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By using robots as routers, a team of networked robots can provide a communication
substrate to establish a wireless mesh network. The mobile mesh network can autonomously
optimize its configuration, increasing performance. One of the main sources of radio signal
fading in such a network is multi-path propagation, which can be mitigated by moving the
senders or the receivers on the distance of the order of a wavelength. In this paper, we
measure the performance gain when robots are allowed to make such small movements
and find that it may be as much as 270%. Our main contribution is the design of a system that
allows robots to cooperate and improve the real-world network throughput via a practical
solution. We model the problem of which robots to move as a distributed constraint optimi-
zation problem (DCOP). Our study includes four local metrics to estimate global throughput.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

With advances in processor, memory, sensing, actuation,
and radio technology, it is possible to assemble novel sys-
tems using off-the-shelf components. A good example is a
robot with navigation capabilities, and an on-board proces-
sor with wireless communication capabilities. Among its
many uses, such a robot can be used as a router in a mobile
wireless mesh network. In such a network, a team of robots
can provide a communication substrate for a collection of
clients.

Such a mobile wireless mesh network can have applica-
tions in various settings. In an infrastructure-less settings,
it can be used to form a connection backbone, such as in
the LANdroids project [1], where the goal is enable soldiers
to communicate even in dense urban settings. A mobile
wireless network network can also be quickly and
autonomously deployed in urban search and rescue efforts,
allowing searchers to communicate even when no other
. All rights reserved.
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infrastructure exists: thus, small robots could venture
where humans cannot, to search for survivors of earth-
quakes, collapsed mines and other disasters.

Unlike a static, manually deployed mesh network, the
dynamism in the network allows nodes to move and re-
organize the network, to achieve optimize or improve cover-
age, performance, or other such objectives. In this paper, we
leverage this mobility to consider a specific kind of perfor-
mance improvement. Our work is motivated the observa-
tion that one of the main sources of radio signal fading in
urban settings is multi-path propagation. Multi-path occurs
when a transmitted signal takes more than one path to a
receiver, causing the signals to interfere. The central obser-
vation of our paper is that robots can actively reduce multi-
path effects by making small movements (or micro-motion).
By avoiding deep fades, robotics routers can increase
network throughput, enabling applications with higher
bandwidth requirements, or improving user satisfaction in
general.

Thus, in this paper we explore two questions. First, is it
possible to improve the overall network throughput of a mo-
bile mesh network by using (possibly coordinated) robotic
micro-motion? Second, how would one design an on-line
system that performed this optimization autonomously?
ti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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In our work, we make minimal assumptions about the
capability of robots and the available information. We con-
sider the scenario where the robots do not need any
knowledge of the environment. Robots do not have a
map of the physical layout or known obstacle points. They
also have no a priori topological information about wireless
connectivity or interference maps. It is often difficult to
predict signal propagation characteristics within an urban
environment, since many factors can impact signal
strength such as the angle of incidence, emitter location,
and even the building materials. We do not use models
of radio propagation but instead, we rely on empirical
on-line measurements to make decisions about when to
move. Finally, in our setting, robots are not constantly in
motion, but only execute small movements relative to
their neighbors: this is appropriate, given our goal is to ex-
plore how effective such motions are in improving perfor-
mance. As a result, our work does not require robot
localization or sophisticated navigation capabilities.
1.1. Contributions

Our paper makes four main contributions. First, we
show experimentally that we can obtain up to a factor of
2.7 improvement in TCP throughput on our testbed via ro-
botic micro-motion. This is encouraging, since our experi-
ments were fairly adversarial, suggesting that similar, or
even higher, gains could be achieved in other environ-
ments. Second, we present the design of a practical system
for coordinated robotic micro-motion. This system con-
tains a novel use of a distributed constraint optimization
framework: in this framework, robots make local measure-
ments of a wireless performance metric, then decide, in
coordinated fashion, which robot should move, and in
what direction. This computation is executed iteratively,
until the network converges to an improved throughput
state. An important component of this framework is the
choice of wireless performance metric: we empirically ex-
plore four different metrics, and show that a carefully cho-
sen local metric can achieve a near-optimal performance.
Finally, we evaluate our system with physical robots in
an indoor environment and demonstrate that we are able
to achieve an average global throughput improvement of
30% while maximizing only local metrics and with no a pri-
ori knowledge of the environment. Prior research [2,3]
showed that, for a pair of nodes, micro-motion can increase
receive signal power and improve packet reception more
than any coding scheme could achieve. We, on the other,
focus on an approach to improve global network through-
put using explicit coordinated micro-motion. To the best of
our knowledge, no prior research has designed a practical
system to take advantage of antenna gain resulting from
micro-motion, nor has any work explore what throughput
improvements are achievable.

