
November 25, 2013 Connection Science traffic˙learning

Connection Science
Vol. 00, No. 00, Month 200x, 1–20

RESEARCH ARTICLE

Distributed Learning and Multi-Objectivity

in Traffic Light Control

Tim Brysa∗, Tong T. Phamb and Matthew E. Taylorc

aVrije Universiteit Brussel, Brussels, Belgium
bLafayette College, Easton, PA

cWashington State University, Pullman, WA

(received 00/00)

Traffic jams and suboptimal traffic flows are ubiquitous in modern societies, and they create
enormous economic losses each year. Delays at traffic lights alone account for roughly 10
percent of all delays in US traffic. As most traffic light scheduling systems currently in use
are static, set up by human experts rather than being adaptive, the interest in machine
learning approaches to this problem has increased in recent years. Reinforcement learning
(RL) approaches are often used in these studies, as they require little pre-existing knowledge
about traffic flows. Distributed Constraint Optimization approaches have also been shown
to be successful, but are limited to cases where the traffic flows are known. The Distributed
Coordination of Exploration and Exploitation (DCEE) framework was recently proposed to
introduce learning in the DCOP framework. In this paper, we present a study of DCEE
and RL techniques in a complex simulator, illustrating the particular advantages of each,
comparing them against standard isolated traffic actuated signals. We analyze how learning
and coordination behave under different traffic conditions, and discuss the multi-objective
nature of the problem. Finally we evaluate several alternative reward signals in the best
performing approach, some of these taking advantage of the correlation between the problem-
inherent objectives to improve performance.

Keywords: traffic control; reinforcement learning; DCEE; multi-objective optimization

1. Introduction

In recent years, multi-agent systems have been gaining traction as a credible plat-
form for tackling real-world problems. Distributed problem solving often allows
handling of an exponential amount of information and variables that might oth-
erwise cripple a centralized approach. Indeed, the need for this flexibility and ro-
bustness is no longer theoretical: the increase in human population in the biggest
metropolitan areas has led to tremendous stresses on infrastructure, which must
either increase in quantity or improve in quality to simply maintain the current
level of traffic. The motivation for further development of multi-agent techniques
is twofold: to manage the rising complexity in handling electronic infrastructure,
and to improve performance by replacing or enhancing existing solutions.

In recent years, interest in applying various computational techniques to the
problem of improving traffic signal operation has been on the rise. According to
recent surveys (National Transporation Operations Coalition, 2012), delays at traf-
fic signals account for up to 10 percent of all traffic delays in the US. Increasing
numbers of traffic lights are being built to handle growing vehicle and pedestrian

∗Corresponding author. Email: timbrys@vub.ac.be

ISSN: 0954-0091 print/ISSN 1360-0494 online
c© 200x Taylor & Francis
DOI: 10.1080/09540090xxxxxxxxxxxx
http://www.informaworld.com



November 25, 2013 Connection Science traffic˙learning

2 Tim Brys, Tong T. Pham, and Matthew E. Taylor

traffic; this problem domain is rich in terms of the number of potential autonomous
agents sharing the same finite resources, influencing other agents and the efficiency
of the human traffic flow.

Recent AI approaches to traffic engineering include applying Distributed Con-
straint Optimization (DCOP) algorithms to this domain (Junges & Bazzan, 2008).
However, the DCOP framework requires that the reward of every action combina-
tion be known a priori, making it difficult to handle non-stationary traffic distri-
butions. In contrast, our previous work has extended the DCOP framework to the
Distributed Coordination of Exploration and Exploitation (DCEE) (Taylor, Jain,
Tandon, Yokoo, & Tambe, 2011) framework. In order to address the importance
of dynamic and unknown rewards, DCEE algorithms take a multi-agent approach
towards balancing exploiting known good configurations with exploration of novel
action combinations to attempt to find better rewards.

Another popular AI approach to traffic problems is Reinforcement Learning
(RL) (Sutton & Barto, 1998). Several RL algorithms have previously been applied
to the control of traffic lights (Liu, 2007), such as Q-Learning (Shoufeng, Ying,
& Bao, 2002; El-Tantawy, Abdulhai, & Abdelgawad, 2013), SARSA (Thorpe &
Andersson, 1997), and SCQ-Learning (Kuyer, Whiteson, Bakker, & Vlassis, 2008).

In this paper, we evaluate the behaviour of DCEE and RL approaches in Man-
hattan traffic grids on a version of the microscopic traffic simulator from UT-
Austin (Dresner & Stone, 2008). Our objective metrics are the average delay ve-
hicles experience over time, and the rate of vehicles passing through the grid, i.e.,
the throughput. The aim of this study is not to decide which of the DCEE or RL
algorithms is best per se, but rather to study their behaviour and the nature of the
traffic problem. An important aspect of the traffic problem is its multi-objectivity,
which is not often addressed in other studies. We analyse the correlation between
the two objectives used (delay and throughput), and demonstrate how this can be
exploited to improve performance on both objectives.

The remainder of the paper is organised as follows: we provide the necessary
background information on traffic optimization, DCEE, and RL in the following
Section. In Section 3, we provide detailed information on the setup of the simulator
and the two classes of algorithms. Section 4 contains the experimental results,
divided between Sections 4.1 and 4.2, concerning the effect of light vs. heavy traffic,
and the evaluation of alternative reward signals, including an analysis of the multi-
objective nature of the traffic problem. We conclude and provide ideas for future
work in Section 5.

2. Background

This section provides background on the traffic optimization problem, as well as
the two learning approaches used in this paper’s experiments.

