Speeding Up Reinforcement L earning with Behavior Transfer

Matthew E. Taylor and Peter Stone
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188
{mtaylor, pstong¢@cs.utexas.edu

Abstract tasks. Using behavior transfer we are able to leverage-exist
_) ing learned knowledge as well as speed up tasks in domains
Reinforcement leaming (RL) methods (Sutton & Barto 1998) \yhere existing schemes to accelerate reinforcement fegarni
have b;cLo;ne ﬁogular machlne Ieartnllng techniques (ljnhrecgnt are not applicable.
ears. as nad some experimental successes an as peen . . .
)s/hown to exhibit some des?rable properties in theory, but it In this paper we introducbehavior transferwhereby a.
has often been found very slow in practice. In this paper learner trained on one task can Ie_arn faster when training
we introducebehavior transfera novel approach to speeding on another task with related, but different, state and actio
up traditional RL. We present experimental results showinga ~ Spaces. Behavior transfer is more general than the previ-
learner is able learn one task and then use behavior transfer ously referenced methods because it does not preclude the
to markedly reduce the total training time for a more complex modification of the transition function, start state, or agtv
task. function. The key technical challenge is mapping a value
function in one representation to a meaningful value func-
Introduction tion in another, typically larger, representation. Theraiy
i i contribution of this paper is to establish an existence fproo
Reinforcement learning (Sutton & Barto 1998) has shown st there are domains in which it is possible to construct

some success in different machine learning tasks because ofgy,ch a mapping and thereby speed up learning via behavior
its ability to learn where there is limited prior knowledge {ransfer.

and minimal environmental feedback. However, reinforce- ;

ment learning often is very slow to produce near-optimal be- Beha_” or Transfer M ethOdo,l ogy) .
haviors. Many techniques exist which attempt, with more or 10 formally define behavior transfer we first briefly review
less success, to speed up the learning process. the general reinforcement learning framework that conform

Past research (Selfridge, Sutton, & Barto 1985) has shown to the generally accepted notation for Markov decisio_n pro-
that a learner can train faster on a task if it has first leagmed ~~ ©€SSes (Puterman 1994). There is some set of possible per-

a simpler variation of the task, referred todigected train- ceptions of the current state of the worlgl, and a learner
ing. In this paradigm the state transition function, which is Nas Some initial starting state,.i;;. When in a particular
part of the environment, can change between takam- states there is a set of actiond which can be taken. The

ing from easy missiongAsadaet al. 1994) is a technique ~ réward function? maps each perceived state of the environ-
that relies on human input to modify the starting state of the Ment to a single number which is the value, or instantaneous
learner over time, making it incrementally more difficult fo ~ réward, of the stateT’, the transition function, takes a state
the learner. Both of these methods reduce the total training @nd an action and returns the state of the environment after
time required to successfully learn the final task. However, the action is performed. If transitions are non-deterntinis
neither allow for changes to the state or action spaces be- the transition function is a probability distribution futran.
tween the tasks, limiting their applicabiliyReward shap- A earneris able to senseand typically knowsA, but may

ing (Colombetti & Dorigo 1993; Mataric 1994) allows one ~ ©F may notinitially knowr or T'. , .

to bias a learner’s progress through the state space bygddin _ A Policy 7 : 5" — A defines how a learner interacts with

in artificial rewards to the environmental rewards. Doing so the €nvironment by mapping perceived environmental states
requires sufficient knowledge about the environment ajprior {0 actions. « is modified by the learner over time to im-

to guide the learner and must be done carefully to ensure that Prove performance, i.e. the expected total reward accumu-
unintended behaviors are notintroduced. While itis well un- 'at€d, and it completely defines the behavior of the learner
derstood how to add this type of guidance to a learner (Ng, N @n environment. In the general case the policy can be
Harada, & Russell 1999), we would prefer to allow the agent stochastic. The success of an agent is determined by how

to learn faster by training on different (perhaps pre-@xgt well it _maximizes the total rewqrd it receives in the long
run while acting under some poliey. An optimal policy,
Copyright © 2004, American Association for Artificial Intelli- 7*, is a policy which does maximize this value (in expecta-

gence (www.aaai.org). All rights reserved. tion). Any reasonable learning algorithm attempts to modif

7 over time so that it reaches' in the limit.

