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Abstract. The main objective of transfer learning is to use the knowledge ac-
quired from a source task in order to boost the learning procedure in a target task.
Transfer learning comprises a suitable solution for reinforcement learning algo-
rithms, which often require a considerable amount of training time, especially
when dealing with complex tasks. This work proposes an autonomous method
for transfer learning in reinforcement learning agents. The proposed method is
empirically evaluated in the keepaway and the mountain car domains. The results
demonstrate that the proposed method can improve the learning procedure in the
target task.

1 Introduction

In recent years, a wealth of transfer learning (TL) methods have been developed in the
context of reinforcement learning (RL) tasks. Typically, when an RL agent leverages
TL, it uses knowledge acquired in one or more (source) tasks to speed up its learning in
a more complex (target) task[1].

Although the majority of the work in this field presumes that the source task is
connected in an obvious or natural way with the target task, this may not the case in
many real life applications where RL transfer could be used. These tasks may have
different state and action spaces or even different reward and transition functions. One
way to tackle this problem is to use functions that map the state and action variables of
the source task to state and action variables of the target task. These functions are called
inter-task mappings [1]

While inter-task mappings have indeed been used successfully in several settings,
we identify two shortcomings. First, an agent typically uses a hand-coded mapping,
requiring the knowledge of a domain expert. If human intuition cannot be applied to
the problem (e.g. transferring knowledge for robotic joint control between robots with
different degrees of freedom), selecting an inter-task mapping may be done randomly
requiring extensive, costly experimentation and time not typically available in complex
domains or in real applications. Second, even if a correct mapping is used, it is fixed and
applied to the entire state-action space, ignoring the important possibility that different
mappings may be better for different regions of the target task.



In this paper we propose a generic method for the automated on-line selection of
inter-task mappings in transfer learning procedures. The key insight of the proposed
method is to select the inter-task mapping for a specific state-action of the target task
based on the corresponding source task state-action values.

The main contributions of this work are to 1) Present a novel method for value-based
mapping selection, providing its theoretical foundations and an empirical comparison
of two different mapping selection criteria; 2) Alleviate the problem of predefining
a mapping between a source and target task in TL procedures by presenting a fully
automated method for selecting inter-task mappings; 3) Introduce and evaluate a novel
algorithm that implements the proposed method.

Experimental results demonstrate success of the proposed algorithm in two RL do-
mains, Mountain Car and Keepaway. Some part of the Keepaway results presented here
has been presented also in a workshop [2]. The extensive results and the analysis in this
work support the method’s key insight on the appropriate mapping selection criteria for
value-based mapping selection methods.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) addresses the problem of how an agent can learn a be-
haviour through trial-and-error interactions with a dynamic environment [3]. In an RL
task the agent, at each time step t, senses the environment’s state, st ∈ S, where S is the
finite set of possible states, and selects an action at ∈ A(st) to execute, where A(st)
is the finite set of possible actions in state st. The agent receives a reward, rt+1 ∈ <,
and moves to a new state st+1. The general goal of the agent is to maximize the ex-
pected return, where the return, Rt, is defined as some specific function of the reward
sequence.

2.2 Transfer Learning

Transfer Learning refers to the process of using knowledge that has been acquired in a
previously learned task, the source task, in order to enhance the learning procedure in a
new and more complex task, the target task. The more similar these two tasks are, the
easier it is to transfer knowledge between them. By similarity, we mean the similarity
of their underlying Markov Decision Processes (MDP) that is, the transition and reward
functions of the two tasks as also their state and action spaces.

The type of knowledge that can be transferred between tasks varies among different
TL methods. It can be value functions, entire policies as also a set of samples from
a source task used from a batch RL algorithm in a target task [1]. In order to enable
transfer learning across tasks with different state variables (i.e., different representations
of state) and action sets, one must define how these tasks are related to each other. One
way to represent this relation is to use a pair 〈XS , XA〉 of inter-task mappings [1],
where the function XS(si) maps one target state variable to one source state variable
and XA(a) maps an action in the target task to an action in the source task (see Table 1
for an example of states mapping).



