
Agents Teaching Humans in Reinforcement Learning
Tasks

Yusen Zhan1, Anestis Fachantidis2, Ioannis Vlahavas2, Matthew E. Taylor1
1Washington State University, Pullman, WA, USA

2Aristotle University of Thessaloniki, Thessaloniki, Greece
yusen.zhan@wsu.edu, {afa, vlahavas}@csd.auth.gr, taylorm@eecs.wsu.edu

ABSTRACT
This paper extends our existing teacher-student framework
to allow a knowledgeable agent to teach human students.
An agent teacher instructs a human student by suggesting
actions the student should take as it learns. This paper
extends previous algorithms, used for agents teaching other
agents, to develop several new algorithms for agents teaching
humans. Our results in the Pac-Man domain show that our
new approaches can indeed be effectively used to improve
human learning. Moreover, some of these human-teaching
approaches perform better than some of the original algo-
rithms when one agent teaches another agent.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Reinforcement Learning, Inter-agent teaching, Human Teach-
ing

1. INTRODUCTION
Agents can autonomously learn to master sequential deci-

sion tasks by reinforcement learning (RL) [8]. Traditionally,
RL agents are trained and used in isolation. Research focus-
ing on interaction among agents, even between agents and
humans, becoming popular.

This paper investigates how an RL agent could serve as
a teacher for human students. This limits us to human-
understandable teaching methods, prevents teachers from
assuming any access to a student’s internal representation,
and prevents students from simply starting with the teacher’s
knowledge. Furthermore, it requires teachers to be able to
instruct students who may learn and perceive their environ-
ment differently.

As a motivating example of RL agents used as teachers,
consider the fast-growing industry of computer games. Mod-
ern games often have built-in training sessions to help them;
currently, this is additional content created by game devel-
opers. However, most of these sessions are simple built-
in processes without any intelligent guidance. RL agents
could learn to play these games autonomously and then
teach human players, reducing the amount of developer time

required to produce training content and providing better
player game experience.

There are many possible methods to assist agent’s learn-
ing [9, 10], but few are also applicable to human students.
One that is applicable is action advice: as the student prac-
tices, the teacher suggests actions to take. This method is
the one we follow in this work and it requires only agreement
of the action sets between teachers and students, while allow-
ing for different state representations and different learning
algorithms among teachers and students.

Another assumption we make in this paper is that the
agent teachers can only give their students a limited amount
of advice. The primary reason for this restriction is that
human students would have limited patience and attention.
In some domains, the communication between agents is also
limited. Moreover, a teacher that over-advises a student
could actually hinder its learning, if the differences between
them are significant or the teacher is sub-optimal.

This paper extends our previous work [10], which focused
on agents teaching agents, by studying how an RL agent
can best teach human students using a limited advice bud-
get. This paper will also evaluate these algorithms on cases
when one agent teaches another agent. The teacher ob-
servers states and actions of student and gives advice a fixed
number of times, when necessary, but it cannot observe or
change internal information of the student. The advice ne-
cessity is defined in a more formal way later in this text.

One unique problem with human students is that they
cannot process very frequent advice from an agent because
an agent has shorter reaction time than that of a human.
To address this problem we extend the previous teaching
algorithms to 1) reduce the total amount of advice given to
a human student and 2) not provide advice too often. Both
modifications are designed to improve the user’s experience
while maintaining teaching effectiveness.

We evaluate these algorithms experimentally in Pac-Man.
The results show that our new approaches can not only be
applied to agents teaching humans, but also to agents teach-
ing agents settings. Moreover, some of our new approaches
perform better than the old ones in the agents teaching
agents setting, even though this was not the objective of
our algorithmic design. Furthermore, this paper proposes a
new theoretical formulation of the advising problem repre-
senting each of the old and new algorithms as parameterized
instances of a more general advice distribution policy.

2. BACKGROUND AND RELATED WORK

2.1 Reinforcement Learning
In reinforcement learning, an agent learns through trial

and error to perform a task in an environment. As the agent
takes actions, it receives feedback in the form of real-valued
rewards. RL algorithms use this information to gradually
improve an agent’s control policy in order to maximize its
total long-term expected reward.

At each step, the agent observes the state s of its environ-
ment. Using its policy π, it selects and performs an action a,
which alters the environment state to s′. The agent observes
this new state as well as a reward r, and it uses this infor-
mation to update its policy. This cycle repeats throughout
the learning process, which is often broken into a sequence
of independent episodes.