Past research confirms that if two tasks are closely re-
lated the learned policy from one task can be used to pro-
vide a good initial policy for the second task. For ex-
ample, Selfridge (1985) showed that the 1-D pole bal-
ancing task could be made harder over time by shorten-
ing the length of the pole and decreasing its mass; when
the learner was first trained on a longer and lighter pole
it could more quickly learn to succeed in the more dif-
ficult task with the modified transition function. In this
way, the learner is able to refine an initial policy for a
given task: (SlvS(I,initial)aAl»Tllea'/TO) = T(1,final)
where task 1 starts from no initial policy as indicated by
the my in the last value of the tuple. Task 2 can then
be defined as(S2, s(2,initial), A2, 12, R2, (2 initial)) =
T(2,final)- The time it takes to learmr s rinay = 75
may be less fo(Ss, 5(2 initial), A2, T2, R2, T(1, finar)) than
(5273(2,initial)7A27T27R277TO)- Note that sinces; = S5
andA; = Az, 7(1 rinar) IS @ legitimate policy for task 2.

In this paper we consider the more general case where
S1 # Sy, andlorA; # Ay. To use the policyr(y finar
as the initial policy for the second task, we must trans-
form its value function so that it can be directly ap-
plied to the new state and action space. A behavior
transfer functionp(w) will allow us to apply a policy in
a new task(Sa, (2 initiat), A2, T2, R2, p(7(1, finar))) =
(2, finat)- 1€ policy transform functiop needs to mod-
ify the policy so that it accepts the states in the new task as
inputs and allows for the actions in the new task to be out-
puts. A policy generally selects the action which is expeécte
to accumulate the largest expected total reward and thus the
problem of transforming a policy between two tasks reduces
to transforming the value function. Definingto do this
correctly is the key technical challenge to enable general b
havior transfer.

One measure of success in speeding up learning using
this method is that given a policy;, the training time
for m(2 tinay to reach some performance threshold de-
creases when replacing the initial polieyy with p(m).

Let time(S, sinitial, 4, T, R,) be the time it takes to find

a near-optimal policy in the task. If behavior transfer
works, time(Sa, 8(2,initiat)> A2, T2, B2, p(T(1, finar))) <
time(S2, 8(2,initial)> A2, T2, R2, ™). This criterion is rel-
evant when task 1 is given and is of interest in its own right.

A stronger measure of success is that the training time
for both tasks using behavior transfer is shorter than
the training time to learn the second task from scratch.
In other words, time(S1, 81 initiat)s A1, T1, Ri,m9) +
time(S2, 5(2,initial)» A2, T2, Ra, p(T(1, finat))) <
time(Sg, 8(2,initial) AQ, T3, Ro, ’/To). This criterion is
relevant when task 1 is created for the sole purpose of
speeding up learning via behavior transfer.

Testbed Domain

To demonstrate the effectiveness and applicability of the b
havior transfer method (detailed in section 5) we empilycal
test it in the RoboCup simulated soccer keepaway domain
using a setup similar to past research (Stone & Sutton 2002;
Kuhlmann & Stone 2004). RoboCup simulated soccer is

well understood as it has been the basis of multiple interna-
tional competitions and research challenges. The muhiage
domain incorporates noisy sensors and actuators, as well as
enforcing a hidden state so that agents can only have alpartia
world view at any given time. While there has been previ-
ous work which attempted to use machine learning to learn
the full simulated soccer problem (Andre & Teller 1999;
Riedmilleret al. 2001), the complexity and size of the prob-
lem have so far proven prohibitive. However, many of the
RoboCup subproblems have been isolated and solved using
machine learning techniques, including the task of playing
keepaway.