3 Multiple Inter-Task Mappings in TD Learners

This paper proposes a value-based transfer method which is also able to autonomously
select the appropriate inter-task mapping. As this transfer method applies to TD-learners
it doesn’t require any information about the environment, such as a model of its tran-
sition or reward functions, therefore being a more computationally efficient method
capable for on-line selection of the appropriate mappings.

We assume that an RL agent has been trained in the source task and that it has access
to a function Qsource, which returns an estimation of the Q value for a state-action pair
of the source task. The agent is currently being trained in the target task, learning a
function Qtarget and senses the state sτ . In order to transfer the knowledge from the
source task, the method selects the best state-action mapping Xbest = 〈XS

best, X
A
best〉,

under a novel criterion described next in this text, and adds the corresponding values
Qsource(X

S(sτ )), X
A(aτ )) from the source task via the selected mapping to the target

task values Qtarget(sτ , aτ ). In our proposed method the best mapping is defined as the
mapping that returns the state-action values that had the maximum mean value in the
source task compared to the state-action values returned by the other mappings, that is

Xbest = argmax
X

∑
a∈Asource

Qsource(X
S(sτ ), a)

|Asource|

There are alternate ways to select the best mapping based only on the Q-values of
the source task, such as selecting the mapping with the maximum action value, but such
a choice would imply that a source task action is correctly mapped beforehand and
also that the best action for the source task policy is also the best for the target task
policy. In order to avoid such assumptions, we use instead the maximum mean Q-Value
as our transfer heuristic. Moreover, we analytically argue on the natural meaning and
correctness of such a choice.

Specifically, as our value-based transfer method belongs to a family of methods such
as Q-value reuse [1], we note two things. Every transfer method that shapes a target task
Q-function using a source task’s Q-values, is based on two main assumptions:

– The most meaningful and correct inter-task mapping is known beforehand and is
used to map the state and action variables of the target task’s Q-function to the
source task’s Q-function.

– Using this inter-task mapping, a greedy (maxQ-value) target task policy derived
exclusively from the (mapped) source task Q-function, is meaningful in the target
task and assists towards its goal.

Simply said, the second assumption implies that given a correct mapping, a high value
state-action pair in the source task is expected to be of high value in the target task
too. Since our proposed method belongs to this family of methods but with the major
difference that we don’t manually set (and presume) the best mapping, but instead aim
to find it, the first assumption is not met and should at least be relaxed.

Concretely, not necessarily meeting the first assumption means that a target task
policy derived by greedily (maxQ(s, a)) using the source task Q-function is also not
necessarily meaningful. This means that selecting mappings for the current target task



state based on the maximum source task Q-value implies not only that the actions are
correctly mapped but that they are also the best for the target task policy.

To relax these assumptions we don’t presume the immediate and greedy next-step
use of the source task policy (implied when one uses the maximum Qπ(s, a) for the
agent’s next step) and instead we use the value V π(s) of that source task state but
under a different source task policy, the random next-step policy. In this policy the
agent chooses a random action for the current state and then uses π for the next step and
after that.

The random next-step policy protects us from the violation of the assumptions stated
above, if we would greedily use the source task Q-function (maxQ-value). It is actually
a parsing policy of the source task’s state-action values. Considering this policy leads
us to transferring based on the mean Q-value returned by each mapping for the agent’s
next step.

Specifically, consider the state value function V πsource(s) in the source task. Al-
though known from basic MDP theory, we analytically calculate the following in order
to demonstrate the natural meaning of the mean Q-value choice:

V πsource(s) = Eπ{Rt|st = s}

Based on the conditional expectation theorem and conditioning on all possible actions,
the above is equal to:

=
∑
α

Eπ{Rt|st = s, αt = α}P{αt = α|st = s}

The probability term above is the policy π(s, α), so:

=
∑
α

Eπ{Rt|st = s, αt = α}π(s, α)

Since the expectation term above, is Qπ(s, α) the above is equal to:

=
∑
α

Qπ(s, α)π(s, α)

Since under our policy the next action in a state s is chosen randomly (uniformly):
π(s, α) = 1

|Asource(s)| =
1
k so

V πsource(s) =
1

k

∑
α

Qπ(s, α) (1)

And so using a random policy just for the next step and then assuming following π as
usual, implies that the value of the state s when following our modified policy, equals
the mean Q-value of the state s (RHS of Equation 1). As we mentioned above using
the next-step random policy protects our proposed method from an “assumption over
assumption” pitfall.

