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Abstract—Coordinating the joint-actions of agents in coop-
erative multiagent systems is a difficult problem in many real
world domains. Learning in such multiagent systems can be slow
because an agent may not only need to learn how to behave in
a complex environment, but also to account for the actions of
other learning agents. The inability of an agent to distinguish
between the true environmental dynamics and those caused by
the stochastic exploratory actions of other agents creates noise
in each agent’s reward signal. This learning noise can have
unforeseen and often undesirable effects on the resultant system
performance. We define such noise as exploratory action noise,
demonstrate the critical impact it can have on the learning
process in multiagent settings, and introduce a reward structure
to effectively remove such noise from each agent’s reward signal.
In particular, we introduce two types of Coordinated Learning
without Exploratory Action Noise (CLEAN) rewards that allow
an agent to estimate the counterfactual reward it would have
received had it taken an alternative action. We empirically show
that CLEAN rewards outperform agents using both traditional
global rewards and shaped difference rewards in two domains.

I. INTRODUCTION

Learning in large multiagent systems is a critical area of
research with applications including controlling teams of au-
tonomous vehicles [1], managing distributed sensor networks
[2], [3], and air traffic management [4]. A key difficulty of
learning in such systems is that the agents in the system
provide a constantly changing background in which each agent
needs to learn its task. As a consequence, agents need to
extract the underlying reward signal from the noise of other
agents acting within the environment. This learning noise
can have a significant and often detrimental impact on the
resultant system performance. In this work, we first define
exploratory action noise present in multiagent systems and
then introduce Coordinated Learning without Exploratory Ac-
tion Noise (CLEAN) rewards which are designed to promote
coordination while removing exploratory action noise agents’
reward signals.

There are currently two popular ways for agents to account
for each other within decentralized multiagent systems: 1)
explicitly modeling the other agents, and 2) treating agents
as a part of the environment. Agent modeling techniques
have been shown to work well in a number of settings, but
they quickly become intractable as scaling increases [5], [7],
[8]. Other issues arise when agents are treated as a part of

the environment (e.g., exploratory action noise), and their
exploratory actions are seen by other agents as stochastic
environmental dynamics. The inability of agents to distinguish
the true environmental dynamics from those caused by the
stochastic exploratory actions of other agents creates noise
on each agent’s reward signal. This problem cannot simply
be addressed by turning off exploration and acting greedily
(this has been repeatedly shown to result in poor performance
as agents always exploit their current knowledge which is
frequently incomplete or inaccurate [9]). We address this by
introducing CLEAN rewards which are designed to effectively
remove much of the learning noise caused by agents taking
exploratory actions.

The key innovation of our approach is that agents never
explicitly take exploratory actions. Instead, exploration is
accomplished by agents privately computing a “counterfac-
tual” reward they would have received had they taken an
exploratory action. Here, agents utilize a model of the system
reward function and the CLEAN shaping structure in order
to calculate the counterfactual rewards for actions not taken
and these rewards are used to update their policies.1 Only an
agent’s non-exploratory action is seen by other agents — this
exploration through counterfactual reasoning does not result in
noised added to the system. This paradigm promotes agent-to-
agent coordination, while maintaining the exploration needed
during learning (off-policy counterfactuals provide agents with
rewards that approximate the impact of changing their current
policies). Through using off-policy exploration, learning with
CLEAN rewards effectively remove the exploratory action
noise associated with learning, simplifying the learning prob-
lem for agents and improving scalability.

The primary goal of this paper is to demonstrate the impact
of exploratory action noise on the multiagent learning process
and to provide an approach to reduce the effect of this
problem. To demonstrate the effectiveness of CLEAN, we
assume agents have access to an accurate model of the system

1In this work, to demonstrate the ability of CLEAN rewards to remove
exploratory action noise, we provided agents with an accurate model of the
system reward function. In the future, reward modeling techniques will be
utilized by agents to construct approximate models of the system level reward,
enabling CLEAN rewards to be used in real world domains [10].
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Fig. 1: a) The gain of an antenna in the UAVCN domain can trade off signal power with coverage. Signal strength also depends
on how far the customer is from the center of the signal cone. b) When agents stop exploring in the GSD domain (episode
1000), system performance decreases due to exploratory action noise. Error bars show the standard error over 100 trials. c)
After agents train with some ε exploration rate in the GSD, their policies are fixed. These agents policies perform best when
a percentage of agents in the environment are forced to act randomly match the previous exploration rate.

reward, which they can use for internal reward calculations.
This may not be a realistic assumption in some real-world
domains and we plan to extend this work to learn approximate
reward models in the future [10]. By demonstrating the success
of CLEAN shaping rewards with a known reward model, this
work takes a critical first step towards applicability in all
domains, whether or not a model of the system reward is
known.