Keepawaya subproblem of RoboCup soccer, is the chal-
lenge where one team, theepersattempts to maintain pos-
session of the ball on a field while another team,ttiesrs
attempts to gain possession of the ball or force the ball out
of bounds, ending aepisode Keepers that are able to make
better decisions about their actions are able to maintasn po
session of the ball longer and thus have have a longer aver-
age episode length. Figure 1 depicts three keepers playing
against two takers-

As more players are added
to the task, keepaway becomes
harder for the keepers be-
cause the field becomes more
crowded. As more takers are
added there are more players to
block passing lanes and chase
down any errant passes. As
more keepers are added, the
keeper with the ball has more
passing options but the average
pass distance is shorter. This
forces more passes and will
lead to more errors because of
the noisy actuators and imper-
fect perception. For this rea-
son keepers in 4 vs. 3 keepaway
(meaning 4 keepers and 3 tak-
ers) take longer to learn an opti-
mal control policy than in 3 vs.

2. The hold time of the best policy for a constant field size

will also decrease when moving from 3 vs. 2 to 4 vs. 3 due

to the added difficulty. This has been discussed in previous
research (Kuhlmann & Stone 2004).

The different keepaway tasks are all problems which may
occur during a real game. Learning on one task and trans-
ferring the behavior to a separate useful task can reduce the
training time. In the keepaway domaid, and S are de-
termined by the current keepaway task and thus differ from
instance to instance. Howevey,,;;;.;, R andT’, though for-
mally different, are effectively constant across tasks. Whe
S and A change,s;nitial; B, @andT change by definition.

But in practice,R is always defined as 1 for every time step
that the keepers maintain possession, &ngd;,; andT are
always defined by the RoboCup soccer simulation.

g)
~—— Takers
+

Vi
S
\ /

Keepers

Figure 1. This diagram

depicts the 13 state vari-
ables used for learn-
ing with 3 keepers and
2 takers. There are
11 distances to players,
the center of the field,
and the ball, as well as
2 angles along passing
lanes.

'Flash-file demonstrations of the task can be found at
http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/

L earning Keepaway

The keepers use episodic SMDP Sax3gSutton & Barto
1998) to learn their task. We use linear tile-coding funttio
approximation, also known as CMACSs, which has been suc-
cessfully used in many reinforcement learning systems (Al-
bus 1981). The keepers choose not from primitive actions
(turn, dash, or kick) but higher-level actions implemented
by the CMUnited-99 team (Stone, Riley, & Veloso 2000). A
keeper without the ball automatically attempts to move to an

of the keepers. The two takers are placed in the fourth cor-
ner. When the episode starts, the three keepers attempt to
keep control of the ball by passing amongst themselves and
moving to open positions. The keeper with the ball has the
option to either pass the ball to one of its two teammates or
to hold the ball. We allow the keepers to learn to choose be-
tween these three choices when in control of the ball. In this
task A = {hold, passToTeammatel, passToTeamnjat&?2

is defined by 13 state variables, as shown in Figure 1. When

open area (the receive action). A keeper in possession of the @ taker gains control of the ball or the ball is kicked out of

ball has the freedom to decide whether to hold the ball or to
pass to a teammate.
Function approximation is often needed in reinforcement

the field’s bounds the episode is finished. The reward to the
Sarsal) algorithm for the keeper is the number of time steps
the ball remains in play after an action is taken. The episode

learning so that the learner is capable of generalizing the is then reset with a random keeper placed near the ball.

policy to perform well on unvisited states. CMACs allow us
to take arbitrary groups of continuous state variables apd |
infinite, axis-parallel tilings over them (see Figure 2)inds

All weights in the CMAC function approximator are ini-
tially set to zero and thereforgs, s2 initiar) = mo. AS train-
ing progresses, the weight values are changed by Sarsa(

this method we are able to discretize the continuous state SO that the average hold time of the keepers increases.

space by using tilings while maintaining the capability to
generalize via multiple overlapping tilings. The number of
tiles and width of the tilings are hardcoded and this dictate
which state values will activate which tiles. The function
approximation is learned by changing how much each tile
contributes to the output of the function approximator. By
default, all the CMAC's weights are initialized to zero. $hi
approach to function approximation in the RoboCup soccer
domain is detailed by Stone and Sutton (2002).