2.1. Traffic Optimization

It comes as no surprise that a significant amount of research has gone into improv-
ing traffic signal performance, given the problem domain’s affinity to an exponential
growth in complexity (in terms of the number of possible configurations and even-
tualities that the agents – traffic lights, commuters – can give rise to). The 1970s
saw the development of SCOOT (Split, Cycle and Offset Optimization Technique)
in the UK (Robertson & Bretherton, 1991). This system features a central com-
puter system to monitor a series of intersections, attempting to minimize the sum



November 25, 2013 Connection Science traffic˙learning

Connection Science 3

of the average queues (cars waiting at an intersection) and the number of vehi-
cle stops (the number of stops a car is forced to make during a trip through the
traffic system). Notably, SCOOT makes use of a model of the traffic flow based
on Cyclic Flow Profiles (average one-way flow of vehicles past a fixed point on the
road) measured via real-time using sensors. While the system has been observed to
register a 12 percent improvement over fixed-time systems, it is not readily amend-
able to scaling due to the need for centralized control. Another related system is
SCATS (Sydney Coordinated Adaptive Traffic System), which uses multiple levels
of control, segregated by scale: from local, regional, to central. However, grouping
signals into subsystems to be managed by higher levels is not done automatically,
and thus incurs large setup costs for expansion and modifications.

In addition to these well known responsive control systems, there also exist adap-
tive systems such as RHODES (Real-time Hierarchical Optimizing Distributed Ef-
fective System) (Mirchandani & Wang, 2005), which features more involved sensor
systems and models, allowing them to do away with explicit cycle length defini-
tions. RHODES also has a hierarchical architecture, with the lowest level control
making immediate second-by-second decisions on signal phase and durations. The
middle and highest level form a feedback loop with this lowest level to predict
demands and flows over longer period of time. Despite this sophistication, the sys-
tem still requires heavy use of models, which can take time to perfect, as well as
requiring a human to manually define the hierarchy.

In the last decade, a new wave of research into adaptive traffic control has be-
gun, and, while in most cases still limited to simulation, great advances have been
made, and some systems are close to deployment in the real world (e.g., MARLIN-
ATSC (El-Tantawy et al., 2013)). For a good review of traffic optimization, see the
recent paper by Bazzan and Klügl (2013).

When selecting a traffic optimization system to deploy, it is always important
to consider what sensors (inputs) are required, what knowledge must be built
into the system, how adaptive the system is, and what metrics (outputs) will be
optimized. As AI researchers, we are most interested in methods which use low-
cost sensors, have minimal knowledge requirements, can quickly adapt to changes
in traffic patterns, and can work to optimize many different metrics.

2.2. DCEE

When formulating multi agent problems, there is a spectrum from centralized (one
agent gathers all of the information, makes a decision, and distributes this decision)
to decentralized (all agents have their own local state and do not coordinate with
others) decision making. The DCEE framework strikes a balance between these
two extremes by allowing agents to form “neighborhoods;” each agent shares infor-
mation and coordinates with only a limited set of agents. Such shared coordination
should improve the total reward relative to each agent disregarding the state of all
other agents, while requiring many fewer messages and computational resources
than full centralization.

Formally, a DCEE problem (Taylor et al., 2011) consists of:

(1) a set of variables, V = x1, x2, ..., xn, where xi ∈ Di, and Di the variable’s
domain

(2) a set of agents, each controlling a variable from V (in the general case, one
agent could control multiple variables)

(3) an (initially unknown) reward function fij : Di ×Dj → R, which gives the
cost of a binary constraint (xi ← di, xj ← dj), where di ∈ Di, dj ∈ Dj

(4) a set time horizon T ∈ N



November 25, 2013 Connection Science traffic˙learning

4 Tim Brys, Tong T. Pham, and Matthew E. Taylor

2 31

R
1,2

R
2,3

x

x
2

1

0 1

0 ?

?

n

? ? ? ?

?

?

?

3

?

17

m

x
2

x
1

0 1

0 9 ?

?

?

m

k ? ? ?

?

?

1 ? ?

. . ..

.

.

.

. . ..

.

.

.

Figure 1. This figure shows an example 3-agent DCEE. Each agent controls one variable and the settings
of these three variables determine the reward of the two constraints (and thus the total team reward).

Algorithm 1 K1 Algorithm Pseudocode

for each neighbor i do
Send variable assignment, reward matrices to i
Receive variable assignment, reward matrices from i

end for
g, a← getMaxGainAndAssignment()
Send Bid g to all neighbors Receive Bids from all neighbors
G← max(Bids)
if g > G then

UpdateAssignment(a)
end if

(5) a set of assignments of values to variables A0, ..., AT to be pro-
cessed sequentially by the agents. Each assignment At is a tuple
(x1t ← d1t, x2t ← d2t, ..., xnt ← dnt)

The goal is to maximize the total reward during the time horizon:

R =
T∑
t=0

∑
xi,xj∈V

fi,j (di,t, dj,t)

The simplest cases of DCEE problems make use of binary constraints between
pairs of agents (see Figure 1 for an example). As mentioned earlier, the reward
function f is initially unknown and must be empirically estimated by sampling
different variable assignments with an agent’s neighbors. Communication among
agents in a neighborhood is essential so that each agent can build up its mapping
of binary constraints to (approximate) rewards for each of its neighbors.

An experiment is discretized into T rounds, where agents can communicate and
then decide to modify their variables once per round. An important factor that
shapes coordination among neighboring agents is the concept of k-movement, where
at most k agents can change their variables simultaneously in a neighborhood every
round. Larger k values allows for more joint moves. This often, but not always,
increases the total team performance (Taylor et al., 2011).