The contributions of this work are to:
1) Separate environmental noise from noise caused by the

exploratory actions of agents by defining exploratory
action noise and show its impact on learning within
multiagent systems,

2) Introduce two variations of Coordinated Learning with-
out Exploratory Action Noise (CLEAN) rewards that
promote coordination and remove the exploratory action
noise associated with multiagent learning,

3) Refine the CLEAN learning algorithm to allow batch
updating of these counterfactual actions, and

4) Empirically demonstrate the benefits of CLEAN rewards
in two domains with 100–1000 independent agents.

II. BACKGROUND AND RELATED WORK

In traditional single-agent reinforcement learning, an agent
executes exploratory actions to update its policy, balancing
exploration and exploitation [9], [11]. In multiagent systems,
exploratory actions add stochasticity to an environment, adding
noise to the learning process [12]. Agents therefore attempt to
adapt their policies to account for not only the environmental
dynamics, but also the exploratory actions of other agents.
Such learning noise may have unpredictable and undesirable
effects on the resultant system performance in multiagent
systems, as we show in Section IV.

There are two common approaches to address the stochas-
ticity of agents during learning: agent modeling and treating
agents as a part of the environment. Extensive work has
been done with agent modeling but such approaches become

intractable as the number of agents increase [8], [13], [14].
Treating agents as a part of the environment can significantly
impact both learning convergence and learning performance
[12], [15], [16]. In one approach, the “Win Or Learn Fast”
(WOLF) framework adjusts the learning rate of individual
agents based upon the stochasticity of the environment due to
other agents (effectively controlling how rapidly agents change
their policies) [15], [17], [18]. Although these techniques have
been shown to work well in many situations, they do not
explicitly allow the agents to remove the impact of exploratory
action noise from their reward signals.
A. Learning and Notation

In this paper, only multiagent stateless problems are con-
sidered, and inter-agent communication is not allowed.2 An
agent in such a setting can use an off-line or on-line update
mechanism. The first, a simplification of Q-learning, is

Q(at)← Q(at) + α[rt+1 + γmax
a

Q(a)−Q(at)]

where α is the learning rate, γ is a discount factor, rt+1 is
the reward provided to this agent by the environment for it’s
action at timestep t, at is the action executed by the agent
on timestep t, and Q(at) is the estimated return for executing
action a on timestep t [9]. The on-line update, based on Sarsa,
uses the action executed by the agent rather than the maximum
possible action:

Q(at)← Q(at) + α[rt+1 + γQ(at+1)−Q(at)]

In many multiagent domains, it is difficult for agents to learn
by using only local rewards (rt) when agents’ independent
local goals do not align with the global system goal. For
instance, if members of a sports team focus on scoring goals
so that they receive a higher salary, they may not optimize the
team objective of winning games. One common approach to
address this problem is to provide each agent with a reward

2If agents could communicate, existing cooperative multi-agent methods
like DCEE [19] may be more appropriate than a reinforcement learning
approach.



based upon the performance of the entire team as a whole,
a joint global reward G. The global reward of a system on
timestep t is therefore Gt(at), where at is the joint action
vector of all agents in the system at time step t.
B. Difference Rewards

Within multiagent learning systems, a key problem is how
best to select the reward function(s) agents use to learn.
One popular reward technique, and perhaps the most straight-
forward, is to let each agent use the global reward G as its
individual reward (i.e., each agent receives the team’s reward
as its individual reward). Unfortunately, in many domains,
especially domains involving large numbers of agents, such
a reward often leads to slow learning because each individual
agent has relatively little impact on the global reward.

Previous work has shown that while learning is possi-
ble using only the global reward, a type of shaping called
difference rewards can significantly improve both learning
speed and performance [1]. Difference rewards achieve these
benefits because they ensure that all agents are attempting to
optimize the global reward (i.e., what is good for the agent
is good for the system) while at the same time providing
each agent with specific feedback on how its own actions
contributed to the received reward (i.e., each agent is able to
tell whether or not its action was good or bad for the system,
enabling them to improve their own individual behavior).
Within stateless multiagent problems (as those used in this
work), the difference reward for agent i at time step t is
calculated as:

Di(at) ≡ G(at)−G(at,ai←a′i)

where the first is the global reward received G(at), and the
second term G(at,ai←a′i) is the global reward that would
have been received if agent i had not executed action a but
instead executed a different action a′, a counterfactual action.3

Difference rewards are aligned with the system objective G
regardless of how the counterfactual action a′ is chosen. The
second term does not depend on agent i’s actions, thus agents
receive positive rewards for benefiting the system and negative
rewards for harming the system [4].