For the purposes of
this paper, it is impor-
tant to note the state vari-
ables and action possibil-
ities used by the learners.
The keepers’ states com-
prise distances and angles
of the keeperd<, — K,
the takersT; — T,,, and
the center of the play-
ing region C (see Fig-

——Tiling #1

Tiling #2

Dimension #2

Dimension #1

Figure2: The tile-coding fea-
ture sets are formed from mul-

ure 1). Keepers and tak-
ers are ordered by in-
creasing distance from the
ball. Note that as the
number of keepera and

the number of takersn

increase, the number of
state variables also in-
crease so that the more
complex state can be fully
described.S must change
(e.g. there are more dis-

tiple overlapping tilings. The
state variables are used to de-
termine the activated tile in
each of the different tilings.
Every activated tile then con-
tributes a weighted value to
the total output of the CMAC
for the given state. Note
that we primarily use one-
dimensional tilings but that
the principles apply in the n-
dimensional case.

tances to players to account for) aj] increases as there
are more teammates for the keeper with possession of the mains will not necessarily have such straightforward trans
ball to pass to. Full details of the keepaway domain and forms between tasks of different complexity. Finding a gen-
player implementation are documented elsewhere (Stone & eral method to specify is outside the scope of this paper

Sutton 2002).

Learning 3vs. 2

Throughout this process, the takers use a static hand-coded
policy to attempt to capture the ball as quickly as possible.
Due to the large amounts of randomness in the environment,
the evaluation of a policy is very noisy.

Learning4vs. 3

Holding the field size constant we now add an additional
keeper and an additional takerkR and 7' are essentially
unchanged from 3 vs. 2 keepaway, but new= {hold,
passToTeammatel, passToTeammate2, passToTeammate3
andsS is made up of 19 state variables due to the added play-
ers. The 4 vs. 3 task is harder than the 3 vs. 2 task and the
learned average hold times after 20 hours of training from
Tinitial = To decrease from roughly 13.6 seconds for 3 vs.
2t0 9.3 seconds for 4 vs. 3.

In order to quantify how fast an agent in 4 vs. 3 learns,
we set a threshold of 9.0 seconds. When a group of four
keepers has learned to hold the ball from the three takers for
an average of 9.0 seconds over 1,000 episodes we say that
the keepers have sufficiently learned the 4 vs. 3 task. By
recording this time over many trials we can measure the ef-
fectiveness of the Sarsg(algorithm in different situations.

Behavior Transfer in Keepaway

To define ap which will correctly transfer behavior from

T (3vs2, final) IO T (44,53 initial), the value function utilized

by = needs to handle the new state and action spaces rea-
sonably. In the keepaway domain we are able to intuit the
mappings between actions in the two tasks and states in the
two tasks based on our knowledge of the domain. Our choice
for the mappings is supported by empirical evidence show-
ing that behavior transfer decreases training time. Otber d

and will be formulated in future work. One of the main chal-
lenges will be identifying general heuristics for mappixg e
isting states and actions in the first task to new states and

On a 25m x 25m field, three keepers are initially placed in actions in a second task. Creating a general metric for simi-
the three corners of the field and a ball is placed near one larity between state variables and actions in two tasksavoul

allow us to identify a promising mapping for rho and give an keeper, and load the CMAC weights into all four keepers

a priori indication of whether behavior transfer will work i in 4 vs. 3 80 thap(m(3vs2, final)) = T(4vs3,initial)- TEN WE

a particular domain. Our primary contribution in this paper train on the 4 vs. 3 keepaway task until the average hold time

is demonstrating that there exist domains in whiatan be for 1,000 episodes is greater than 9.0 seconds. To overcome

constructed and then used to successfully increase the lear the high variance inherent in the environment and therefore

ing rate. the noise in our evaluation, we run at least 100 independent
The naive approach of directly copying the CMAC’s trials for each number of 3 vs. 2 training episodes.