A common way to represent a policy is with a Q-function
Q(s, a), which estimates the total reward an agent will earn
starting by taking action a in state s. Given an accurate Q-
function, the agent can maximize its rewards by choosing the
action with the maximum Q-value in each state. Learning
a policy therefore means updating the Q-function to make
it more accurate. Even in the early stages of learning, the
agent chooses actions with maximum Q-values most of the
time, but to account for potential inaccuracies in the Q-
function, it must perform occasional exploratory actions. A
common strategy is ε-greedy exploration, where with a small
probability ε, the agent chooses a random action.

In an environment with a reasonably small number of
states, the Q-function can simply be a table of values with
one entry for each state-action pair. Basic RL algorithms
make updates to individual Q-value entries in this table.
However, in some larger environments, states cannot be enu-
merated and need to be described by features {f1, f2, ...}.
The Q-function is then an approximation, and a common
form is a linear function Q(s, a) =

∑
i wifi. Learning a

policy then means updating the weights {w1, w2, ...}.
For the experiments in this paper, we use Sarsa(λ) with

linear Q-function approximation [8]. Since they already al-
low for off-policy exploratory actions, the algorithm can sim-
ply treat advice like a particularly lucky form of exploration.
These algorithms have four parameters: the exploration rate
ε, the learning rate α, the eligibility-trace parameter λ, and
the discount factor γ. We report their values in each task for
reproducibility but we omit a detailed discussion of them.

The weights of the approximated Q-function, {w1, w2, ...}
need to be given initial values. The usual choices are opti-
mistic, so that weights are adjusted downwards over time, or
pessimistic, so they are adjusted upwards. We find that this
choice is important in the context of teaching with advice.
With optimistic initialization, agents focus their attention
on unexplored actions, which means that they delay repeat-
ing advised actions. With pessimistic initialization, agents
have no such bias and can benefit much more from advice.
All agent-learning experiments in this paper therefore use
pessimistic initialization.

2.2 Related Work
There are several types of related work in the area of help-

ing to learn. Some of this work focuses on teaching in non-
RL settings [3, 7].

In the field of transfer learning in RL [9], an agent uses
knowledge from a source task to aid its learning in a target
task. However, agents perform transfer knowledge from one
task to another.

More closely related work has one RL agent teach another
without a direct knowledge transfer. For example, in advice
teaching [10], a student receives advice from a trained and
excellent teacher. Our work is mainly based on this work.
However, the student may be not only a agent, but also may
be a human student in our settings.Other examples include
imitation learning [5], apprentice learning [4].

Finally, humans are sometimes employed to teach agents.
For instance Learning from Demonstration [1] includes a
broad category of work that focuses on agents learning to
mimic a human demonstrator. This type of work is the dual
of our work — we employ agents to teach humans.

3. TEACHING ON BUDGET
Suppose that an RL agent has learned an effective pol-

icy π for a given task ω. Using this fixed policy, it will
teach students beginning to learn the same task. As the
human/agent student learns, the teacher will observe each
state s the student encounters and each action a the student
takes. Having a budget of B advice, the teacher can choose
to advise the student in n ≤ B of these states to take the
“correct” action π(s). In this work, we assume the teacher’s
advice is always correct.

How should the teacher spend its n advice most effec-
tively? The teacher should adopt some form of advice dis-
tribution policy which will guide it to decide when to give
advice. When students are humans, this distribution policy
of the advice should also take into consideration factors such
as the possible annoyance from repetitive advising. We take
an experimental approach to answer this question, propos-
ing and testing several algorithms that distribute the budget
of advice, based on our previous work [10]. We first begin by
proposing a new, more general formulation of the advising
problem which aims to be flexible enough to cover both past
and possibly future methods.

Assume that a RL teacher agent T is trained in a task ω
and has access to its learned Q-Value function Qτ . Then, a
student agent S, either human or agent, begins training in ω
and is able to accept advice in the form of actions from the
teacher. We further assume that the teacher has a limitation
on the amount of advice he can give, a budget of B.

We consider two things as the important when advising:
the quality of the given advice in the advice production
phase, and the distribution of the advice in the distribution
phase, meaning the spread of the advice given in an episode
or a decision of giving less advice than that available in the
budget B.