Difference rewards are more informative than the global
reward because the second term in D removes much of the
effect of other agents from i’s reward. In many situations
it is possible to use an a′i that is equivalent to removing
agent i from the system. This causes the second term to
be independent of i, and therefore D evaluates the agent’s
contribution directly to the global performance. Difference
rewards have been shown to work well in a number of domains
and conditions [4], [20], but none account for the learning
noise caused by exploratory actions of agents.

III. EXPERIMENTAL DOMAINS

This section introduces the two domains used in this paper.
The first is a simple toy domain while the second is more
realistic and complex.

3In the case of stateful learning, e.g., reinforcement learning, a is replaced
with z, the system state information vector that includes both states and
actions.

A. The Gaussian Squeeze Domain

The Gaussian Squeeze Domain (GSD) is a novel problem
designed to highlight the problem of exploratory action noise.
There is a set of agents in which each agent contributes to
a system objective in the GSD and the agents are attempting
to learn to optimize the capacity of the system objective. The
objective function for the domain is as follows:

G(x) = xe
−(x−µ)2

σ2 (1)

where x is the cumulative sum of the actions of agents (x =∑n
i=0 ai), µ is the mean of the system objective’s Gaussian, σ

is the standard deviation of the system objective’s Gaussian.
Here, µ and σ effectively define the target capacity, x, that the
agents must coordinate their actions to achieve. Note that we
have dropped the t subscript for clarity, as the timestep is only
used in the learning update. The goal of the agents is to choose
their individual actions ai in such a way that the sum of their
individual actions optimize Equation 1. Here, each agent has
10 actions ranging in participation value from zero to nine. The
GSD is a congestion domain — adjusting the variance changes
the coordination complexity for agents within the system. The
lower the variance, the higher the coupling of agents’ joint
actions and the more difficult the optimization task.

B. UAV Communication Network Domain

The UAV Communication Network Domain (UAVCN) is
based on the behavior of CDMA-based communication net-
works using UAVs as transmitters that hover in fixed locations
(rather than relying on fixed towers). In addition to having
long-range line-of-sight communications, the UAVs adaptively
focus their signal. The UAVs are all at similar altitudes and
communicate through directional antennas pointed towards the
ground. The amount of area on the ground that is covered by
the UAV is determined by the gain of its antenna. Antennas
with low gain, transmit over a wider area, but within that
area the strength of the signal is lower (see Figure 1a). The
objective is to maximize the average data rate of each of the
i customers:

G =
1

n

n∑
i=1

Ci

where there are n customers, Ci is the data rate to customer
i, and G is the system evaluation function. Based on the
dynamics of this domain [6], [20], we find;

G =
1

n

n∑
i=1

∑
j∈Ji

B log2

1.0 +

aPj
r2j
e
−b

ri,j
rj∑

j /∈Ji
aPj
r2j
e
−b

ri,j
rj + k


where there are j UAVs, B is the bandwidth of the channel, rj
is the signal half-power radius for UAV j, ri,j is the distance
from customer i to the center of UAV j’s transmission, k is a
constant for background noise. A UAV can control its power
level, Pj , and indirectly, ri,j , through the orientation of the
UAV.

Each UAV is controlled by a pair of agents: one adjusts
the power level Pj and the second controls the transmitter



orientation. The solution to the full problem consists of the
power level and orientation values for all the UAVs. The power
agent selects from a discrete set of ten power levels. The
orientation agent chooses one of ten directions: either straight
down, or at 45 degrees in one of nine evenly spaced directions
around the UAV. Between these two agents, each UAV has one
hundred distinct power/orientation settings.

IV. EXPLORATORY ACTION NOISE

Agents often treat other agents as part of the environment
— the exploratory actions of other agents become stochastic
environmental noise. However, agents are then unable to
distinguish when their peers are taking purposeful actions or
are exploring. This may cause agents bias their policies such
that they actually depend upon the exploratory actions of other
agents to perform well. Agents learning optimal policies in
the presence of exploration may not be optimal once learning
completes and exploration is disabled.