weights to duplicate the value function froma, 2. finai) Table 2 reports the average time spent training 4 vs. 3 to

INtO (4453 initiar) failS because botd andA have changed. achieve a 9.0 second average hold time for different amounts
Keeping in mind thatr : S — A, we can see that the of 3vs. 2 training. The middle column reports the time spent
new state vectors which describe the learner’s environment training on the 4 vs. 3 task while the third column shows the
would not be correctly used, nor would the new actions be total time taken to train 3 vs. 2 and 4 vs. 3. As can be seen
correctly evaluated byr s, finay- In order to use the from the table, spending time training in the simpler 3 vs. 2
learned policy we modify it to handle the new actions and domain can cause the time spentin 4 vs. 3 to decrease. This
new state values in the second task so that the CMAC can shows thattime(Sz, s(2,initiar), A2, T, R, p(T(1, finar))) <

reasonably evaluate them. time(S2, 8(2,initial); A2, T, R, mo).

The CMAC function approximator takes a state vector Table 2
and an action and returns the expected total reward. The shows the #of Ave. 4 vs. | Ave. total
learner can evaluate each potential action for the cuigent potential of be- 3vs. 2 3time time
and then user to choose one. We modify the weights in havior transfer. episodes| (hours) (hours)
the tile coding so that when we input a 4 vs. 3 action the We use a t-test 0 16.44 16.44
weights for the activated tiles are not zero but insteadrarei to determine 100 13.34 13.53
tialized bys,s2. rinar. To accomplish this, we copy weights that the differ- 588 ﬁﬁ %%gg
from the tiles which would be activated for a similar action ences in the 1,000 981 11,95
in 3 vs. 2 into the tiles activated for every new action. The distributions of 5’000 757 1210
weights corresponding to the tiles that are activated fer th 4 vs. 3 training 3:000 563 12.77
“pass to teammate 2” action are copied into the weights for times and 9,000 15.07 43.46

the tiles that are activated to evaluate the “pass to teasimat total training

3" action. The modified CMAC will initially be unable to times when ith different s of 3 Vs, 2 traini

distinguish between these two actions. using behavior T8 d?crgtr(]e tﬁr;togjenh:\vci)or trvasrisfe:ig']n%_
To handle new state variables we follow a similar strat- transfer — are duce training time.

egy. The 13 state variables which are present in 3 vs. 2 are statistically

already handled by the CMAC's weights. The weights for significant (p

tiles activated by the six new 4 vs. 3 state variables are ini- < 6 10~") when compared to training 4 vs. 3 from scratch.

tialized to values of weights activated by similar 3 vs. 2 Notonly is the time to train the 4 vs. 3 task decreased when

state variables. For instance, weights which correspond to We first train on 3 vs. 2, but the total training time is less

“distance to teammate 2” values in the state representation than the time to train 4 vs. 3 from scratch. We can therefore

are copied into the weights for tiles that are used to evaluat conclude that in the keepaway domain training first on a

“distance to teammate 3” state values. This is done fonall si simpler task can increase the rate of learning enough that

new state variables. In this way, the tiles which correspond the total training time is decreased.

to every value in the new 4 vs. 3 state vector have been ini- We would like to be able to determine the opti-

tialized to values determined via training in 3 vs 2 and can mal amount of time needed to train on an easier task

therefore be considered in the computation. See Table 1 for to speed up a more difficult task. It is apparent that

examples of mappings used. Identifying similar actions and there is some number of 3 vs. 2 episodes which would

Table 2: Results from learning keepaway

states between two tasks is essential for construgtiagd minimize time(S2, 5(2,initial)s A2, T5 B, p(T(1, finat)))-
may prove to be the main limitation when attempting to ap- This value may be distinct from the value which
ply behavior transfer to different domains. would minimize time(S1, (1, initiat), A1, T5 R, m0) +
Having constructed a which handles the new states and time(5S2, S(2,initiat), A2, T, R, p(T (1, pinary)). While it
actions, we can Now Set(m(3,s2. final)) = T(4vs3,initial)- is not critical when considering the 4 vs. 3 task because