This paper focuses on the class of static estimation (SE) DCEE algorithms. The
k=1 SE-Optimistic algorithm, K1 from now on, allows a single agent to change
variable(s) per neighborhood. For instance, in Figure 1, if agent 2 changes its vari-
able setting, agents 1 and 3 must remain fixed. Alternatively, if agent 1 changes its
variable, agent 2 must remain fixed, but agent 3 could choose to change. The algo-
rithm is optimistic in the sense that it estimates that it will receive the maximum



November 25, 2013 Connection Science traffic˙learning

Connection Science 5

Algorithm 2 K2 Algorithm Pseudocode

for each neighbor i do
Send variable assignment, reward matrices to i
Receive variable assignment, reward matrices from i

end for

g, p, a← getMaxGainAndAssignmentForPair()
Send OfferPair to agent p

doPair← False
for all OfferPair received do

if agent requesting to pair is p then
Send Accept to agent p

doPair← True
end if

end for
Attempt to receive Accept message
if (not received Accept message from p) or (not doPair) then

p← ∅
g, a← getMaxGainAndAssignment()

end if
Send Bid(g,p) to all neighbors

Receive Bids from neighbors except p
G← max(Bids)
if g > G then

changing ← True
else

changing ← False
if p 6= ∅ then
Send ProhibitVariableChange to p

end if
end if
Receive messages from neighbors
if changing and p 6= ∅ then

if received ProhibitVariableChange from p then
changing ← False

end if
end if
if changing then UpdateAssignment(a)
end if

reward on every constraint if it picks an unexplored configuration. This results in
the behavior that 1) every agent wishes to change configurations on every round,
2) the algorithm will always be exploring the environment (practically speaking,
since our domain premise is that there are too many configurations to exhaustively
cover during the given time frame), and 3) agents with the worst performance per
neighborhood will be allowed to explore. On every round, every agent will measure
the reward between itself and all of its neighbors. It will then use Algorithm 1 to
decide which agent (per neighborhood) can choose a new assignment.
getMaxGainAndAssignment is a function that returns a variable assignment

that maximizes the difference between total expected reward across all binary con-
straints of the agent and its current reward. For the case of SE-Optimistic algo-
rithms, this will always be an unexplored position, because the agents are optimistic



November 25, 2013 Connection Science traffic˙learning

6 Tim Brys, Tong T. Pham, and Matthew E. Taylor

that such positions will have a very high potential reward. In this manner, for each
neighborhood, the agent with the worst performance across its binary constraints
with neighbors will get to change its variable.

For the k=2 SE-Optimistic algorithm, K2 from now on, each neighborhood can
allow up to two agents performing joint movement to change configurations (see
Algorithm 2). Being an optimistic algorithm, it again assumes that any unexplored
binary constraint will yield the maximum reward. Communication is more involved
as the agents must first consider with whom they will likely form the pair with the
most to gain (by assuming that the neighbor’s neighbors would not change while
evaluating the combined rewards). Each agent then sends an OfferPair message to
their prospective partner, and those pairs that successfully match each other as the
best in their vicinity will use that projected gain to compete with their respective
neighbors’ bids. Should an agent not get a reply from the desired partner, though,
it would evaluate the potential reward as would an agent in the k=1 scenario, and
then bid using that value.

2.3. Reinforcement Learning

The second approach we investigate in this paper is Reinforcement Learning. Re-
inforcement learning (RL) (Sutton & Barto, 1998) is a machine learning paradigm
that is aimed at learning (near-) optimal agent behavior through interactions with
an environment. This environment is typically formulated as a Markov decision
process (MDP), which is a tuple 〈S,A, T,R〉, where S is the set of possible states
of the environment, A the possible actions, T the dynamics of the environment
(specified as state transition probabilities), and R the reward function (which at-
tributes a utility to state transitions).

2.3.1. SARSA

One popular RL algorithm is SARSA (Rummery & Niranjan, 1994). It is a
model-free method that estimates an action-value function, Q(s, a), measuring the
expected return of taking action a in state s from experience. After each state
transition, it updates its estimates according to:

Q(st, at)← Q(st, at) + α [rt + γQ(st+1, at+1)−Q(st, at)]

where rt represents the reward at time t for transitioning from state st to st+1, at
is the action that caused that transition, and at+1 is the action that will be taken
in state st+1. Under certain conditions (Singh, Jaakkola, Littman, & Szepesvári,
2000), these Q-value estimates converge to the true Q-values in the limit, and an
optimal policy can be followed by taking the action with the largest Q-value in
every state.

The problem considered in this paper is a multi-agent system, and thus the agents
will be learning in the presence of other agents. This renders the problem non-
stationary for learning agents that do not coordinate or take other’s actions into
account, and proofs guaranteeing convergence to the optimal policy of single-agent
algorithms are invalidated. Still, independent learners often perform well, notwith-
standing their lack of coordination (Busoniu, Babuska, & De Schutter, 2008), and
therefore we will take this approach, keeping the algorithm as simple as possible.

2.3.2. Eligibility Traces

Eligibility traces (Klopf, 1972) are records of past occurrences of state-action
pairs. These traces can be used to speed up learning, by not only updating the
Q-value of the current state-action pair, but also past state-action pairs, rewarding



November 25, 2013 Connection Science traffic˙learning

Connection Science 7

these inversely proportional to the time since they were experienced. A replacing
eligibility trace (Singh & Sutton, 1996) et(s, a) for state s and action a is updated
as follows:

et+1(s, a) =

{
1 s = st, a = at

γλet(s, a) otherwise

It is set to 1 if (s, a) is the current state-action pair (st, at), and otherwise it
is decayed by γλ, with γ the standard RL discounting factor and λ the specific
eligibility trace decay. This update is performed after every action, and thus traces
decay over time. The trace is then included in the Q update rule:

Q(s, a)← Q(s, a) + αet(s, a) [rt + γQ(st+1, at+1)−Q(st, at)]

Instead of only updating Q(st, at), we update the Q-value of every state-action
pair where the elibility trace is non-zero. This effectively allows us to immediately
propagate reward into the past, rewarding actions that lead to the current reward,
significantly reducing the learning time. Otherwise, this reward propagates only by
means of the γQ(st+1, at+1) part in the update-rule.