Figure 1b shows learning results when a set of 300 ε-greedy
reinforcement learning agents learn for 1000 episodes with an
exploration rate of ε = 0.10 in the GSD. After 1000 episodes,
exploration and learning is disabled. The counterintuitive result
is that performance decreases when exploration is turned
off because each agent had formed policies under conditions
where all the other agents were occasionally performing ex-
ploratory actions. The agents’ inability to distinguish between
true environmental dynamics and dynamics caused by the
exploratory actions of other agents means that the agents
themselves (the solution) actually end up becoming part of the
problem (adding complexity due to stochastic learning noise).
This result holds for both off-line and on-line updates because
such update mechanisms have no knowledge about when other
agents explore.4 The goal of techniques presented in this paper
is to eliminate such exploratory action noise.

Figure 1c shows an additional example. In these experi-
ments, 300 agents again train for 1000 episodes, now using
5% and 10% exploration, respectively. The learned policies
are then fixed and tested in systems where a proportion of
the agents are replaced with agents that act randomly. These
results show that agent performance is optimal when the
proportion of agents that act randomly are equivalent to the
exploration rate during training. During the learning phase,
approximately ε portion of the agents were taking random
actions per time step and the learned joint-policy accounted
for this exploratory noise. Performance is averaged over 100
trials.

Learned policies are not always worse once exploration
is disabled, but these examples demonstrate the potential for
exploration to interfere with learning in multiagent systems.

4This is in contrast to the example of “Cliff Walking” in section 6.5
of Sutton and Barto [9]. In the Cliff domain, an agent can improve its
performance by accounting for exploratory noise, and if the learning is
disabled, the Q-learning agent would outperform Sarsa. In a multiagent
domain, an agent cannot reason about what action other agents would take
in the absence of exploration and the performance of standard learning
algorithms may decrease in the absence of exploration.

Although the exploration-exploitation trade-off has been exten-
sively studied, e.g., in the context of multi-armed bandits and
reinforcement learning, little work has been done to address
the biasing issues associated with agents learning to depend
upon the exploratory actions of other agents.

We define exploratory action noise to be the portion of an
agent’s learning signal that is impacted by the exploratory
actions of other agents. Ni, the value of the exploratory action
noise for agent i, is:

Ni =
|gi(a)− gi(a− aε))|

|gi(a)|
(2)

where gi is agent i’s reward function, a is the joint-action
vector for all agents in the system, and aε is the subset of
the joint-action vector containing all elements of a that were
exploratory actions. Intuitively, Ni is a ratio measuring how
much of agent i’s reward is due to other agents’ exploratory
actions. The two extremes, N = 1 and N = 0 would be
achieved if the system exploration rate were ε = 1.0 (all
reward is from exploratory actions) or ε = 0 (no explo-
ration noise), respectively. CLEAN rewards, introduced in the
following section, are designed to avoid dependencies upon
the exploratory actions of other agents in the system by
performing exploration via off-policy counterfactual actions
which do not create explicit environmental noise.

V. CLEAN REWARDS

This introduces Coordinated Learning without Exploratory
Action Noise (CLEAN) rewards. These shaping rewards si-
multaneously address the structural credit assignment problem
and issues arising from learning noise caused by exploration to
promote learning, coordination, and scalability in multiagent
systems. As with difference rewards, we assume agents have
access to an accurate model of the system reward (which can
be approximated from data [6], [10]). The key requirements of
CLEAN are that agents have an approximation of the underly-
ing system objective, G, and that agents in the system follow
their current target policies without exploration.5 Greedily
following target policies typically leads to poor performance,
but CLEAN rewards address this shortcoming via off-policy
counterfactual action exploration (Equations 3 and 4).

CLEAN rewards are structured in such a way that they
promote implicit coordination that leads to good system
performance (agents improving their own local reward are
concurrently improving the system performance, while agents
harming their local reward are also harming system perfor-
mance) and are also designed to address the structural credit
assignment by providing each agent with specific feedback on
how its own actions impacted the reward it received.

5The key distinctions between CLEAN rewards and difference rewards
are: i) CLEAN rewards provide reward updates for the counterfactual actions
r(a′i), whereas difference rewards provide rewards for the actual action r(ai)
(i.e., the counterfactual action appears in the first term of the CLEAN rewards
as opposed to the second term of difference rewards), ii) CLEAN rewards
require agents to behave greedily and exploration is achieved through the
counterfactual actions — implicit exploration is achieved by calculating the
reward r(a′i) in the first term of these rewards, whereas explicit exploration
in the actions a is required for difference rewards).