We do not claim that these initial CMAC weights are cor- many choices produce near optimal results, finding these
rect (and empirically they are not), but instead that the con values becomes increasingly difficult as well as incredging
structed CMAC allows the learner to more quickly discover —————

2 . . .
a near-optimal policy. We do so under the hypothesis that the policy of a single keeper

represents all of the keepers’ learned knowledge. Though in theory
the keepers could be learning different policies that interact well
Results and Discussion with one another, so far there is no evidence that they do. One pres-
) . . sure against such specialization is that the keepers’ start positions
To test the effect of loading the 3 vs. 2 CMAC weights into are randomized. In earlier informal experiments, there appeared to
4 vs. 3 keepers, we run a number of 3 vs. 2 episodes, savebe some specialization when each keeper started in the same loca-
the CMAC weights f (3,52, finar)) from a random 3 vs. 2 tion every episode.

4 vs. 3 state variable related 3 vs. 2 state variable
dlst(KLg,C) diSt(Kg,C)

dist(Kq,C) dist(Ks,C)

Min(dist(Kg, T1), diSt(Kg, TQ), diSt(Kg, Tg)) Min(dist(Kg, Tl), diSt(Kg, TQ))
Mln(dzst(K47 Tl), dlSt(K47 Tg), dlSt(K4, T3)) Mln(dzst(Kd, Tl), d’LSt(K57 TQ))
Table 1: This table describes part of thetransform from states in 3 vs. 2 keepaway to states in 4 vs. 3 keepaveagleldte the distance

between a and b akst(a, b). Relevant points are the center of the fi€ldkeeperds:- K4, and takerd -T3. Keepers and takers are ordered
in increasing distance from the ball and state values not present in 3vs.i2 bold.

105 ¢ To test the sensitivity of thg function, we tried modify-
Learning 4 vs. 3 after ing it so that instead of copying the weights for the staté var
ransferring behavior ables forK; into the new 4 vs. 3, (see Table 1), we instead

.] copy theK, state variable to this location. NOMi, 3 initial
9 ' = T will evaluate the state variables for the closest and fsithe
keeper teammates to the same value instead of the two fur-
thest teammates. Similarly, instead of copying weights cor
responding td5 into theT3 location, we copy weights from
T;. Training on 1,000 3 vs. 2 episodes and UsiMgq; fied
to train in 4 vs. 3, the total training time increased to 13.82

Learning 4 vs. 3 from scratch

Episode Duration (seconds)

6.5 hours. Although thi$,,o4:fica OUtperforms training from

6 - - - - scratch (with a statistical significance okp0.004), the to-

0 5 10 15 20 tal training time is 10%-20% longer compared to usjng
Training Time (hours) Choosing non-optimal mappings between actions and states