The above insight is implemented in our proposed TL algorithm, Value-Addition.
Algorithm 1 shows the pseudo-code of the transferring procedure.



Algorithm 1 Value-Addition procedure: Multiple Mappings in TD Learners
1: procedure VALUE-ADDITION(sτ , X,Qtarget, Qsource)
2: bestMeanQV alue← 0; bestMapping ← 0
3: N ← |X| . the number of mappings considered
4: for i← 1 . . . N do
5: s← XS

i (sτ )
6: meanQV alue← 0
7: for all a ∈ Asource(s) do
8: meanQV alue← meanQV alue+Qsource(s, a)

9: meanQV alue← meanQV alue/|Asource(s)|
10: if meanQV alue > bestMeanQV alue then
11: bestMeanQV alue← meanQV alue
12: bestMapping ← i

13: χS ← XS
bestMapping

14: χA ← XA
bestMapping

15: s← χs(sτ )
16: for a ∈ Asource(s) do
17: Qtarget(sτ , χ

−1
A (a))← Qtarget(sτ , χ

−1
A (a)) +Qsource(s, a)

On lines 3–12, the algorithm finds the best mapping for the current target task state
sτ from instances that are recognized in the target task.

After the best mapping is found, the algorithm adds the Q-values from the source
task to the Q-values from the target task (lines 13–16). Through the inverse use of the
best action mapping, χ−1A the algorithm updates the value of the equivalent target task
action. Note that if a target action is not mapped to a source action, the algorithm does
not add an extra value. Finally, the updated Q-values in the target task can be used for a
regular TD update, action selection, etc.

4 Domains

4.1 Keepaway

Keepaway [4], is a subset of the RoboCup robot soccer domain, where K keepers try
to hold the ball for as long as possible, while T takers (usually T = K − 1) try to
intercept the ball (Figure 1). The agents are placed within a fixed region at the start of
each episode, which ends when the ball leaves this region or the takers intercept it.4

The task is modelled as a semi-Markov decision process (SMDP), as it defines
macro-actions that may last for several time steps. The available macro-actions for a
keeper with ball possession are HoldBall and Pass-k-ThenReceive, where k is another
keeper. A keeper executing HoldBall remains stationary. A keeper executing Pass-k-
ThenReceive performs a series of actions in order to pass the ball to team-mate k and
then executes the Receive sub-policy: If no keeper possesses the ball and he is the clos-
est keeper to the ball then he executes macro-action GoToBall, otherwise he executes

4 For more information please refer to the original paper [4].



macro-action GetOpen in order to move to an open area. Receive is also executed by
keepers when they don’t possess the ball.

K3

T2

Center of field

Ball K2

K1

T1

Fig. 1. 3 vs. 2 Keepaway

The features that describe the state of the environ-
ment for a keeper K1 that possesses the ball are: a)
the distances of all agents to the center of the field, b)
the distance of all other players to K1, c) the distances
of K1’s team-mates to the closest opponent, and d) the
minimal angles between K1’s team-mates and an oppo-
nent with the vertex at K1.

The task becomes harder as extra keepers and tak-
ers are added to the fixed-sized field, due to the in-
creased number of state variables on one hand, and the
increased probability of ball interception in an increas-
ingly crowded region on the other.