For the teacher to produce advice we can extract a pol-
icy πτ = arg maxa(Qτ (s, a)) from its action-value function
and advice according to it. Note that we assume that the
teacher’s advice is always near optimal and that we greedily
exploit its value function.

For the teacher to distribute its advice most effectively
we define an advice distribution policy, πd as the policy:

πd(S,B, I(·), ρ(·))→ {πt, ∅} (1)

which distributes the advice with respect to the following:
i) the current knowledge about the student S which could
be his current state, the action he is intended to take and
can possibly be mistaken, or the reward he received; ii) the
available budget of advice B; iii) an importance function I,
capable of calculating the importance of a given state; and
iv) an advice rate function ρ which calculates the rate at

Algorithm 1 Alternate Advising

procedure AlternateAdvising(π, n,m)
1: step← 0
2: for each student state s do
3: if n > 0 and step mod m = 0 then
4: n← n− 1
5: Advise π(s)
6: end if
7: step← step+ 1
8: end for
end procedure

which the advice is given (the advice sparsity). Given the
previous, an advice distribution policy returns either the ac-
tion suggested by the teacher’s policy, πt(s) for the student’s
current state s or the empty set, ∅ representing the teacher’s
no advice response at the current step.

The I(·) function governs the qualitative characteristics of
advising such as the importance of a state or even the lack
of attention of a human student (if one has access to such
information). The function ρ(·) governs the quantitative as-
pects of advising, such as advising in a steady constant rate
of steps m, or a decaying rate of advising. Functions I and ρ
along with their parameters (e.g., thresholds), impose their
qualitative and quantitative constraints to an advising prob-
lem that would else be unconstrained giving by default all
the advice immediately and in whatever states.

As a minimal example of the proposed formulation, the
Early Advising method [10] which gives all the available ad-
vice B immediately, in the first B steps, can be said to follow
an advice distribution policy πd(S = {s}, B, I = ∅, ρ = 1).
It requires knowledge only about the current state, s of the
student, S = {s}, it has no importance metric, I = ∅ and
a constant rate function ρ = 1, giving advice to every step
until the entire budget is used.

3.1 Alternating Advice
In our previous paper [2], an advising method called Al-

ternating Advice was proposed. This method is based on
the intuition that students should benefit more from advice
early on, when they know very little. It also addressed the
shortcomings of an advice budget being spent too quickly in
a limited part of the state space. In this method, the teacher
gives advice once every m steps for the first n×m states the
student encounters, where n equals the budget B of available
advice, n = B. Based on the previously introduced notion of
the advice distribution policy (see Equation 1) this method
follows a policy, πd of the form: πd({s}, n, ∅,m). We will
adopt this method as a baseline, as it outperforms the Early
Advising Algorithm. See Algorithm 1 for details.

3.2 Importance Advising
When all states in a task are equally important to achieve

the goal, Early Advising and Alternate Advising could be
effective strategies. However, we hypothesize that in some
tasks, some states are more important than others, and sav-
ing advice for more important states would be a more ef-
fective strategy. Therefore, Importance Advising [10] . de-
termines when the teacher should provide advice to the stu-
dent. A threshold measures state importance. The teacher
could thus give advice only when the importance of the stu-
dent’s state reaches some threshold t. Algorithm 2 shows

Algorithm 2 Importance Advising

procedure ImportanceAdvising(π, n, t)
1: for each student state s do
2: if n > 0 and I(s) ≥ t then
3: n← n− 1
4: Advise π(s)
5: end if
6: end for
end procedure

the original Importance Advising algorithm.
Recall that a Q-value, Q(s, a), is an estimate of the return

for taking action a in state s. If the Q-values for all the
actions in s are the same, it does not matter which one is
taken, and the state s is unimportant. However, if some
actions in s have larger Q-values than others, then it does
matter, and s has some “importance.” For this paper, we
define state importance as:

I(s) = max
a

Q(s, a)−min
a
Q(s, a)

introduced by Clouse [4] in his work on apprenticeship learn-
ing, It was used there to approximate a learner’s confidence
in a state. Here, we compute I(s) from the teacher’s fully-
learned Q-function rather than the student’s partially-learned
one, and in this context it is considered an indicator of state
importance rather than of agent confidence. According to
our formulation, importance advising can be said to follow
an advice distribution policy of the form πd({s}, n, I(s), 1).