A. CLEAN 1: C1i
This CLEAN reward requires each agent calculate the

reward for a counterfactual action. This reward is formed
by calculating the difference between the reward expected if
taking some counterfactual action a′i and the global reward
actually received.6 In this case, agent i’s CLEAN reward can
be represented as follows:

C1i(a) ≡ G(aai←a′i)−G(a) (3)

Intuitively, this gives the agent a reward that represents how the
system would have performed had it not followed its policy,
taking action ai, but instead had taken some counterfactual
action, a′i. This reward is designed to allow the agent to act
greedily, while still improving its evaluation for actions not
taken (equivalent to off-policy exploration).

B. CLEAN 2: C2i
A second variation of CLEAN rewards is defined so that

the CLEAN reward to agent i is

C2i(a) ≡ G(aai←a′i)−G(aai←a′′i ) (4)

where agent i took action ai, actions a′i and a′′i are coun-
terfactual actions of agent i, and G is again the system
reward. Rather than using the action the agent executed, this
CLEAN reward instead approximates the reward agent i would
have received if it had taken either of these counterfactual
actions. This form is often very useful when an action can
be chosen for the second counterfactual, a′′i , that is equivalent
to removing agent i from the system (as done in this work’s
experiments in Section VI). In this case, the CLEAN reward
would provide a reward approximation that tells the agent
its contribution to the system; C2i(a) will be positive if the
counterfactual action a′i would have been beneficial to the
system, and a negative reward if the counterfactual action ci
would have been harmful to the system.

C. A CLEAN Example

This section provides an example of CLEAN rewards and
their benefits to ground our discussion. Consider a set of
agents learning within the GSD, with the following system
parameters: µ = 200.0, σ = 50.0, and ε = 0.10. For this
example, each agent has a model of the system reward, as well
as the ability to observe the state of the environment. Agents
are unable to communicate and must implicitly coordinate
through the their rewards.

GSD agents attempt to coordinate their actions to optimize
the system reward (Equation 1). Using traditional rewards
(e.g., global or difference rewards), during each episode of
learning an average of ε of the agents are exploring, meaning
that the system reward is really comprised of two parts:

x = xintentional + xexploration (5)

6For this work, we selected the counterfactual actions a′i and a′′i uniformly
randomly during each episode in the same way that exploratory actions are
selected in learning, unless otherwise specified. More informed counterfactual
action exploration strategies will be explored in the future.

where xintentional represents the contribution to the system
of agents who are executing their current best policy, and
xexploration represents the contribution to the system perfor-
mance of agents that are acting randomly. This exploratory
action noise will impact agents learning with any explicit
exploration strategy, e.g., uniform random, Boltzman, etc. As
discussed earlier, such exploration noise can have a detrimental
impact on overall system performance. Agents learning with
CLEAN rewards always behave greedily with respect to their
current best policy, eliminating the xexploration term in Equa-
tion 5. Agents use CLEAN rewards to implicitly explore via
internal models of the system reward and observations of the
environment.

For example, given the domain setting described above,
suppose that an agent that executed an action of 10 and
observed that the cumulative value for the system was 250.
This agent could then calculate its CLEAN reward (Equation
3) in two steps. First, it would calculate G(aT):

G(aT ) = aTe
−(aT−µ)

2

σ2 = 250e
−(250−200)2

502 = 679.57

where aT is the system action vector of all of the agents acting
greedily (i.e., following their target policies), and G(aT )
is the performance of the system given that all agents are
behaving greedily (including agent i). Next, the agent must
calculate G(aT − ai + a′i), where a′i represents the agent’s
counterfactual exploratory action. In this case, suppose the
agent’s exploratory action was to execute the action 3 instead
of the action 10 that it actually took (i.e., a′i = 3). Therefore:

G(aT − ai + a′i) = (aT − ai + a′i)e
−((aT−ai+a

′
i)−µ)

2

σ2

= (250− 10 + 3)e
−((250−10+3)−200)2

502 = 509.11

which is the system performance if agent i had taken action
3 instead 10. The agent then combines these two calculations
in order to determine its CLEAN reward, as follows:

C1i = G(aT−ai+a′i)−G(aT ) = 509.11−679.57 = −170.46

Because the reward is negative, action 3 is worse than action
10. CLEAN rewards thus allow agents to make updates based
upon how good or bad potential actions seem in comparison
to the agent’s current best action. This shaping reward is still
aligned with the global system reward, allow agents to more
quickly learn than if they maximized G directly. This ability to
receive a reward update based upon a counterfactual action is
the critical difference between CLEAN rewards and difference
rewards. In the next section, we discuss an extension which
enables agents to further improve learning speed at the expense
of additional computation cost.
D. Batch Updates with CLEAN Rewards

Agents using CLEAN rewards are able to calculate a value
for a reward associated with some action a′i that they did not
explicitly take within the environment. We further leverage
this capability by calculating updates for multiple values of a′i
during each time step of learning, enabling agents to make a
trade-off of more exploration during each time step at the cost
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Fig. 2: Gaussian Squeeze Domain Results: a) 1000 agents using global or difference rewards learn policies that depend
upon exploratory action noise, while agents learning with CLEAN rewards do not perform worse once learning is disabled.
b) The offline performance for agents using G and D is frequently worse than the online performance, and is eclipsed by the
performance agents using of CLEAN rewards. c) As the number of agents increases, the problem becomes more difficult and
the effect of exploratory action noise becomes increasingly impactful.

of increased computation (linearly increasing computation cost
for each additional reward calculation). Our latter empirical
results show that such Batch-CLEAN reward updates can
result in significantly faster learning in terms of episodes
of learning, though they come with increased computational
costs.

In this section, we will introduce two formulations of Batch-
CLEAN rewards, which are based upon the two CLEAN
rewards introduced previously in Equations 3 and 4. First,
consider the CLEAN rewards outlined in Equation 3, where
each agent’s reward compares an exploratory counterfactual
action against it’s current best policy. Batch-CLEAN rewards
offer an extension by enabling each agent to perform reward
calculations associated with multiple potential counterfactual
actions a′i during each individual episode of learning. In
particular, during each time step the agent calculates a set
of CLEAN rewards as follows:

BC1i = {C1i(a′i)}∀a′i ∈ Ai (6)

where BC1i is the set of rewards agent i receives during each
time step, associated with a set of potential counterfactual
actions Ai. Agents using Batch-CLEAN rewards perform
value updates for each of the individual rewards during each
time step (performing value updates for each counterfactual
action a′i respectively). When there are relatively few actions
in each agents’ action space, agents can frequently calculate
CLEAN rewards for the entire set of potential counterfactual
actions. In situations where there is a large action space, agents
using Batch-CLEAN may choose to calculate CLEAN rewards
for only a selected portion of their potential action space.

Next, we consider Batch-CLEAN rewards based upon Equa-
tion 4 which enable agents to approximate and compare the
impact of two freely selected counterfactual actions a′i and a′′i
on the overall system performance. In this work, we select a
second counterfactual a′′i that is equivalent to removing agent
i from the system, and we hold this counterfactual constant
in all reward calculations based upon Equation 4. Selecting
the counterfactual action a′′i this way causes the second term
of the CLEAN reward to approximate the performance of the

system in the case where agent i did not exist. Hence, an agent
can determine how beneficial its presence and interaction was
to the system as a whole. Batch-CLEAN rewards are defined
as:

BC2i = {C2i(a′i)}∀a′i ∈ Ai (7)

where BC2i is the set of Batch-CLEAN rewards agent i
receives each time step when the counterfactual a′′i is selected
to approximate removing agent i from the system. Again,
during each time-step agents calculate value updates for each
of the individual CLEAN rewards. 7
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Fig. 3: UAVCN Domain with 100 agents. Agents using
CLEAN rewards outperform those using global or difference
rewards. Batch-CLEAN rewards allow agents to learn even
faster and achieve higher asymptotic performance.

VI. RESULTS

Experiments evaluate agents learning via off-policy Q-
learning and acting independently (without communication),
relying on implicit coordination via couple reward functions.
We explore both example domains using seven types of agents:

R : Agents taking random actions
G : Agents learning with Global (G) rewards
D : Agents learning with Difference (D) rewards

C1 : Agents learning with CLEAN 1 (C1i) rewards
C2 : Agents learning with CLEAN 2 (C2i) rewards

7Further discussion of the the Batch-CLEAN rewards and their derivation
in the UAVCN domain can be found elsewhere [6], [20].
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Fig. 4: UAVCN Domain with agent scaling. Agents using
CLEAN reward techniques significantly outperform all other
methods.