4.2 Mountain Car

Our experiments use the mountain car domain [5]. The
standard 2D task (MC2D) requires an under-powered car to drive up a hill. The state is
described by two continuous variables, the position x ∈ [−1.2, 0.6], and velocity vx ∈
[−0.07, 0.07]. The actions are {Neutral, Left, Right}, and the goal state is x >= 0.5,
with a reward of −1 on each time step. The 3D mountain car (MC3D) task extends
the 2D task by adding an extra spatial dimension [6]. The state is composed by four
continuous variables. The coordinates x and y are in [−1.2, 0.6], and the velocities vx
and vy are in [−0.07.0.07]. The actions are {Neutral, West, East, South, North}, the
goal is x, y >= 0.5 and the reward is −1 on each time step.

5 Experiments

5.1 Transferring with Value-Addition in Mountain Car 3D

First, an agent is trained in the Mountain Car 2D task (source task). The algorithm
that is used for training in the source task as also in the target task, is the Sarsa(λ)
using linear tile-coding (CMAC) with 14 tilings. The learning rate α is set to 0.5. The ε
parameter is set to 0.1, which is multiplied by 0.99 at each episode, and λ to 0.95. These
settings are the default in the Mountain Car package and they are the best found so far.
While acting in the source task, the agent is recording the weights of its CMAC function
approximator for each tiling and action. The resulting data file captures the state of the
source task function approximator and is the knowledge we need to transfer and use in
the target task. Finally, in the source task the agent was trained for 1600 episodes.

For the MC3D task we use the same settings as above except for α which is set to
0.2. We select this setting as it was found to yield very good results [7]. For both the
MC2D and MC3D tasks we set the maximum steps of an episode to 5000. If the agent
exceeds the maximum number of steps without reaching the goal state, then the episode
ends and the agent is placed at the bottom of the hill.



3D variable 2D variable 3D action 2D action
x x Neutral Neutral
y - West Left
vx vx East Right
vy - South -

North -

Table 1. An intuitive inter-task mapping in Mountain Car mapping correctly same-type state
variables and similar effect action variables.

In this experiment, Value-Addition uses a pool of 7 mappings that we manually
set before the experiment’s execution. The first four mappings we set are considered
intuitive since they map position state variables of the MC2D to position state variables
in MC3D and consequently the velocity state variables of MC3D to the velocity state
variable of MC2D. See Table 1 for an example of an intuitive mapping. For the other
three mappings, the first one maps in an intuitively correct way the action variables but
not the state variables. The second one maps the states intuitively but maps actions in a
different way (as an example, it maps the action Neutral of MC2D to the action East in
MC3D) Finally the third mapping maps both state and action variables in a non-intuitive
way.

For comparison, various other algorithm were tested besides Value-Addition. Each
algorithm was selected in order to examine some specific hypothesis of this study: i)
A standard Sarsa(λ) agent without transfer, in order to evaluate the quality and fea-
sibility of transfer using Value-Addition; ii) an agent implementing transfer learning
using random mappings from the pool of the 7 mappings described earlier, in order to
demonstrate the importance of using the correct mapping; iii) an agent using the single
most intuitive mapping with the Q-Value Reuse algorithm [1], in order to demonstrate
the ability of Value addition to achieve similar performance to a transfer algorithm that
has been given beforehand a correct mapping and is not able to autonomously change
that selection - and finally iv) an agent using Value-Addition but transferring from the
mapping that has the maximum action value (see Section 3) in order to evaluate the
proposed criterion of using instead, the mean state-action value.

Figure 2 depicts the results of this experiment using the time-to-threshold metric.
The x axis shows various thresholds representing the steps needed by the agent to find
the goal (exit) and the y axis represents the corresponding training time needed to
achieve these goals. Each curve averages the results from 15 runs of it’s correspond-
ing algorithm.

The Value-Addition shows a statistically significant (at p < 0.05) performance in-
crease from the no-transfer case. Using a random mapping implements negative trans-
fer since it’s performance is worse than the no-transfer case. Clearly this shows the
importance of correctly selecting an inter-task mapping. Moreover, Value-Addition in
its standard set-up performs better than value addition using the mapping that has the
maximum action value (at p < 0.05). This finding confirms the method’s key intuition
described in section 3, for selecting a mapping based on its average state-action value
and not on their maximal one. Even more interestingly value addition demonstrates
better (not stat. sig.) performance than the single-mapping algorithm (Q-Value Reuse).
This finding is important since as it is mentioned above, the single mapping algorithm
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Fig. 2. Time-to-threshold metric for different thresholds in the 3D MC.