However, when teaching humans, the original Importance
Advising may provide advice frequently which will detect
from the player’s experience during training. For example,
the human players will continually receive advice from the
agent teacher when the ghosts are approaching Pac-Man be-
cause these states are important in the sense of our measure.
Hence, this paper develops teaching strategies that not only
provide the advice to human players but also aim to main-
tain the player’s enjoyment.

The first method we propose to address this problem,
introduces a dynamic threshold t′ which will vary at run-
time. The basic idea is that the advice threshold should
be significantly increased after each advising. Therefore,
the probability that the teacher will give advice to the stu-
dent becomes very small due to increased threshold. Then,
on every step, the threshold gradually decreases over time,
leading again to a higher probability of giving advice which
guarantees that the teacher will still give necessary advice
to its human students. This intuition implements an advice
distribution policy of the form: πd({s}, n, I(s, t′), 1).

Suppose we have a threshold t and a factor f ≥ 1 that
will produce a larger threshold t′ = f × t after every teacher
advising. For the threshold t′ to be dynamic, a discount
factor β ∈ [0, 1] is introduced. We update the threshold
t′ as t′ = β × t in each step so that t′ gradually decreases
over time. Finally, if the dynamic threshold t′ is less than
threshold t, set t′ = t. If t′ becomes too small, the teacher
would save advice for unimportant states. The dynamic
threshold t′ vary from f×t to t. After advising, the threshold
is set again to t′ = f × t. We call this method Dynamic
Importance Advising (see Algorithm 3).

Lines 1, 6 and 8-10 are new in Algorithm 3, compared
to Algorithm 2. Line 1 introduces the dynamic threshold

Algorithm 3 Dynamic Importance Advising

procedure DynamicImportanceAdvising(π, n, t, f, β)
1: t′ ← t× f
2: for each student state s do
3: if n > 0 and I(s) ≥ t′ then
4: n← n− 1
5: Advise π(s)
6: t′ ← t× f
7: end if
8: t′ ← β × t′
9: if t′ < t then

10: t′ ← t
11: end if
12: end for
end procedure

 0

 50

 100

 150

 200

 250

 300

 100 120 140 160 180 200

Im
p
o
rt

a
n
c
e
 o

f
S

ta
te

s

Steps

I(s) Dynamic t t

Figure 1: Comparison of the current state’s importance
(I(s)), the dynamic threshold of Dynamic Importance Ad-
vising (Dynamic t) and Important Advising (t) in part of
one episode.

and Line 6 resets the dynamic threshold. Finally, Lines 8-
10 guarantee that the threshold will vary over time with a
lower bound. This method is a generalization of Importance
Advising. When f = 1, Dynamic Importance Advising is
equivalent to Importance Advising. Figure 1 illustrates the
difference between Dynamic Importance Advising and Im-
portance Advising in one example run of the algorithm when
one knowledgeable agent teaches a naive student agent.

Figure 1 shows that our new approach significantly re-
duces the amount of advice given since there are a few red
points (dynamic threshold of state importance) that meet
the green points (actual state importance on time step t).
In contrast, a lot of green points are above the blue point,
indicating that the agent teacher will keep sending advice to
the student. Given that, we can say that Dynamic Impor-
tance Advising reduces the giving rate of advice indirectly
through the varying importance of the states.

The second method proposed here to improve importance
advising implements the intuition that no advice should be
given for m steps after any advising event. Such a method
reduces directly the advice rate by introducing a constant
advice rate function ρ = m. We call this algorithm Alter-
native Importance Advising. See Algorithm 4 for details.

Algorithm 4 Alternative Importance Advising

procedure AlternativeImportanceAdvising(π, n,m, t)
1: step← m
2: for each student state s do
3: if step = 0 then
4: if n > 0 and I(s) ≥ t then
5: n← n− 1
6: Advise π(s)
7: step← m
8: end if
9: else

10: step← step− 1
11: end if
12: end for
end procedure

Algorithm 5 Mistake Correcting

procedure MistakeCorrecting(π, n, t)
1: for each student state s do
2: Observe student’s announced action a
3: if n > 0 and I(s) ≥ t and a 6= π(s) then
4: n← n− 1
5: Advise π(s)
6: end if
7: end for
end procedure

This algorithm implements an advice distribution policy:
πd({s}, n, I(s),m). Note that if m = 1, this method is also
equivalent to the original Importance Advising algorithm.
Lines 1, 8 and 11 are new in Algorithm 4, compared to Al-
gorithm 2.