2.3.3. Tile Coding

SARSA and other temporal difference methods are often implemented with look-
up tables for the Q-values. However, when applying these algorithms to problems
with large state and action spaces, or even continuous ones, memory requirements
become an issue. Furthermore, an agent would need to visit every state-action
pair multiple times to account for a potentially stochastic environment. Therefore,
generalization techniques are a necessity. Tile coding (Albus, 1981; Sutton & Barto,
1998) is one form of function approximation where the state-space is partitioned
multiple times, i.e., into multiple tilings. Each tiling divides the space into a number
of disjoint sets, or tiles. When a state is visited, it is mapped to exactly one tile in
each tiling. Instead of directly estimating the Q-value of each state s and action a,
the Q-function is decomposed into a sum of weights for each tile:

Q(s, a) =

n∑
i=1

bi(s, a)wi

where n is the number of tiles and bi is 1 or 0, depending on whether the tile
is activated by state s and action a. Whenever a regular Q-value update would
be executed, the weight of each activated tile is updated instead. Mapping states
to different tilings and decomposing the Q-function into a linear combination of
tilings allows the generalization of experience between states that are similar. The
more tiles two states share, the more generalization will occur.

3. Experimental Setup

This section introduces the traffic simulator used in experiments, and a standard
traffic benchmark algorithm. It also details the setup used for DCEE and SARSA
experiments.



November 25, 2013 Connection Science traffic˙learning

8 Tim Brys, Tong T. Pham, and Matthew E. Taylor

3.1. The AIM Simulator

The Autonomous Intersection Management (AIM) simulator is developed by the
Learning Agents Research Group at the University of Texas at Austin. A mi-
croscopic traffic simulator, AIM supports a Manhattan topology of North-South
and East-West multi-lane roads joined by a number of intersections. The primary
vision of this project is to investigate a future where autonomous vehicles and in-
telligent traffic intersections would eliminate the need for traffic lights altogether.
As part of their benchmark, however, the team has also implemented ordinary
traffic lights into the system. For the purpose of our study, we made exclusive
use of this benchmark feature as the backdrop against which traffic lights will be
tested. Even though the traffic light system in AIM is implemented using the same
message-passing foundation, the inherited efficiency in which vehicles navigate an
intersection, accelerate, and decelerate, as well as subtle details including variable
vehicle sizes, have convinced us that this is an attractive simulator for our purposes.

Our setup involves single-lane two-way streets forming a 2 × 2 matrix of four
intersections. Each road has two spawn points where new vehicles can enter the
system. Each spawn point uses a Poisson process to determine the spawn time for
the next vehicles; all spawn points share the same rate parameter, λ. Because each
direction has one lane, a newly spawned vehicle will not pass other cars, nor does it
perform U-turns. Upon creation, each vehicle is assigned a destination, uniformly
chosen among the seven possible exit points of the system; the vehicle then follows
the shortest path to reach its designated exit point, determined by applying A∗.

3.2. Isolated Actuated Traffic Signal Benchmark

To have a reasonable upper bound on performance in our experiments, we imple-
ment a static benchmark algorithm (Minnesota Department Of Transportation,
2011; Pham, Tawfik, & Taylor, 2013) that assumes knowledge of the distribution
of traffic arriving at the intersection whose lights it is controlling. It follows the
procedures described in Algorithm 3. The procedure is executed every 0.3s, chang-
ing the direction of its lights (e.g., from North-South to East-West) only when the
current direction (NS) has been active for longer than maxgreenNS , or when it has
observed that there have been no cars within the first 30m from both the N and
S directions. The maxgreendirection variable is crucial for the optimal working of
this algorithm. To set maxgreenNS and maxgreenEW , one must first measure the
proportion of cars taking left turns, right turns, and those going straight for each
incoming direction at an intersection. Using this information, the maxgreen vari-
ables for these traffic distributions can be optimized using the software package
PASSER

TM

(Texas Transportation Institute, 2011). Note that this algorithm needs
to know the traffic distribution in advance, and is non-adaptive; performance is
not robust against changes in the traffic distribution.

3.3. DCEE Experiments

In the setup for the DCEE experiments, we make use of a special traffic light
signal scheme that relies on the AIM simulator’s definition of an “active phase.”
Two parameters specify precisely such an active phase: the green offset and green
duration in seconds (see Figure 2). For simplicity, our experiments will have the
active phase length fixed at 60s. We then associate each intersection with a DCEE
agent, letting each agent control exactly one variable — its signal scheme index.
This index enumerates all possible traffic signal configurations, running from 0 to 65



November 25, 2013 Connection Science traffic˙learning

Connection Science 9

Algorithm 3 Isoactuated

activeDirection ← NS
Set gapN, gapS, gapE, gapW to false
activeT ime← 0s
while true do

if activeDirection is NS then
if no cars in first 30m N then gapN ← true
end if
if no cars in first 30m S then gapS ← true
end if
if (gapN and gapS) or activeTime > maxgreenNS then

activeDirection ← EW
activeTime ← 0s
Set gapN, gapS to false

end if
else . . . similar procedure for EW . . .
end if
activetime ← activetime +0.3s
wait(0.3s)

end while

Figure 2. An example traffic light configuration that makes up an “active phase” in the simulator.

(see Figure 3). Thus, index 0 maps to the tuple (0, 5), which is an active phase with
no leading red, and five seconds of green time (followed by two seconds of yellow
and 53s of red). To translate the next index, we attempt to increase green time by
a five-second interval, while keeping the total active phase length. Should this not
be possible, we instead increase the offset by five seconds, and reset green time to
five seconds. This results in a triangular translation table, stopping at (55,5), for a
total of 66 possible combinations. This discretization of time is required as DCEE
can only handle discrete actions. This is an inherent limitation of DCEE, although
a fine-grained discretization can be chosen as DCEE algorithms are specifically
built to efficiently explore huge action spaces.