Mapping Mapping Description Percentage mean x mean y mean vx mean vy
0 intuitive 25.1 -0.427 -0.453 -0.003613 0.00346525
1 intuitive 34.7 -0.458 -0.141 0.00311873 -0.00271896
2 intuitive 0 - - - -
3 intuitive 0 - - - -
4 intuitive actions 40.2 -0.473 -0.451 0.001659 0.00245182
5 intuitive states 0 - - - -
6 not intuitive 0 - - - -

All 100 -0.456816 -0.344 0.000842 0.0009142

Table 2. The seven available mappings for Value-Addition in MC, the percentage of the total time
and the average state in which they were selected.

was using an intuitively-correct mapping given to it beforehand whereas Value - Addi-
tion had to discover it.

Furthermore, we conducted an analysis on the mappings selected by Value-Addition
in MC3D. Table 2 shows how many times Value-Addition used each of the 7 mappings
(described earlier in this section). The four rightmost columns of the table show the
mean state values of the states where each mapping was used. Also, the last row repre-
sents the general case independently from the mapping selected. We can observe how
each mapping’s mean state value differentiates from that of “all mappings” mean state
value showing that Value-Addition selects mappings also in relation to the specific state
the agent is. As an example, mapping #4 is used more in west and south positions of
the state space because it’s mean x and y values are smaller that the corresponding ones
of “All”.

Interestingly, the mappings analysis shows that the mappings selected were at a
59.8% those considered as intuitive and correct for MC . Moreover, Value-Addition
may also select a mapping that maps state variables in a non intuitive way (i.e. a veloc-
ity state variable to a position state variable), but it never selects a non-intuitive action
mapping (it finds the intuitive ones). The proposed method is more sensitive on the ac-
tion mappings differences than that among state mappings. This behaviour is explained
by the fact that different state mappings may have the same average action value but
different action mappings tend to have different average action values thus resulting to
a behaviour particularly able to differentiate and select among action mappings.



5.2 Transferring with Value-Addition in Keepaway

This section evaluates the proposed approach in Keepaway. The dimensions of the
Keepaway region are set to 25m × 25m and remains fixed for all source and target
tasks. The algorithm that is used to train the keepers is the SMDP variation of Sarsa(λ)
[3]. Additionally, we use linear tile-coding for function approximation with settings
shown to work well in the Keepaway domain [8].5

To evaluate the performance of the proposed approach in Keepaway we also use the
time-to-threshold metric. In Keepaway this threshold corresponds to a number of sec-
onds that keepers maintain ball possession. In order to conclude that the keepers have
learned the task successfully, the average performance of 1,000 consecutive episodes
must be greater than the threshold. We compare (1) the time-to-threshold without trans-
fer learning with (2) the time-to-threshold with transfer learning plus the training time
in the source task. Finally, an important aspect of the experiments concerns the way
that the mappings are produced. For the Keepaway domain, the production of the map-
pings can be automatic. More specifically, any Kt vs. T t task can be mapped to a Ks

vs. T s task, whereKs < Kt and T s < T t, simply by deletingKt−Ks team-mates and
T t − T s opponents of the keeper with ball possession. The actual number of different
mappings is:

|X| =
(
Kt − 1

Ks − 1

)(
T t

T s

)
=

(Kt − 1)!T t!

(Ks − 1)!(Kt −Ks)!T s!(T t − T s)!

Transfer into 4 vs. 3 from 3 vs. 2 This subsection evaluates the performance of the
proposed approach on the 4 vs. 3 target task using a threshold of 9 simulated seconds.
We use the 3 vs. 2 task as the source and experiment with different number of training
episodes, ranging from 0 (no transfer) to 3,200.