3.3 Mistake Correcting
Even if a teacher saves its advice for important states, it

may end up wasting some advice in states where the stu-
dent already intended to take the correct action. Based on
this observation, the Mistake Correcting algorithm was pro-
posed in previous work [10] (see Algorithm 5). Since Mistake
Correcting assumes knowledge about the student’s intended
action a (not only his state) it can be said to follow an advice
distribution policy of the form: πd({s, a}, n, I(s), 1).

In order to address the frequent advice problem in Mistake
Correcting, we introduce the dynamic threshold t′ to Mis-
take Correcting, to get Dynamic Mistake Correcting, which
will also reduce advice frequency during the runtime. Lines
1, 7 and 9-12 are new in Algorithm 6, compared to Algo-
rithm 5. Line 1 introduces the dynamic threshold and Line
7 resets the dynamic threshold. Finally, Lines 9-12 guaran-
tee that the threshold varies over time with a lower bound.

Just as in standard Mistake Correcting, this method re-
quires that the student will announce its intended action in
advance and give teachers an opportunity to correct them,
since one of the key assumptions in this work is that teachers
have no direct access to the student’s knowledge.

Firstly, We also introduce dynamic threshold to Mistake
Correcting. See Algorithm 6 for details.

When t is 0, this approach ignores state importance and
corrects all mistakes. When f = 1, it becomes equivalent to
the original mistake correcting method. The second method
is the same as Algorithm 4 in which there is no advice for

Algorithm 6 Dynamic Mistake Correcting

procedure DynamicMistakeCorrecting(π, n, t, f, β)
1: t′ ← t× f
2: for each student state s do
3: Observe student’s announced action a
4: if n > 0 and I(s) ≥ t′ and a 6= π(s) then
5: n← n− 1
6: Advise π(s)
7: t′ ← f × t
8: end if
9: t′ ← β × t′

10: if t′ < t then
11: t′ ← t
12: end if
13: end for
end procedure

m steps after advising.
Due to the space, we omit the details of Alternative Mis-

take Correcting. If m = 1, the Alternative Mistake Correct-
ing is equivalent to the original Mistake Correcting method.
Finally, Algorithms 1d ?? can be said to follow advice dis-
tribution policies of the form πd({s, a}, n, I(s, t′), 1) and πd(
{s, a}, n, I(s),m) respectively.

4. EXPERIMENTAL DOMAIN AND RESULTS
This section first introduces the experimental domain. Then,

it presents the results of agents teaching agents, demonstrat-
ing that although our algorithms were designed for teaching
human students, they also work for agents teaching agents.
Finally, the results of agents teaching humans are presented.

4.1 Pac-Man
Pac-Man is a famous 1980s arcade game in which the

player navigates a maze like the one in Figure 2, trying to
earn points by touching edible items and trying to avoid
being caught by the four ghosts. We use a JAVA implemen-
tation of the game provided by the Ms. Pac-Man vs. Ghosts
League [6], which conducts annual competitions. Ghosts in
our setting are the standard ones which will chase the player
80% of the time and choose the actions randomly 20%.

Pac-Man episodes all occur in mazes. For agents teaching
agents, we use the default maze. To avoid systematic biases,
we use a new maze for human players. The player and all
ghosts have four actions — move up, down, left, and right
— but some actions are unavailable due to the walls in the
maze. Four moves are required to travel between the small
dots on the grid, which represent food pellets and are worth
10 points each. The larger dots are power pellets, which are
worth 50 points each. When the player gets the lager ones,
the ghosts become edible for a short time, during which they
slow down and turn to fleeing instead of chasing. Eating a
ghost is worth 200 points and respawns the ghost in the lair
at the center of the maze. The episode ends if any ghost
catches Pac-Man, or after 2000 steps in the agents teaching
agents setting.

This domain is discrete but has a very large state space.
There are over 1000 distinct locations in the maze, and a
complete state consists of the locations of Pac-Man, the
ghosts, the food pellets, and the power pills, along with
each ghost’s previous move and whether or not it is edi-

Figure 2: Pac-Man with Information Display for Human
Players

ble. The combinatorial explosion of possible states makes it
essential to approach this domain through high-level feature
construction and Q-function approximation.

In this paper, we follow our previous work that adopted
the action-specific features as a high-level feature set. When
using action-specific features, a feature set is really a set of
functions {f1(s, a), f2(s, a), ...}. All actions share one Q-
function, which associates a weight with each feature. A
Q-value is Q(s, a) = w0+

∑
i wifi(s, a). To achieve gradient-

descent convergence, it is important to have the extra bias
weight w0 and to also normalize the features to the range
[0, 1].