Once the “active phase” has been determined, the entire signal layout for each
direction (North-South, East-West) will be specified as shown in Figure 4. Note
that at any moment, only one direction is considered to be active (running the
active phase signal scheme), and the other direction is inactive, running the com-
plementary signal scheme.

Agents evaluate the rewards of binary constraints with a neighbor by measuring
the average travel time of the first 100 cars traveling on the stretch of road connect-
ing the two agents. The total team reward at each round is then a weighted average
of this average travel time. For our static estimation agents, we set the unexplored
reward to be 0s, an unattainable value for travel time. Since the DCEE algorithms
are defined as maximizers, we negate the reward signal. Average travel time serves
as a reasonable metric to optimize, as it correlates with other commonly used met-
rics that gauge traffic light performance, such as queue length and throughput,
as we shall see in Section 4.2.1. Thus, by letting the agents optimize for higher



November 25, 2013 Connection Science traffic˙learning

10 Tim Brys, Tong T. Pham, and Matthew E. Taylor

Figure 3. The signal scheme index for each DCEE agent, and its corresponding (greenoffset, greentime)
value, defining an active phase of 60s. Note that greenoffset and greentime increase at five-second intervals,
a necessary discretization.

Figure 4. The full signal scheme for an intersection, given a specific active phase. Time flows from left to
right: the calculated active phase is active for North-South in the first 60s, before switching to East-West
in the next 60s. The whole signal scheme repeats after 120s total.

rewards in this context, we are letting the intersections work toward lower average
travel time along the lanes between them, thus improving traffic light performance.
After the agents have changed their signal schemes, we allocate a cool-down period
of 600s to allow the new signal schemes to have an impact on the traffic condition.
Only after this cool-down period do the agents begin to evaluate rewards.

3.4. SARSA Experiments

We apply SARSA with tile coding to the traffic light problem by giving control of
each intersection to a SARSA agent. The SARSA setup is as follows:

Every two seconds, the agents are presented with only two possible actions:

(1) Do nothing, or
(2) Change the green light to the other direction (e.g., from North-South to

East-West).

Note that when changing the lights, a short period of yellow occurs, stopping
traffic in all directions.

The state space is defined by three state variables:

(1) The number of seconds since the most recent light change.
(2) The number of seconds since the second-to-last light change.
(3) The ratio between the queue lenghts in both directions.

The first variable ensures that the agents will be able to learn a repeated schedule
of fixed length. The inclusion of the second state variable allows the agents to learn
asymmetrical schedules, which are useful when the traffic load is heavier in one
direction than in the other. The third state variable allows the agent to adapt to the
slight variations that occur in the general traffic pattern, by conditioning learning
on the traffic load in each direction. Technically, the variable is a bit more than a
simple ratio. We define queuegreen to be the queue length in the green direction,

and queuered the queue length in the red direction. Now a simple ratio
queuegreen

queuered

has an inherent asymmetry around 1, which would result in overgeneralization of
the states where the queue in the red direction is longer than the one in the green
direction (for queuegreen > queuered:

queuegreen

queuered
∈ (1,∞); for queuegreen < queuered:

queuegreen

queuered
∈ (0, 1)). Therefore, we encode the ratio as shown in Equation 1.



November 25, 2013 Connection Science traffic˙learning

Connection Science 11

var3 =

{
log(

queuegreen

queuered
) queuegreen ≥ queuered

−log( queuered

queuegreen
) queuegreen < queuered

(1)

If we ensure that queuegreen and queuered are at least one, then var3 will be
0 when queue lengths in both directions are exactly the same, and positive or
negative when the queue is longer in the green or red direction respectively. This
ensures that, as opposed to using a simple ratio, this variable is symmetric around
0 and allows easy generalization around 0 with linear tile coding. Furthermore,
due to the logarithm, small differences in traffic are captured when the load is very
similar in both directions, while the differences when the traffic is asymmetric are
compressed. Tile size is 5 for the first two variables, and 1 for the third variable;
32 tilings are used over the three variables.

The reward that agents receive is the negation of the total accumulated waiting
time for all cars approaching their intersection. Maximizing this reward will reduce
the average waiting time. Although the aim in the traffic problem is to optimize
the whole traffic system, the reward agents receive is only local. Calculating the
global reward by broadcasting the local rewards is costly, and furthermore, em-
ploying global reward introduces a credit assignment problem, which may hinder
learning (Chang, Ho, & Kaelbling, 2004).

Note that including information on waiting times and queue lengths is not un-
realistic. Modern road infrastructures include cameras and other sensors that are
able to keep track of the traffic. Furthermore, the use of floating car data is in-
creasing. This is a method used to calculate traffic speed based on signals from
cellular and GPS devices in cars, providing real-time information on traffic.

The action-selection strategy used is ε-greedy: when an action must be selected in
state s, the action with the highest estimated Q-value is selected with probability
1− ε, and with probability ε a different action is randomly selected. Furthermore,
ε is decreased over time (ε = 0.9998t, t the t-th decision step, which occurs every
2s), to increase exploitation of the acquired knowledge. The discounting factor γ,
as well as the replacing eligibility traces’ decay λ, is set to 0.9.

3.5. Differences in Setup

As already remarked, the setups of the DCEE and RL algorithms have significant
differences. First, their action spaces are different. Second, RL incorporates state
which DCEE does not. Third, the RL approach involves decisions every 2s, while
the DCEE algorithms operate over much longer periods (at least 120s). Direct
comparisons between the approaches’ action selection will be inexact. However, it
is not our purpose to evaluate these algorithms in that respect, but rather, for each
approach we chose the most fitting setup for the traffic problem, and illustrate their
behaviour on this traffic problem. The DCEE setup is built to quickly learn good
policies matching the general traffic pattern, while the RL setup is built to allow
the SARSA agents to learn both the general traffic pattern, as well as the short-
term variations in the pattern as it incorporates the current traffic distribution in
its state.