Table 3 shows the training time and average performance (in seconds) in the source
task, as well as time-to-threshold and total time in the target task for different amount
of training episodes in the source task. The results are averaged over 10 independent
runs and the last column displays the standard deviation. The time-to-threshold without
transfer learning is about 13.38 simulated hours.

We first notice that the proposed approach leads to lower time-to-threshold in the
target task compared to the standard algorithm that does not use transfer learning. This
is due to the fact that the more the training episodes in the source task the better the
Q-function that is learned. Note that for 800 episodes of the 3 vs. 2 task, the keepers
are able to hold the ball for an average of 8.5 seconds, while for 1600 episodes their
performance increases to 12.2 seconds. As the number of the training episodes in the
source task increase the time that is required to reach the threshold decreases, showing
that our method successfully improves performance in the target task.

The total time of the proposed approach in the target task is also less than the time-
to-threshold without transfer learning in many cases. The best performance is 8.21

5 We use 32 tilings for each variable. The width of each tile is set to 3 meters for the distance
variables and 10 degrees for the angle variables. We set the learning rate, α, to 0.125, ε to 0.01
and λ to 0. These values remain fixed for all experiments.



3 vs. 2 4 vs. 3
#episodes train time performance time-to-thr. total time st. dev.

0 0 - 13.38 13.38 2.02
100 0.11 4.38 13.19 13.30 1.77
200 0.23 4.67 12.59 12.82 2.10
400 0.72 6.71 12.08 12.80 1.70
800 1.73 8.52 10.28 12.01 0.97
1600 4.73 12.20 3.48 8.21 1.16
2500 8.42 16.02 4.16 12.44 0.60
3200 12.17 16.84 2.76 14.95 0.28

Table 3. The table shows the training time and average performance in the source task, as well as
time-to-threshold and total time in the target task. The best time-to-threshold and total time are
in bold.

source 5 vs. 4
task #episodes tr. time time-to-thr. total time st. dev.

- 0 0 26.30 26.30 2.85
3 vs. 2 1600 4.73 15.54 20.27 3.24
3 vs. 2 2500 8.42 8.88 17.31 3.23
3 vs. 2 3200 12.17 3.43 15.60 1.24
4 vs. 3 4000 7.52 10.07 17.59 1.49
4 vs. 3 6000 12.32 9.26 21.58 1.92

Table 4. Average training times (in hours) for 5 vs. 4. The results are averaged over 10 indepen-
dent trials. The best time-to-threshold and total time are in bold.

hours, which corresponds to a reduction of 38.6% of the time-to-threshold without
transfer learning. This performance is achieved when training the agents for 1600 train-
ing episodes in the source task. This result shows that rather than directly learning on
the target task, it is actually faster to learn on the source task, use our transfer method,
and only then learn on the target task.

In order to detect significant difference among the performances of the algorithms
we use paired t-tests with 95% confidence. We perform seven paired t-tests, one for
each pair of the algorithm without transfer learning and the cases with transfer learning.
The test shows that the proposed approach is significantly better when it is trained with
800 and 1600 episodes.

Scaling up to 5 vs. 4 and 6 vs. 5 We also test the performance of the proposed approach
in the 5 vs. 4 target task. The 5 vs. 4 threshold is set to 8.5 seconds. The 3 vs. 2 task
with 1,600, 2,500 and 3,200 training episodes and the 4 vs. 3 task with 4,000 and 6,000
training episodes are used as source tasks. Table 4 shows the training times, time-to-
threshold and their sum for the different source tasks and number of episodes averaged
over 10 independent runs along with the standard deviation.