Figure3: The learning curves for five representative keepers in the when constructing seems to have a d_et_rlme_:ntal, but not
4 vs. 3 keepaway domain when learning from scratch (dotted lines) Necessarily disastrous, effect on the training time.
have similar initial hold times when compared to five representative Initial results in scaling to 5 vs. 4 keepaway show that be-
learning curves generated by transferring behavior from the 3 vs. 2 havior transfer will work for this task as well. The average
task (solid lines). The learners which have benefited from behavior time for 5 vs. 4 keepaway to reach a hold time of 7.5 sec-
transfer are able to more quickly learn the 4 vs. 3 task. onds on the same 25m x 25m field is 18.01 hours. However,
if we train 4 vs. 3 from scratch for 1,000 episodes and set
P(Tavs3, final) = Tsusa,initial, the average training time for 5
important when we scale up to larger tasks, such as 5 vs. 4 vs. 4 is reduced to 13.12 hours and the total training time is
keepaway. Determining these training thresholds for tasks reduced to 14.98 hours. The difference in the total training
in different domains is currently an open problem and will times is statistically significant (g 2x10~°). We anticipate
be the subject of future research. that behavior transfer will further reduce the total tragi
Interestingly, when the CMACs’ weights are loaded into time necessary to learn 5 vs. 4 as we tune the number 4 vs.
the keepers in 4 vs. 3, the initial hold times of the keepers do 3 episodes as well as incorporate 3 vs. 2 training.
not differ much from the keepers with uninitialized CMACs,
as shown in Figure 3. However, the information contained Related Work
in the CMACs’ weights prime the 4 vs. 3 keepers to more The concept of seeding a learned behavior with some ini-
quickly learn their task. As the figure suggests, the 4 vs. tial simple behavior is not new. There have been approaches
3 keepers which have loaded weights from 3 vs. 2 players to simplifying reinforcement learning by manipulating the
learn at a faster rate than those 4 vs. 3 players that are train transition function, the agent’s initial state, and/or tiee
ing from scratch. This outcome suggests that the learned be- ward function. Directed training (Selfridge, Sutton, & Bar
havior is able to speed up the rate of reinforcement learning 1985) is a technique to speed up learning whereby a human
on the novel domain even though the knowledge we transfer s allowed to change the task by modifying the transition
is of limited initial value. functionT. Using this method a human supervisor can grad-
It is interesting that the required 4 vs. 3 training time ually increase the difficulty of a task while using the same
for 9,000 episodes of 3 vs. 2 is greater than that of 1,000 policy as the initial control for the learner. For instanical-
episodes of 3 vs. 2. We posit this is due to overtraining; 4 vs. ancing a pole may be made harder for the learner by decreas-
3 must spend time “unlearning” some of the 3 vs. 2 specific ing the mass or length of the pole. The learner will adapt to
knowledge before 4 vs. 3 can reach the hold time threshold. the new task faster using a policy trained on a related task
It makes intuitive sense that the 3 vs. 2 training would first than if learning from scratch.
learn policies that incorporate basic behaviors. We hygoth Learning from easy missions (Asadbal. 1994) allows a
size that these simpler behaviors transfer well overto 8vs. human to change the start state of the learsigfy;.;, mak-
but that more intricate behaviors learned after longentrai ing the task incrementally harder. Starting the learner nea
ing periods are not as useful in 4 vs. 3 because they are morethe exit of a maze and gradually allowing the learner to start
task dependent. further and further from the goal is an example of this. This

kind of direction allows the learner to spend less total time
learning to perform the final task.

Another successful idea, reward shaping (Colombetti &
Dorigo 1993; Mataric 1994), also contrasts with behavior
transfer. In shaping, learners are given an artificial pobl
which will allow the learner to train faster than on the ac-
tual problem which has different environmental rewarls,
Behavior transfer differs in intent in that we aim to tramsfe
behaviors from existing, relevant tasks which can have dif-
ferent state and action spaces rather than creating attifici
problems which are easier for the agent to learn. Further-
more, behavior transfer does not preclude the modification
of the transition function, the start state, or the rewarttfu
tion and can therefore be combined with the other methods
if desired.

Learned subroutines have been successfully transfered in
a hierarchical reinforcement learning framework (Andre &
Russell 2002). By analyzing two tasks, subroutines may be
identified which can be directly reused in a second task that
has a slightly modified state space. The learning rate for the
second task can be substantially increased by duplicdteng t
local sub-policy. This work can be thought of as another
example for whictp has been successfully constructed, but
in a very different way.

Another related approach (Guesteahal. 2003) uses lin-
ear programming to determine value functions for classes
of similar agents. Using the assumption that T and R are

similar among all agents of a class, class-based value sub-

functions are inserted into agents in a new world which has
a different number of objects (and thus different state and
action spaces). Although no learning is performed in the
new world, the previously learned value functions may still
perform better than a baseline handcoded strategy. However
as the authors themselves state, the technique will not per-
form well in heterogeneous environments or domains with
“strong and constant interactions between many objeds (e.
Robocup).” Our work is further differentiated as we conénu
learning in the second domain after performing While

the initial performance in the new domain may be increased
after loading learned value functions compared to learning
from scratch, we have found that a main benefit is an in-
creased learning rate.