In this paper, we create agents with a state representation
in Pac-Man domain by defining a feature set, which consists
of 7 features that count objects at a range of distances from
Pac-Man maze, as we used (and defined) in our previous
work [10].

A perfect score in an episode is 5600 points, but this is
quite difficult to achieve (for both human and agent players).
An agent executing random actions earns an average of 250
points. The agent can learn to catch more edible ghosts and
achieve a average of 3800 points per episode.

For agents teaching Pac-Man to humans, there are some
problems which need to be addressed. For example, how
should the teacher advice be displayed? Human players can-
not instantly accept the advice immediately — how should
time be provided to human players to learn? Moreover, how
do the human players accept the advice from the teacher?
To tackle all above issues, we extend the GUI of the original
Pac-Man implementation to provide this information (see
Figure 2).

When a human is playing as the student, s/he can play
the game as normal, navigating through the maze using the
keyboard. When the agent teacher wants to give the advice
to the human student, the agent teacher pauses the game
and displays the advised action — up, down, left, or right
— in the message frame. To teach the human students,
we develop a user-choice mode to give the advice in which
human players are able to choose the actions. Since the
game is paused, the human student has sufficient time to
analyze the current situation and decide whether or not to
accept the advice from the teacher. It is also important for
the advice to be considered as teaching and learning process
rather that an instantaneous correcting behaviors of players

Advising Method Avg. Reward
1 Mistake Correcting 3387
2 Alternative Mistake Correcting 3299
3 Dynamic Mistake Correcting 3249
4 Importance Advising 3192.4
5 Dynamic Importance Advising 3138
6 No Advice 3100
7 Alternative Importance Advising 3084.5

Table 1: Average reward of 1000 episodes for all the methods
used in the agents teaching agents setting. The results are
averaged over 12 independent trials.

during the pausing. After choosing an action, the human
student can resume the game by pressing R button.

4.2 Agents Teaching Agents
This subsection presents results from agents teaching agents

using our new teaching algorithms. To compare with pre-
vious algorithms in [10], we adopt the same experimental
settings and statistical methods. The student agent must
accept the advice action from the teacher.

To smooth the natural variance in student performance,
each learning curve averages at least 15 independent trials
of student learning. While training, an agent pauses every
few episodes to perform at least 30 evaluation episodes and
record its average performance. No learning, exploration, or
teaching takes place during evaluation episodes. This way
the learning curves reflect only the student’s knowledge, not
teacher knowledge.

Since we have many parameters (i.e., t, f , and β) in our
new approaches, we used preliminary experiments to chose
the best — we report the results only for tuned parameters.

Each Pac-Man teacher is given an advice budget of n =
1000, which is exact half the number of the steps limit in
a single episode. The RL parameters of the agents are ε =
0.05, α = 0.001, γ = 0.999, and λ = 0.9.

We present experiments where a trained Sarsa teacher
provides advice to a Sarsa student (Figure 3, left). We also
compare to the performance of previous algorithms: Mistake
Correcting and Importance Advising. The parameter details
are as follows: Alternative Importance Advising, m = 30
and t = 150; Alternative Mistake Correcting, m = 15 and
t = 210;Dynamic Importance Advising, t = 40, f = 25 and
β = 0.9; Dynamic Mistake Correcting, t = 20, f = 25 and
β = 0.9; Importance Advising, t = 50; Mistake Correcting,
t = 50. The average score through all 1000 episodes shows
that alternative mistake correcting is the second best ad-
vising method from all seven tested, with standard mistake
correcting being the best (see Table 1).

These new approaches aim to reduce the amount of advice
given in the early episodes, while not significantly reducing
the performance. The results from Figure 3 (left) confirms
this, but the best performing algorithm is Mistake Correct-
ing methods which indicates that they provide advice in the
most critical points, improving relative to no advice in pre-
vious work [10].

4.3 Agents Teaching Humans
In agents teaching humans setting, Pac-Man teachers are

given an advice budget of n = 1000 as well. We designed
four experimental groups with a total of forty human play-
ers. Each group has ten players and conducted three rounds

during the experiments. After the players completed the
experiments, the player received compensation ($0, $0.5, or
$1) based on their scores in Round 3. After round three, the
players completed a survey. The four groups are designed
as follows:

Control Group—There is no advising for human players
during the experiments.