In all cases the proposed approach outperforms the no-transfer case. It is interesting
to note that the best time-to-threshold is achieved, when using 3 vs. 2 as a source task,
with fewer episodes than when using 4 vs. 3 as a source task. This means that a rela-
tively simple source task may provide more benefit than a more complex source task. In
addition, the 3 vs. 2 task requires less training time, as it is easier than the 4 vs. 3 task.
We perform 5 paired t-tests, one for each case of the proposed approach against learn-
ing without transfer. The proposed method achieves statistically significantly higher
performance (at the 95% confidence level) in all cases.



source task #episodes tr. time 6 vs. 5 total st. dev.
- 0 0 45.66 45.66 4.77

3 vs. 2 1600 4.73 31.77 36.50 3.87
3 vs. 2 3200 12.17 2.50 14.67 0.27
4 vs. 3 4000 7.52 33.34 40.86 3.78
5 vs. 4 3500 5.17 45.38 50.55 2.92
5 vs. 4 8000 16.08 28.43 44.51 2.39

Table 5. Average training times (in hours) for 6 vs. 5. The results are averaged over 10 indepen-
dent trials. The best time-to-threshold and total time are in bold.

Additionally, we also considered the 6 vs. 5 task, where the threshold is set to 8
seconds. As source tasks, we use the 3 vs. 2 tasks with 1600 and 3200 training episodes,
the 4 vs. 3 task with 4000 training episodes and the 5 vs. 4 task with 3500 and 8000
episodes. Table 5 shows the results in a similar fashion to the previous table.

The best total time is achieved when a 3 vs. 2 task (trained for 3200 episodes) is used
as the source task, reducing the total time roughly 68%. As in the case of 5 vs. 4, we
again notice that when a simpler source task is used, both the time-to-threshold and the
total training time decrease. This is an indication of the role of the use of the multiple
mapping functions. The 6 vs. 5 game is decomposed to 25 5 vs. 4 instances to 100 4
vs. 3 instances and to 100 3 vs. 2 instances. In the second case the algorithm searches
among a larger number of source instances and it is more likely to get better Q−values
as more situations are considered in the phase of the source values transfer. Note that in
the case of 5 vs. 4 (3500 episodes) as the source task, there is no improvement. These
results demonstrate that the proposed approach scales well to large problems, especially
when a small task is used as the source.

Besides the benefit of using multiple mappings with Value Addition compared to
a single predefined mapping which requires domain knowledge, we further investigate
if there are also performance benefits of using multiple mappings with Value-Addition
in Keepaway. We compare the proposed approach with a variation that uses only one
mapping function. We use the mapping function that corresponds to the firstKs keepers
and Ts takers as they are ordered increasingly to their distance from the ball. This way
we select the agents that are nearest to the learning agent and we shall refer to it as
nearest agents (NA) mapping. We must mention here that the NA mapping is similar to
the one that is used in [1].

We compare the two methods in the 4vs3 target task using the 3vs2 task as source.
Table 6 shows the training times spent in 4vs3 task for different amounts of training
episodes in the source task along with the total time averaged over ten independent
repetitions. The last column shows the corresponding results of the proposed approach
Multiple Mappings (MM) for comparison purposes.

The first observation is that in all cases MM outperforms NA. An interesting out-
come is that NA in all cases did not succeeded to reduce the total training time. Addi-
tionally, in the case of 800 episodes we have negative transfer. We perform three paired
t-tests between NA and MM for the different cases of training episodes in the source
task. At a confidence level of 95% the tests show that MM performs significantly better
than NA. The results indicate that using only a single mapping function is not adequate
to enhance the learning procedure in the target task.



3vs2 4vs3-NA 4vs3-MM
#episodes tr. time total time total time

0 0 13.38 13.38
800 1.73 15.52 12.01
1600 4.73 16.92 8.21
2500 8.42 18.63 12.44

Table 6. Average training times for 4vs3 of the NA algorithm for different number of training
episodes in the source task averaged over 10 repetitions.
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Fig. 3. Example of the NA mapping in the 4vs3 task.

An example that justifies this observation is given in Figure 3. The non-shaded
agents are those considered by the NA mapping. In this case, K1 can pass either to K2

or K3. Note that these keepers are blocked by takers T1 and T2 and ball interception is
very likely. However K4 is quite open, and a pass to K4 would seem the appropriate
action in this case. This shows that NA mapping is not always the best mapping in the
source task and that a single mapping can lead to inferior behaviour.