Conclusions

We have introduced the behavior transfer method of speed-
ing up reinforcement learning and given empirical evidence
for its usefulness. We have trained learners using reigforc
ment learning in related tasks with different state ancbacti
spaces and shown that not only is the time to learn the final
task reduced, but that the total training time is reducedgusi
behavior transfer when compared to learning the final task
from scratch.

Acknowledgments

We would like to thank Gregory Kuhlmann for his help with the
experiments described in this paper as well as Nick Jong, Raymond
Mooney, and David Pardoe for helpful comments and suggestions.
This research was supported in part by NSF CAREER award IIS-
0237699.

References

Albus, J. S. 1981Brains, Behavior, and Robotic®eterborough,
NH: Byte Books.

Andre, D., and Russell, S. J. 2002. State abstraction for pro-
grammable reinforcement learning agentsPtoceedings of the
Eighteenth National Conference on Atrtificial Intelligendd 9—
125.

Andre, D., and Teller, A. 1999. Evolving team Darwin United.
In Asada, M., and Kitano, H., edsRoboCup-98: Robot Soccer
World Cup Il Berlin: Springer Verlag.

Asada, M.; Noda, S.; Tawaratsumida, S.; and Hosoda, K. 1994.
Vision-based behavior acquisition for a shooting robot by using
a reinforcement learning. IRroc. of IAPR/IEEE Workshop on
Visual Behaviors-1994112-118.

Colombetti, M., and Dorigo, M. 1993. Robot Shaping: Develop-
ing Situated Agents through Learning. Technical Report TR-92-
040, International Computer Science Institute, Berkeley, CA.

Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003.
Generalizing plans to new environments in relational mdps. In
The International Joint Conference on Atrtificial Intelligence (13-
CAl).

Kuhlmann, G., and Stone, P. 2004. Progress in learning 3
vs. 2 keepaway. In Polani, D.; Browning, B.; Bonarini, A.; and
Yoshida, K., eds.RoboCup-2003: Robot Soccer World Cup.VII
Berlin: Springer Verlag.

Mataric, M. J. 1994. Reward functions for accelerated learning.
In International Conference on Machine Learnjrig1-189.

Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invariance
under reward transformations: Theory and application to reward
shaping. InProc. 16th International Conf. on Machine Learning

Puterman, M. L. 1994.Markov Decision Processes: Discrete
Stochastic Dynamic Programmindohn Wiley & Sons, Inc.
Riedmiller, M.; Merke, A.; Meier, D.; Hoffman, A.; Sinner, A;
Thate, O.; and Ehrmann, R. 2001. Karlsruhe brainstormers—
a reinforcement learning approach to robotic soccer. In Stone,
P.; Balch, T.; and Kraetszchmar, G., ed®oboCup-2000: Robot
Soccer World Cup I\VBerlin: Springer Verlag.

Selfridge, O.; Sutton, R. S.; and Barto, A. G. 1985. Training and
tracking in robotics Proceedings of the Ninth International Joint
Conference on Atrtificial Intelligendg70—672.

Stone, P., and Sutton, R. S. 2002. Keepaway soccer: a machine
learning testbed. In Birk, A.; Coradeschi, S.; and Tadokoro,
S., eds.,RoboCup-2001: Robot Soccer World Cup Beérlin:
Springer Verlag.

Stone, P.; Riley, P.; and Veloso, M. 2000. The CMUnited-99
champion simulator team. In Veloso, M.; Pagello, E.; and Ki-
tano, H., eds.RoboCup-99: Robot Soccer World Cup Blerlin:
Springer. 35-48.

Sutton, R. S., and Barto, A. G. 19981troduction to Reinforce-
ment Learning MIT Press.