BC1 : Agents learning with Batch-CLEAN (BC1j) rewards
BC2 : Agents learning with Batch-CLEAN (BC2j) rewards
Experiments consist of r = 30 independent trials, Q-tables are
initialized stochastically, and the error in the mean σ/

√
r is

plotted (although it often too small to be visible). Results were
statistically significant as verified by t-tests with p = 0.05. In
both domains the agents were using off-policy updates. All
agents used Q-learning. The learning rate was α = 0.10, the
exploration rate was ε = 0.10, and the discount factor was
γ = 0.10 in all experiments unless otherwise specified.

Throughout these experiments we plotted both online and
offline performance for agents using global and difference re-
wards. This was done to demonstrate the impact of exploratory
action noise on the learning process.8 The difference between
the online and offline performance using G and D is due to
the impact of exploratory action noise on learning.

A. The Gaussian Squeeze Domain

Figure 2a shows the results for 1000 agents learning in the
Gaussian Squeeze Domain with µ = 175, σ = 175. This is a
case of high congestion and is meant to simultaneously show
the potential benefits in learning speed associated with Batch-
CLEAN rewards and the impact that exploratory action noise
can have on the learning process when using traditional re-
ward structures. Here, the performance of agents using global
rewards G is poor in both the online and the offline settings.
This is because global rewards do not provide individual
agents with specific feedback on how their individual actions
impacted the system performance compared to the actions of
all of the other agents in the system (i.e., each agent’s reward
signal gets lost in the “noise” of the rest of the system).
Agents using difference rewards D performed better than
agents using G because difference rewards provide each agent
with a reward that is reflective of it’s own individual impact on
the system performance. Unfortunately, difference rewards do
not address the issues associated with exploratory action noise.
The disparity in performance between CLEAN rewards and

8The online and offline performance of CLEAN rewards are identical
since agents explore via off-policy counterfactual actions while continually
following their target policies.

difference rewards can be directly attributed to the impact of
exploratory action noise on the learning process. As seen here,
exploratory action noise can have a massive impact on learning
performance, particularly in large, tightly coupled multiagent
systems. Agents using CLEAN rewards all converge to near-
optimal performance, maintaining 5 times the performance of
the next best technique (i.e., difference rewards).

Figure 2b shows the results of an experiment where the
number of agents, the mean, and the variance of the target
function were proportionally scaled. Here, the mean and the
variance were scaled proportionally to the number of agents
such that µ = 0.50N and σ = 0.50N . This experiment was
set-up with low coupling compared to the previous experi-
ment and was conducted to show that even when coupling
is relatively low, the impact of exploratory action noise on
the learning process can be significant. Agents using global
rewards, G, continue to perform poorly due to their inability to
assign credit to agents in the system for their individual contri-
butions to the system performance. As observed in Figure 2b,
the gap between the online and offline performance of agents
using difference rewards grows as scaling is increased. This
is because more and more agents are exploring during each
time step, and exploratory actions of agents in the system have
an increasingly large impact on the overall system dynamics.
Again, all forms of CLEAN rewards outperform all other
techniques, converging to nearly optimal performance for the
Gaussian Squeeze Domain.

The final GSD experiment considers how performance
changes as complexity increases. In the GSD, as the vari-
ance decreases, the agents become more coupled and the
exploratory action noise has a larger effect. Figure 2c shows
the results of using a fixed mean and variance (µ = 175
and σ = 175) with different numbers of agents in the
system. As expected, CLEAN rewards are much more robust
when the problem complexity is increased (more agents and
higher congestion) relative to global and difference rewards
because agents’ exploratory actions play a larger role in system
performance.
B. UAV Communication Network Domain

In the following experiments, only the online performance
of agents using global and difference rewards are plotted for
brevity. The first UAVCN experiment considered set of 100
UAVs and 100 customers. As see in in Figure 3, agents
selecting power and orientation actions randomly perform
poorly. Similarly, agents using global rewards are slow to
learn and learn a policy with performance far worse than
other agents. Global rewards provide a noisy learning signal
to agents because of the coupling with other agents’ actions.
Difference rewards address this shortcoming by effectively
filtering off much of the impact of other agents on the learning
signal. This additional information (which addresses structural
credit assignment) results increased performance compared to
agents using G, but difference rewards do not account for the
impact of exploratory action noise.