6 Related Work

An approach that reuses past policies from solved source tasks to speed up learning in
the target task is proposed in [9]. A restriction of this approach is that the tasks (source
and target) must have the same action and state space. In contrast, our method allows
the state and action spaces to be different between the target and the source task.

Advice based methods have been proposed in the past [10, 11]. [10] proposed a
method that uses a list of learned rules from the source task as advices to the target task.
The authors introduce three different utilization schemes of the advice. [11] export rules
in first-order logic and translate them into advices.

A method presented in [1] and named Transfer via inter-task mappings, initializes
the weights of the target task with the learned weights of the source task using mapping
functions. The method depends strongly on the approximation function that is used in
both tasks, as the function that transfers the weights is altered according to the approxi-
mation method. Additionally, a different approach is introduced in the same work which
is named Q-Value Reuse. This method is similar to the way that we add the Q-values
from the source task to the target task. The main difference is that in our method, we
allow the use of multiple mappings and there is no need for a single mapping given
beforehand by a domain expert.



An automatic method for constructing the mapping functions using exhaustive search
on the set of all possible mappings was proposed in [7]. The main disadvantage of this
method is that the computational complexity grows exponentially to the number of the
state variables and actions.

In [12], each possible inter-state mapping is considered as an expert and with the
use of a multi-armed bandit algorithm the agent decides which mapping to use. This
method shows significant improvement but its performance is surpassed in the long run
as it continues to explore always taking “advice” from low return experts.

Another promising method that has been proposed [13] is capable of learning a
continuously parametrized function representing a stochastic mapping between the state
spaces of two MDP’s (soft homomorphism). However, this work doesn’t handle action
mappings and requires the explicit learning of a model in the source task and an on-line
learning process of the mapping function, in the target task.

Finally there are other TL methods which are focused on learning a mapping and
not on computationally discovering it like Value-Addition does. In an example of a work
that aims to learn a mapping between arbitrary tasks [14], the authors use a data-driven
method to discover a mapping between two tasks in a new dimensional space using
sparse coding. However, the authors do not consider allowing multiple mappings and
their method applies to model based RL agents as opposed to this work which applies
to any value-based RL algorithm.

7 Conclusions

Concluding, this work presented a novel method for autonomous multiple-mappings se-
lection in TL. Results in Mountain Car 3D and on several instances of Keepaway have
shown that Value-Addition can successfully select and use multiple mappings and im-
prove learning via transfer. Using different mappings in different state space regions was
significantly beneficial in Keepaway. This result further indicates that in some domains
the use of multiple mapping is not only a step towards a more autonomous transfer of
knowledge, but that it can also help to achieve better performance compared to a sin-
gle mapping, even if that mapping is considered an intuitively correct one. Furthermore
the results presented in this work provide similar conclusions, regarding the efficacy of
value function transfer, to those presented by Taylor et al. [1]. However, we emphasize
that the proposed method is able to succeed without requiring that a human provides
a single inter-task mapping, but instead may autonomously select multiple mappings
from a large set, successfully improving the autonomy of TD transfer learning.

Two limitations of the proposed method are that: 1) it requires a set of mappings
to be given beforehand, then it is able to select the best of them. However, this set
can theoretically be exhaustive and it can be generated in an automatic way and 2)
since Value-Addition belongs to a family of value-based transfer methods it assumes
the similarity of two state-action pairs if both of these have high values in their parent
tasks. However, as discussed in Section 3, this assumption is partially relaxed through
the use of the mean-value transfer criterion.

The above let us conclude with some ideas for future work. First, new methods to
autonomously construct or learn the inter-task mappings should be explored, second,



for less related transfer domains, TL algorithms should exploit other MDP similarity
features to identify the correct mappings such as the task’s dynamics etc. Finally, more
work is needed to further investigate as to where and how multiple mappings transfer
should be chosen compared to single-mapping methodologies, even if a correct map-
ping is known beforehand.
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