj′ that agent j′ is attempting to op-

timize as follows:

Dj′ =
∑

i∈Cj′

Ri −
∑

i∈Cj′

Ri,−j′

Dj′ =
∑

i∈Cj′

xie
−(xi−µi)

2

σ2
i −

∑
i∈Cj′ ,j 6=j′

xie
−(xi−µi)

2

σ2
i

(10)

where Dj′ is the difference reward for agent j′, rj′ is the
reward of agent j′ (which depends upon all agents involved
in each local reward Ri∀i ∈ Cj′), Ri,−j′ is the performance
of local reward i without the contribution of agent j′, and
the remaining variables are as defined in Equation 9. The
difference rewards in this domain are modified from their
traditional form in that they depend upon each agent’s in-
dividual reward rj′ instead of a system reward R. This
replacement is because of the FA-FMDP reward decompo-
sition: each agent attempting to optimize its individual re-
ward rj′ =

∑
i∈Cj′

Ri is simultaneously attempting to opti-

mize the system reward R. This is a key requirement which
enables us to use difference rewards in this localized capac-
ity.

4.2 Agent-Centric Rewards for MTDCP
In the MTDCP, the system objective can be decomposed

into a set of sub-objectives, where each sub-objective is the
aggregated attenuation of an individual target. In this set-
ting, each sensing agent, j′, is able to observe Cj′ of the
M targets in the system simultaneously. Each individual
agent’s reward function becomes the sum of the attenua-
tions of the targets it senses as follows:

rj′ =
∑

i∈Cj′

∣∣∣∣∣∣
∑

j∈Γ(i)

nj,iζj

∣∣∣∣∣∣∑
j∈Γ(i)

nj,i

(11)

where rj′ is the reward of agent j′, i ∈ Cj′ is the set of
Ri ∈ Cj′ that agent j′ effects, j ∈ Γ(i) is the subset of
agents that are impacting reward Ri, ζj is the attenuation
of agent j’s sensor, and nj is an indicator function that takes
the value {0, 1} that determines whether sensor j chose to be
on or off. By combining Equations 3 and 11, we derive the
difference rewards for agents within the MTDCP domain:

Dj′ =
∑

i∈Cj′

∣∣∣∣∣∣
∑

j∈Γ(i)

nj,iζj

∣∣∣∣∣∣∑
j∈Γ(i)

nj,i

−
∑

i∈Cj′

∣∣∣∣∣∣
∑

j∈Γ(i),j 6=j′

nj,iζj

∣∣∣∣∣∣∑
j∈Γ(i),j 6=j′

nj,i

(12)

where Dj′ is the difference reward for agent j′, rj′ is the base
reward for agent j′ which depends upon all agents involved
in Ri∀i ∈ Cj′ , and the remaining variables are as defined in
Equation 11. Here, each agent is attempting to optimize the
coverage over the subset of targets it is sensing.

5. RESULTS
In this work we compared the performance of six types of

agents:
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Figure 2: Scaling the number of agents betweenN =1,000 andN =10,000 in the Gaussian Squeeze Domain with µ = 0.10N and
σ = 0.10N . Agents using traditional global rewards R perform worse than other learning agents. This is due to problems with
structural credit assignment: individual agents cannot determine how their own actions impacted the reward they received.
Agents using rewards rj , which are defined by the FA-FMDP structure perform better than standard global rewards as they
eliminate the impact of many agents by focusing on local areas, however they still fail to achieve good coordination. The
fracked algorithm overcomes these shortcomings by first establishing local coordination requirements using an FA-FMDP
framework, and using reinforcement learning with difference rewards to address the local coordination problems.

• Learning agents using FALA (LA)

• Learning agents using traditional global rewards (R)

• Learning agents using localized rewards rj defined by
the FA-FMDP framework (r)

• Learning agents using localized difference rewards based
upon rj (Dr)

• Learning agents using localized expected difference re-
wards based upon rj (EDRr)

• Agents behaving randomly (S)

All agents used ε-greedy Reinforcement learning with ε =
0.10 and α = 0.10. All experiments were run for r = 30
statistical runs and e = 5000 learning episodes, unless oth-
erwise specified (all results were statistically significant as
verified by a t-test with p = 0.05). In each set of experi-
ments, the overall system performance R was plotted as the
performance metric. Unless otherwise stated, each agent
was connected to Cj = 10 of the M localized rewards Ri,
resulting in approximately 90% less observability than an
equivalent system without the FA-FMDP reward decompo-
sition. LA Agents set Λ = ε and randomly initialize the
probability vector.

5.1 Normalized Gaussian Payoff Domain
The first set of experiments is conducted in the GSD. Here,

there were M = 100 independent Gaussian congestion prob-
lems and each agent is randomly connected to Cj = 10 of
these Gaussians. As seen here, agents using random poli-
cies (S) performed poorly, which could be expected in this
domain. Here, agents are sporadic in nature and are unable
to optimize the congestion within each Gaussian due to a
lack of coordination and intelligent decision making. Agents
using system level rewards struggle due to their rewards be-
ing directly coupled to the actions of all other agents within

the system, making it difficult to determine how their in-
dividual actions impacted the reward they received. These
results suggest that providing agents with a system reward
within a large multiagent system is an inadequate solution.