Baseline Group—The Importance Advising is adopted
as the advising algorithm for teaching human players. The
parameter that the agent teacher uses is m = 30.

Dynamic Group—The Dynamic Importance Advising
algorithm is adopted as the advising algorithm for teaching
human players. The parameters that the agent teacher uses
are t = 50, f = 100 and β = 0.9.

Alternative Group—The Alternative Mistake Correct-
ing algorithm is adopted as the advising algorithm for teach-
ing human players. The parameters that the agent teacher
uses are m = 20 and t = 100.

These parameters are chosen by preliminary experiments
among small group WSU students before the case study.
The details of three rounds are designed as follows:

Round 1: There is a 1000 step limit. After 1000 steps,
regardless of the game’s state, the game will be terminated.
If the player dies in less than 1000 steps, the players will
start new games until s/he has taken 1000 steps.

Round 2: There is again a 1000 step limit, but now the
player will receive advice (except for the Control Group).
Again, if the player dies in less than 1000 steps, the players
will start new games until s/he has taken 1000 steps.

Round 3: In the third and final round, the players have
only one chance to play the game. If they die or complete
the game (i.e., eat all pellets), the game will be terminated.

In Figure 4, the left figure presents the average scores that
human players obtain during the whole experiment and the
right figure renders the median scores that human players
obtained during the whole experiment. To offer these two
statistical estimations, we want to give a more comprehen-
sive performance results in each group. “Control” denotes
the Control Group, “Dynamic” denotes the Dynamic Group,
“Baseline”denotes the Baseline Group, and“Alternative”de-
notes the Alternative Group.

In Figure 4, we can see that the Alternative Group per-
formed better than the others two groups with advice (Base-
line Group and Dynamic Group), compared to the Control
Group. In Round 1, the difference between groups is not
significant. In Round 2, the scores range from 2000 to 2400;
The range is from 1700 to 2700 in Round 3. In Figure 4
right we have similar results except an unexpected point for
Baseline Group in Round 1, which might be explained as
an adaptation phase for most of players in Baseline Group1,
since they improve their performance in Round 2 and finally
achieve a higher median score.

Note that the setting of Round 3 is more strict than Round
1 and Round 2 because the players have only one chance to
play the game — if the players immediately make a fatal mis-
take, the game will be terminated. Thus the scores between
Round 3 and the other rounds cannot be directly compared.
In Round 3, all groups except for Alternative Group gain

1Figure 4 (right) contains median scores that human players
finally obtain in different groups. If the median score is lower
than the average score for a specific group, that means most
of players in this group perform poorly and obtain lower
scores which are smaller than the average score.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000

A
v
e
ra

g
e
 S

c
o
re

Training Episodes

Alternative Importance Advising
Alternative Mistake Correcting
Dynamic Importance Advising

Dynamic Mistake Correcting
Importance Advising

Mistake Correcting
No Advice

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

Dynamic Baseline Alternative

T
h
e
 N

u
m

b
e
r

o
f
A

d
v
ic

e

Experimental Groups

Figure 3: A trained Pac-Man agent teaches student agents. Left: Sarsa students and Sarsa teachers. Right: average advice
that human players receive in Round 2. Note that Control Group doesn’t provide advice during the Round 2; the number of
advice for Control Group is zero.

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

Round1 Round2 Round3

S
c
o
re

s

Rounds

Control
Dynamic
Baseline

Alternative

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

Round1 Round2 Round3

S
c
o
re

s

Rounds

Control
Dynamic
Baseline

Alternative

Figure 4: Left: average score among human players for each group. Right: Median score among human players for each group.

Figure 5: The survey results about the user experience and advice helpfulness. Left:The advice helpfulness survey from users.
Because the Control Group doesn’t have advice, these survey questions are not applicable. Right: The user experience for
the advice during the experiments.

lower scores in both Figure 4 left and right, compared with
Round 1 and Round 2. However, why does the Alternative
Group perform better than other two groups with advice?
Moreover, the Dynamic Group and the Baseline Group with
advice also perform worse than the Control Group in Round
2. Why do these two groups with advice perform badly in
Round 2? To answer these two questions, we need to analyze
other data.