November 25, 2013 Connection Science traffic˙learning

12 Tim Brys, Tong T. Pham, and Matthew E. Taylor

4. Experiments

This section is split in two parts, with the first subsection discussing the effect of
the traffic load on the DCEE and RL algorithms, and how they compare against
the static benchmark algorithm. In the second subsection, we discuss the multi-
objective nature of the traffic light control problem, and experimentally show how
the asymptotic performance of the RL approach can be improved using alternative
reward signals, including the combination of different reward signals.

4.1. Light versus Heavy Traffic

First we examine the impact of the level of traffic on algorithm performance. We
run the simulator with a 2 × 2 grid for 90, 000s, in which we measure the agents’
performance in terms of the average delay per car and the total throughput. These
metrics are the two most important measures used by engineers to compare control
policies. While throughput indicates how many cars a system can process in a given
time period, average delay gives an indication of how the system’s performance
affects individual cars’ travel time. Before the agents are allowed to learn, i.e.
before the 90, 000s, we implemented a 7, 500s warm-up period, in which the agents
are forced to select random actions, to allow the system to fill with cars and reach
an equilibrium. This warm-up period is not graphed in the figures.

We evaluate two settings with different traffic loads. The first experiment is
parametrized to generate an average of 10 cars per minute, per entry link. In
the second experiment, an average of 30 cars is generated each minute per entry
location, a much heavier traffic level. For these traffic distributions, we optimized
the maxgreendirection variables in the isoactuated benchmark. For the heavy traffic,
we set it to maxgreenNS = 63 and maxgreenEW = 57 for agents 1 and 3, and the
reverse for agents 2 and 4.1 For light traffic, maxgreenNS = maxgreenEW = 15
for all agents.

Figure 5 shows the performance of SARSA, K1 and K2, and the isoactuated
benchmark on the light traffic setting. Experiments are averaged over 100 runs for
statistical significance, and error bars show one standard deviation. Each datapoint
is a running average over 100 minutes. The first notable observation we make is that
with so little traffic, it is not possible to improve the throughput of cars. On the
other hand, the algorithms can clearly improve the average delay. Notably, SARSA
performs much better than K1 and K2, as it is not limited to the (too long for
light traffic) 60s schedules, but incorporates the actual traffic situation in its state,
and adapts to that. K2 performs worse than K1, even though it involves more co-
ordination between the agents. This apparent discrepancy is due to a phenomenon
coined the team uncertainty penalty (Taylor et al., 2011), in which agents with few
neighbors actually achieve higher performance with lower levels of coordination
(e.g., K1), while agents with many neighbors can achieve higher performance with
higher levels of coordination (e.g., K2). Finally, we note that the static benchmark
algorithm performs significantly better than the adaptive approaches in terms of
average delay, as it knows the actual traffic distribution in advance.

Let us now consider the heavier traffic setting experiment, shown in Figure 6.
Both throughput and average delay can be greatly improved upon in this set-
ting. SARSA starts with very poor performance for both measures compared to
DCEE algorithms, due to the inherent bias in the action selection given the def-
inition of the DCEE action space. However, SARSA is able to learn a great deal

1Agents are ordered in a 2x2 grid, with numbering starting top-left and ending bottom-right.



November 25, 2013 Connection Science traffic˙learning

Connection Science 13

Figure 5. Average delay and throughput for a light traffic level (10 cars spawned per minute at each
entrance). Error bars show one standard deviation.

(approaching the performance of the isoactuated benchmark), and in the end it
outperforms both DCEE algorithms as these are stateless and can not adapt to
the local, ephemeral fluctuations in the traffic pattern. The power of the DCEE
framework is demonstrated by the fast improvement of K1 and K2 as measured by
average delay. Between two adjacent changes in signal schemes, the agents spend
600s for the cool-down period, and about 600s for collecting data to measure av-
erage travel times. Thus, both K1 and K2 are able to significantly optimize the
traffic flow of the system in only eight decision steps (around the 10, 000s mark),
with 664 = 1.9× 107 possible schedule combinations to choose from. Furthermore,
throughput is only slightly improved as it already is at a near-optimal level for any
possible schedule. SARSA needs much longer to achieve that level of performance,
because it must learn to extend the length of its green periods, while the DCEE al-
gorithms are limited to 60s schedules and automatically have long periods of green.
From this we can conclude that to optimize throughput in a traffic system, a major
factor is to have green periods that are long enough. For delay, performance also
depends on having long enough green periods, but even more on balancing between



November 25, 2013 Connection Science traffic˙learning

14 Tim Brys, Tong T. Pham, and Matthew E. Taylor

Figure 6. Average delay and throughput for a heavy traffic level (30 cars spawned per minute at each
entrance). Error bars show one standard deviation.

the different directions (it is possible to maximize throughput by only changing the
lights when the queue in the current green direction is cleared, while this is not an
optimal policy for delay). Lastly, it is interesting to note that in both experiments,
SARSA first decreases its performance as compared to random, before it is able to
improve again.

4.2. Alternative Reward Signals

In this section we evaluate several alternative reward signals for SARSA1. In the
first subsection, we give a brief analysis of the multi-objective nature of the traffic
optimization problem, and go on to show how the objectives can be combined to
improve performance. In the second subsection, we look at delay squared, a reward

1We continue only with RL as it produced better asymptotic performance in the previous experiments
(i.e., Figures 5 and 6).



November 25, 2013 Connection Science traffic˙learning

Connection Science 15

signal that heavily punishes large delays, while neglecting small differences in short
delays.