In GSD, learning automata (LA) with reward-inaction al-
gorithm shows one weakness of LA — LA perform poorly. 2

The primary reason for poor performance of the LA algo-
rithm is that the GSD has a maximum and minimum value
but the mean value does not contain enough information to
lead allow agent find a gradient and obtain higher rewards.

An FA-FMDP framework attempts to address this prob-
lem by exploiting the system structure in order to decompose
the system into ‘localized regions’, which focuses the observ-
ability and coordination requirements of individual agents.
In this case, the individual agents attempt to coordinate
within the localized regions defined by the FA-FMDP in or-
der to optimize their local rewards rj . Unfortunately, even
using these individual rewards rj defined by the FA-FMDP
structure is insufficient and only marginally improves learn-
ing as seen in Figure 3. This is because even these individ-
ual rewards rj still depend upon many other agents. In this
setting, standard global rewards R or even localized team-
based rewards such as the rj do not adequately address the
structural credit assignment problem (how to assign credit
to agents for their individual actions).

The fracked algorithm addresses this problem by using
the reduced observability and individualized agent rewards
rj for agents defined by the FA-FMDP structure, while si-
multaneously addressing the structural credit assignment for
agents using difference rewards. These rewards provide each
agent with specific feedback on how its individual action im-
pacted both its own reward rj , as well as how it impacted
the system reward. As seen in Figures 2a and 2b, agents
using difference rewards within this setting Dr and EDRr
significantly outperform other methods. This is because as

2Multiple LA algorithms and formulations of β were tested
— this paper reports the highest-performing combinations.
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Figure 3: 10,000 agents with 100 targets and each agent is
assigned to 10 targets. The fracked algorithm outperforms
all other methods by significantly reducing the coordination
requirements for agents in the system.

multiagent systems become increasingly large, the structural
credit assignment problem becomes increasingly debilitating
to system performance. As seen, the fracked algorithm re-
sults in significantly improved learning performance.3

5.2 Multi-Target Defect Combination Problem
The first set of experiments in the MTDCP domain uses

N = 10,000 sensing agents, T = 100 targets, and each
agent is connected to Cj = 10 targets, randomly. Agents
using a random policy S perform poorly, as they fail to
coordinate their actions intelligently within this combina-
torial optimization problem. Learning automata agents use
the reward-inaction algorithm and do indeed improve learn-
ing over time, but perform poorly relative to Q-learning
agents.4 Agents using traditional global rewards R also per-
form poorly within this setting. This is because agents strug-
gle to coordinate their actions due to noise on their learning
signals caused by the actions of other agents. Again, the FA-
FMDP framework benefits performance in that it reduces
this noise by restricting agents to communicating directly
with a subset of the system. As seen, performance is im-
proved when the agents receive individual rewards rj defined
by the FA-FMDP framework (Equation 11) instead of sys-
tem rewards. However, agents still have difficulty learning
due to the structural credit assignment problem. Again, our
algorithm uses the strengths associated with this reward de-
composition, while at the same time addressing its shortcom-
ings by addressing the structural credit assignment problem
using difference rewards which results in significantly im-
proved performance (Figure 3). To show the robustness of
this approach to scaling, we included a plot of scaling the
number of agents in the system from 100 to 10,000. These
results show that our algorithm is robust to scaling and is
beneficial for systems of ranging sizes (Figure 4).

3Performance tradeoffs between D and EDR rewards are
discussed in [18].
4All other reward formulations discussed in this paper were
tested with LA, but they (surprisingly) performed worse
than when using the global reward. Our experiments thus
focus on Q-learning agents in this domain.
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Figure 4: 10,000 agents with 100 targets and each agent is
assigned to 10 targets. As seen, agents using the fracked
algorithm (Dr and EDRr) significantly outperform all other
methods with scaling up to 10,000 agents.

6. DISCUSSION
We demonstrated that in many large multiagent systems,

the coordination requirements for agents are overwhelm-
ing, resulting in poor coordination and performance. To
address this, we have introduced the fracked algorithm
which reduced agent-to-agent coordination requirements, in-
creased performance, and offered improved scalability over
many existing techniques. The fracked algorithm used an
FA-FMDP framework to exploit the problem structure that
exists in many large scale multiagent systems in order to
decompose the system and establish localized coordination
requirements for agents. It then leveraged reinforcement
learning with difference rewards in order to promote learn-
ing and coordination within the FA-FMDP structure. We
demonstrated that the fracked algorithm significantly out-
performed agents using traditional global rewards R, local-
ized “global” rewards within an FA-FMDP structure r, and
finite action learning automata LA in two domains with scal-
ing up to 10,000 agents.

This algorithm shows significant promise for scaling to
large multiagent systems. However, this work assumed that
the system designer understood the system’s structure and
was able to decompose the system within an FA-FMDP
framework accordingly. As Degris et al. pointed out, such
system information is not always available. Our algorithm
can be extended to the setting that the agents must col-
lectively learn the underlying FA-FMDP framework for the
system without significant prior knowledge. This would ex-
tend the benefits of our algorithm to complicated domains
where casting the problem into an FA-FMDP framework is
non-trivial. Finally, to improve the results for LA, we could
use advanced techniques for determining β(k) from the en-
vironment to improve performance.
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