Figure 3 (right) shows the average amount of advice that
the agent teacher provided to human players in Round 2.
The average amount of advice for the Dynamic Group and
the Baseline Group are 12 and 19, respectively. However,
the each human player in the Alternative Group receives
7 advice in Round 2. Based on the fact there is no ad-
vice for Control Group, we conclude that Dynamic Group
and Baseline Group excessively give suggestions to human
players which tampers the user experience and annoy play-
ers, resulting in poor performance. We can also justify this
argument by a survey answered by the players after the ex-
periment (see Figure 5, left). The players in the Dynamic
Group and the Baseline Group feel more annoyed than those
in the Alternative Group by the advising process. 50% of
the players in the Alternative Group feels the advice is rarely
annoying. In contrast, 40% players in Dynamic Group and
40% players in Baseline Group think the advice is annoying
and neutral, respectively.

Furthermore, human players in the Alternative Group ex-
perience less advice (and interruption to gameplay) and are
willing to consider the advice from the agent teacher dur-
ing the experiments. In Figure 5 (right), most of players in
the Alternative Group think that the advice is more help-
ful than the other two groups. 50% of the players in the
Alternative Group feels the advice is helpful during the ex-
periments. However, 40% of the players in the Dynamic
Group and 60% of the players in the Baseline Group had
rarely helpful and neutral attitudes toward advice from the
agent teacher, respectively. This explains why players in
the Alternative Group perform well in Round 2 and Round
3 — they learned something useful from the agent teacher
with proper amount of advice. An Eta correlation statistic
was performed on the questionnaire items to examine the in-
teraction between group membership and questionnaire re-
sponses. The largest Eta score, Eta = .345 was found for
the question concerning the necessity of the advice. This
shows that the perception that each player had for the neces-
sity of the given advice was the mostly influenced attribute
by the advising method they experienced (their group mem-
bership).

In all, we conclude that the advice substantially helps hu-
man players if the agent teacher gives a proper amount of
advice to the human players. Otherwise, it will hurt the
performance of human players.

5. DISCUSSION
In this paper, we developed new algorithms based-on pre-

vious work [10]. The experimental results lead us to the
following conclusions about teaching with an advice budget.

The new algorithms are capable of teaching both agents
and humans, Some of new algorithms perform better than
old ones under same budget, Redistributing advice in the
long run can improve the performance of agents, The amount
of advice given is a key issue when human players are playing
the games. The advice substantially helps human players if

the agent teacher gives the proper amount of advice to the
human players.

When teaching humans, the quality of the advice them-
selves or the advice distribution policy are not the only cru-
cial factors for the advising performance. Other perceptional
aspects such as the annoyance of the player from the given
advice, also play an important role. Ideas for future work
include testing new adaptive threshold advice methods for
teaching humans and that will take into consideration other
human factors too, and the development of new state im-
portance metrics. In Figure 3 (left) there is a weird jump
around 160 episode. We will investigate in the future work.
Also, we add more information for human players such that
a better path to get higher scores.

6. ACKNOWLEDGEMENTS
Thanks for the comments from anonymous reviewers and

this work was supported in part by NSF IIS-1149917.

7. REFERENCES
[1] B. D. Argall, S. Chernova, M. Veloso, and

B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[2] N. Carboni and M. Taylor. Preliminary results for 1
vs. 1 tactics in starcraft. In Proceedings of the
Adaptive and Learning Agents workshop (at
AAMAS-13), May 2013.

[3] D. Chakraborty and S. Sen. Teaching new teammates.
In Proceedings of the fifth international joint
conference on Autonomous agents and multiagent
systems, pages 691–693. ACM, 2006.

[4] J. A. Clouse. On Integrating Apprentice Learning and
Reinforcement Learning. PhD thesis, 1996.
AAI9709584.

[5] L.-J. Lin. Self-improving reactive agents based on
reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

[6] P. Rohlfshagen and S. M. Lucas. Ms pac-man versus
ghost team cec 2011 competition. In Evolutionary
Computation (CEC), 2011 IEEE Congress on, pages
70–77. IEEE, 2011.

[7] P. Stone, G. A. Kaminka, S. Kraus, J. S. Rosenschein,
et al. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In AAAI, 2010.

[8] R. S. Sutton and A. G. Barto. Introduction to
reinforcement learning. MIT Press, 1998.

[9] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. The
Journal of Machine Learning Research, 10:1633–1685,
2009.

[10] L. Torrey and M. Taylor. Teaching on a budget:
agents advising agents in reinforcement learning. In
Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pages
1053–1060. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