4.2.1. Traffic Optimization: A Multi-Objective Problem

Traffic optimization is inherently a multi-objective problem. In this work, we
measure an algorithm’s performance by both looking at average delay and through-
put, i.e., the two objectives we want to optimize. In the previous section, we have
only considered one of the two objectives as a feedback signal for our learning
agents, yet they were able to improve performance on both metrics. This leads
us to assume that these two objectives are correlated. To confirm this hypothe-
sis, we show the observed measurements of both metrics during a single RL run
with delay as reward signal in Figure 7(a). A brief visual inspection indicates the
objectives are correlated, and calculating the Pearson product-moment correlation
coefficient yields a ρ−value of −0.7952. This shows that the objectives are highly
correlated; the ρ−value is negative since delay must be minimized, while through-
put must be maximized. Note that the optimization process can also be observed
in the figure, as measurements early in the experiment (blue) are dominated by
the measurements near the end of the experiment (red).

(a) Delay reward (b) Throughput reward

Figure 7. The reward samples observed during a single run with a heavy traffic level and either delay
(left) or throughput as a reward signal (right). Color indicates the timing of the sample, with blue early
in the run, and red at the end of the run. The objectives (minimizing delay on x-axis and maximizing
throughput on y-axis) are observed to be correlated.

Replacing delay with throughput1 as a reward signal yields similar correlated
measurements as shown in Figure 7(b), and a Pearson product-moment correla-
tion coefficient of −0.7821. In Figures 8 and 9, we show the performance for each
objective when using throughput as a reward signal. Note that we no longer plot the
throughput measurements for the light traffic setting, as none of our experiments
show improvements for throughput in that setting. We observe that the through-
put signal is better suited for optimization than delay in light traffic conditions,
while the reverse is true in heavy traffic conditions.

Ideally, we would combine the objectives in such a way that we can have the
best of both in any situation. Therefore, we replace the single-objective reward
signal by a scalarized signal (Van Moffaert, Drugan, & Nowé, 2013), combining
both objectives using a weighted sum:

r(s, a) = wdrd(s, a) + wtrt(s, a)

1Local throughput is measured by counting the number of cars that cross the intersection, and dividing
by the time period measured. This time period is the time between two actions, i.e. 2s for a ‘stay’ action,
and 4s for a change action (accounting for the 2s yellow light). We divide by the time period to account
for actions of different duration.



November 25, 2013 Connection Science traffic˙learning

16 Tim Brys, Tong T. Pham, and Matthew E. Taylor

Figure 8. Average delay for a light traffic level (10 cars spawned per minute at each entrance). Comparison
of two single-objective approaches and linear scalarization. Error bars show one standard deviation.

Figures 8 and 9 show the results using SARSA learning with this scalarized re-
ward signal with finely tuned weights. Weight tuning was initially guided by the
differences in scaling of both objectives (delay approximately ∈ [0, 50], throughput
approximately ∈ [0, 2]). The first weights tested were for throughput and delay
respectively: wt = 50

50+2 = 0.96 and wd = 2
50+2 = 0.04. Subsequent rounds of

tuning showed that wd should be even smaller, and the final selected weights are:
wt = 0.991 and wd = 0.009. We see that using this linear scalarization, we can ac-
tually get the best of both objectives, and more. In the setting with a light traffic
level, this scalarization helps converge faster to a better asymptotic level of per-
formance than both single objective signals. Looking at delay in the setting with a
heavy traffic level, learning with the scalarized signal first follows the same curve
as using only throughput, and when single-objective throughput’s performance
degrades, the scalarized learning curve starts following the delay curve, basically
taking the best parts of both curves. For the throughput metric, scalarized SARSA
again improves asymptotic performance.

The reason why we can achieve such good results using a simple weighted sum
is as follows. By tuning the weights, we are basically aligning the objectives, so
that similar differences in performance are reflected as reward differences of similar
magnitude (a form of normalization). Having aligned the objectives well enough,
we are basically reducing noise by combining two signals that point roughly in
the same direction (since they are highly correlated). The scalarized signal will
therefore be more reliable than either single objective alone, and learning proceeds
faster.

4.2.2. Delay Squared

Another possible reward signal is delay-squared, i.e., the delay signal raised to
the power of 2. This reward formulation allows us to punish large delays much
more than small delays, making the agents more sensitive to variations in very
large delays. Figure 10 shows the comparison among using delay, delay-squared,
scalarizations of delay and throughput, and scalarizations of delay-squared and
throughput (using the same weights as before) in light traffic. Throughput is again
not plotted because no improvements are observed with any algorithm. For the
heavy traffic (Figure 11), the latter scalarization is not shown as it performs the



November 25, 2013 Connection Science traffic˙learning

Connection Science 17

Figure 9. Average delay and throughput for a heavy traffic level (30 cars spawned per minute at each
entrance). Comparison of two single-objective approaches and linear scalarization. Error bars show one
standard deviation.

same as delay-squared alone. This makes sense, as we have already shown that
throughput is not the best reward signal in that setting. Additionally, we can see
that delay-squared results in even faster learning in both traffic settings, although
with worse asymptotic performance in the light traffic setting. Combining it with
throughput resolves this problem, at the cost of slower initial learning. Notice also
the small standard deviations, indicating that using delay-squared as a reward
signal results in more reliable learning.

5. Conclusions and Future Work

In this study we analysed the traffic light control problem, looking at the behaviour
of two classes of learning algorithms in the context of different traffic loads, and
the multi-objective nature of the problem itself. We observed that with light traffic
loads, only the delay metric can be significantly optimized, as throughput is near-
optimal for most reasonable schedules. Furthermore, it is clear that incorporating



November 25, 2013 Connection Science traffic˙learning

18 Tim Brys, Tong T. Pham, and Matthew E. Taylor

Figure 10. Average delay for a light traffic level (10 cars spawned per minute at each entrance). Compar-
ison of delay, scalarized (delay and throughput), delay-squared and a different scalarized (delay squared
and throughput) reward signal. Error bars show one standard deviation.

the current state of the traffic in the decision making process allows for much finer
control and response to fluctatuations in the general traffic pattern. Also, applying
algorithms from the DCEE framework, our previous results concerning the team
uncertainty penalty are confirmed in this setting (Taylor et al., 2011), showing
again that more coordination among agents is not necessarily beneficial.