To address the shortcomings of global and difference re-
wards, we implemented CLEAN rewards (C1, and C2), which



not only address the structural credit assignment problem as
difference rewards do, but also address exploratory action
noise. CLEAN rewards outperform difference rewards by up
to 25% and global rewards by over 100% in this domain.
However, CLEAN rewards still learn slowly in comparison to
Batch-CLEAN rewards — they are limited by only receiving
a single reward update per episode of learning.

Batch-CLEAN rewards maintain the high performance of
CLEAN rewards while significantly improving learning speed
over standard CLEAN rewards. The speed-up in learning
stems from the fact that Batch-CLEAN rewards leverage the
properties of privatized exploration. This extension effectively
enables learning speed to be improved over traditional reward
techniques such as global or difference rewards, as well as
standard CLEAN rewards, which only allow a single reward
update per learning episode.

It is interesting to note that although the computational
increase for agents’ reward calculations using BC1 and BC2
rewards compared to G, D, C1, and C2 rewards is twenty
fold, these agents learn one hundred fold faster (showing
a nonlinear increase in learning performance compared to
computational costs in this particular case). Here, Batch-
CLEAN rewards BC1 and BC2 outperform agents using D by
over 25% and agents using G by over 100%, while maintaining
the performance of standard CLEAN rewards.

The next set of experiments involved scaling the number of
UAVs and customers in the system, while keeping the ratio
fixed at 1 : 1. As seen in Figure 4, the general performance
of all techniques decreases with increased task complexity.
This is not surprising, given that within a CDMA-based
communication network, the bandwidth is directly dependent
upon the signal-to-noise ratio, where the signal noise increases
as the number of communication towers (UAVs) broadcasting
increases (see the discussion on the dynamics of a CDMA-
based communication system in Section III-B for details). In
a shared-channel network, this background noise necessarily
reduces the amount of signal throughput to any individual
node in the system. It is important to note, however, that
the total system bandwidth increases as the number of UAVs
is increased, even though the signal per customer degrades.
Again, agents using random policies continue to perform
poorly as scaling increases. Agents using global rewards
experience a significant drop in performance when the number
of UAVs and customers is increased by an order of magnitude.
Agents using difference rewards experience a slight decrease
in performance as scaling increases. Agents using CLEAN and
Batch-CLEAN rewards also experience a slight performance
drop (characteristic of adding more cell towers within a
CDMA network), but continue to significantly outperform all
other methods. Agents using Batch-CLEAN rewards learn
significantly faster than agents using CLEAN rewards with
single counterfactual reward updates in all of these cases.

VII. DISCUSSION AND CONCLUSION

There has been a lot of research involving the exploration-
exploitation tradeoff within the multiagent learning literature.

However, relatively little work has been done to directly
address the impact of learning noise caused by the exploratory
actions of agents. In this work, we first showed the po-
tential impact of such exploratory action noise on learning,
demonstrating that exploratory actions can cause agents to
bias their policies to depend upon the exploratory actions of
others, which can lead to suboptimal learning. We defined this
learning noise as exploratory action noise. We then introduced
CLEAN rewards, which are shaped rewards designed specif-
ically to promote coordination and scalability in multiagent
systems by addressing both the structural credit assignment
problem, as well as the exploratory action noise caused by
agent exploration. Additionally, we introduced an extension
of these rewards called Batch-CLEAN, which leveraged the
concept of counterfactual actions in order to enable agents
to calculate multiple reward updates per episode of learning.
We provided empirical results demonstrating the performance
of CLEAN rewards in two multiagent domains including a
Gaussian Squeeze Domain (toy domain) and a more realistic
UAV Communication Network domain based upon CDMA-
based network dynamics. We showed that CLEAN rewards
are highly robust to exploration and scaling, significantly
outperforming both global rewards and difference rewards in
both domains.

This work was aimed at demonstrating the presence and
potential impact of exploratory action noise within multiagent
learning problems, and providing a potential solution to ad-
dressing this problem. Though CLEAN rewards showed much
promise in this work, they operated under the assumption that a
complete and accurate model of the reward structure is known
by the agents. This assumption is violated in many multiagent
domains where the reward structure may be unknown or may
be too complex for an analytical model. As an extension of
this work, we will extend CLEAN rewards into domains where
agents are not provided with a model of the underlying system
reward structure, and instead must construct an approximate
model of the system reward, and then use this approximate
model to calculate their CLEAN rewards. This will signifi-
cantly improve the real-world applicability of these rewards.
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