In the second part of the experimental study, we considered the multi-objective
nature of the traffic problem. We show how the two metrics that are most com-
monly used to measure performance, i.e., delay and throughput, are correlated.
This explains why optimizing based on a feedback signal of measurements of ei-
ther metric alone yields improved performance on both metrics. When combining
these signals in a naive way using a weighted sum, we showed that significant im-
provements in performance can be achieved, the sum being greater than the parts.
Furthermore, using delay-squared, alone or combined with throughput, yields fur-
ther improvements in performance.

One significant disadvantage attached to the scalarization approach is that in
order to achieve good performance, the weights need to be tuned very carefully.
This weight tuning can be expensive in settings such as this, requiring many hours
or days of simulation to find good parameters. Future work includes formulating
an approach that can take optimal advantage of these correlated weights, without
requiring parameters to be set, and importantly, without depending on the scaling
of the objectives, which is one reason why weight tuning is necessary in the first
place.

6. Acknowledgments

We thank the reviewers for their helpful suggestions and comments. Tim Brys is
funded by a Ph.D grant of the Research Foundation-Flanders (FWO), and per-
formed a research visit to Prof. Matthew E. Taylor at Lafayette College, funded by
a Short Stay Abroad grant also from the FWO. This work was supported in part
by NSF IIS-1149917.



November 25, 2013 Connection Science traffic˙learning

References 19

Figure 11. Average delay and throughput for a heavy traffic level (30 cars spawned per minute at each en-
trance). Comparison of delay, scalarized (delay and throughput) and delay-squared reward signals. Scalar-
ized with delay-squared and throughput yields the same performance as delay-squared alone. Error bars
show one standard deviation.

References

Albus, J. (1981). Brains, behavior and robotics. McGraw-Hill, Inc.
Bazzan, A. L. C., & Klügl, F. (2013). A review on agent-based technology for

traffic and transportation. The Knowledge Engineering Review , 1–29.
Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of

multiagent reinforcement learning. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 38 (2), 156–172.

Chang, Y.-H., Ho, T., & Kaelbling, L. P. (2004). All learning is local: Multi-
agent learning in global reward games. In Advances in neural information
processing systems 16. Cambridge, MA: MIT Press.

Dresner, K., & Stone, P. (2008, March). A multiagent approach to autonomous
intersection management. Journal of Artificial Intelligence Research, 31 ,
591–656.

El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2013). Multiagent reinforce-



November 25, 2013 Connection Science traffic˙learning

20 References

ment learning for integrated network of adaptive traffic signal controllers
(MARLIN-ATSC): Methodology and large-scale application on downtown
Toronto. IEEE Transactions on Intelligent Transportation Systems.

Junges, R., & Bazzan, A. (2008). Evaluating the performance of dcop algorithms in
a real world, dynamic problem. In Proceedings of the 7th international joint
conference on autonomous agents and multiagent systems (pp. 599–606).

Klopf, A. H. (1972). Brain function and adaptive systems: a heterostatic the-
ory (Tech. Rep. No. AFCRL-72-0164). Bedford, MA: Air Force Cambridge
Research Laboratories.

Kuyer, L., Whiteson, S., Bakker, B., & Vlassis, N. (2008). Multiagent reinforce-
ment learning for urban traffic control using coordination graphs. Machine
Learning and Knowledge Discovery in Databases, 656–671.

Liu, Z. (2007). A survey of intelligence methods in urban traffic signal control.
IJCSNS International Journal of Computer Science and Network Security ,
7 (7), 105–112.

Minnesota Department Of Transportation. (2011). Traffic signal timing and coor-
dination manual.

Mirchandani, P., & Wang, F.-Y. (2005). Rhodes to intelligent transportation
systems. Intelligent Systems, IEEE , 20 (1), 10 - 15.

National Transporation Operations Coalition. (2012). Na-
tional traffic signal report card, executive summary.
http://www.ite.org/reportcard/ExecSummary.pdf.

Pham, T. T., Tawfik, A., & Taylor, M. E. (2013). A simple, naive agent-based model
for the optimization of a system of traffic lights: Insights from an exploratory
experiment. In Proceedings of the conference on agent-based modeling in
transportation planning and operations.

Robertson, D., & Bretherton, R. (1991). Optimizing networks of traffic signals
in real time-the SCOOT method. Vehicular Technology, IEEE Transactions
on, 40 (1), 11 -15.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning using connectionist
systems. University of Cambridge, Department of Engineering.

Shoufeng, M., Ying, L., & Bao, L. (2002). Agent-based learning control method for
urban traffic signal of single intersection. Journal of Systems Engineering ,
17 (6), 526–530.

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvári, C. (2000). Convergence
results for single-step on-policy reinforcement-learning algorithms. Machine
Learning , 38 (3), 287–308.

Singh, S. P., & Sutton, R. S. (1996). Reinforcement learning with replacing eligi-
bility traces. Machine learning , 22 (1-3), 123–158.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cam-
bridge University Press.

Taylor, M. E., Jain, M., Tandon, P., Yokoo, M., & Tambe, M. (2011). : Distributed
on-line multi-agent optimization under uncertainty: Balancing exploration
and exploitation. Advances in Complex Systems (ACS) 14(03), 471–528.

Texas Transportation Institute. (2011). Passer (tm) v-09. Retrieved from
http://ttisoftware.tamu.edu/.

Thorpe, T., & Andersson, C. (1997). Vehicle traffic light control using SARSA
(Unpublished master’s thesis). Department of Computer Science, Colorado
State University.

Van Moffaert, K., Drugan, M. M., & Nowé, A. (2013). Scalarized multi-objective
reinforcement learning: Novel design techniques. In Proceedings of the IEEE
symposium on adaptive dynamic programming and reinforcement learning.