Our paper is structured as follows. In the next section,
we start by providing the requisite background, and moti-
vating the problem setting (Section 2). In Section 3, we
firstly describe our robot platform. We then validate that
network performance can improve from the robotic mi-
cro-motion by measuring TCP and UDP Throughput.
Please cite this article in press as: M.A.M. Vieira et al., Mitigating mu
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Then, we describe the distributed constraint optimiza-
tion framework (Section 4) and describe the design of
our system. Finally, we describe our experimental method-
ology, and our main results in Section 5.
2. Background

Radio signal fading can be attributed to two mutually
independent phenomena: multi-path propagation and
path loss. We briefly discuss these phenomena and further
details can be found elsewhere [4].

Multi-path propagation is a small-scale effect where the
distance scales involved are on order of a wavelength. Mul-
ti-path occurs when a transmitted signal takes more than
one path to a receiver, causing the signals to interfere.
Interference has either a constructive or destructive effect
on the main component depending on whether it arrives in
or out of phase.

Path loss is a large-scale effect of propagation in any med-
ium (e.g., air or water), defined by the way in which radio en-
ergy is transmitted in the medium of propagation and its
resulting loss. This property is also called slow fading.

In this paper, we focus on mitigating the destructive
interference arising from multi-path fading. Two models
of multi-path fading have been described in the literature:
as described in [5], if all signal components that reach the re-
ceiver are of equal strength, the multi-path fading is called
Rayleigh fading, while if there is a line-of-sight (LoS) compo-
nent that is significantly stronger, we have Ricean fading. In
either case, small movements of the radio can help mitigate
the effect of deep fades (strong destructive interference),
and this is the observation we experimentally explore in this
paper. Lindhé et al. [5] use Rayleigh fading model with data
correlated until 0.38 wavelengths, while others [1] have
suggested that moving 1

4 to 1
2 of a wavelength (k) is sufficient

to escape a deep fade. However, to our knowledge, we are
the first to quantify TCP-level throughput improvements
resulting from micro-motions, and also the first to design
a practical decentralized coordination strategy to exploit
micro-motions to obtain performance improvements.

In our work, we move our radios on the order of half
wavelength so that signals in different locations are uncor-
related, helping our nodes escape deep fades. However,
such movements cannot be performed independently.
Fading for one radio is defined with respect to a single
neighbor: a local movement may allow the radio to escape
one deep fade, but at the same time introduce a new fade
with respect to a different neighbor. Thus, it is critical to
coordinate movements to improve the overall throughput.
In this paper, we address a series of questions: (1) Is there a
sequence of coordinated movements that improves the
throughput? (2) How well will using only local information
allow us to optimize the network (relative to the global
optimum configuration)?
3. Can micro-motion improve throughput?

In this section, we show experimentally that TCP and
UDP throughput can be improved by a much as a factor
of 2.7 via robotic micro-motion in our testbed.
lti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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To investigate the efficacy of small movements in
improving mesh network throughput, we have used phys-
ical robots and conducted experiments in an office build-
ing. This section describes our platform and our
experimental methodology, and then presents the results.
Fig. 2. Initial configuration of team of Creates.
3.1. The robot platform

We use a commoditized robotics platform and made
minimal modifications to it using commercial off-the-shelf
products. Our platform consists of an iRobot Create and a
small embedded computer mounted on top of it (Fig. 1).

The Create, a differential drive robot, has a round chas-
sis with a diameter of 33 centimeters. The robot has two
kinds of sensors.

First, it has a pair of tactile sensors that, together with a
bumper, can help determine if the robot hits an obstacle
and the angle at which it does so. Second, it has a suite
of infrared (IR) sensors: the bumper contains an IR wall
sensor on the right and an omnidirectional IR receiver in
the top, and four additional IR sensors mounted under-
neath the bumper facing down. We do not add additional
sensing hardware to the Create.

The embedded computer, the Ebox 3854, is an 800 MHz
embedded PC with 256 MB shared DDR memory, and sup-
ports a 1280 � 1024 VGA interface, one 10/100 LAN, and
USB, mini PCI and compact flash sockets. The embedded
computer runs Ubuntu (Linux Kernel 2.6.22) as the operat-
ing system. For sensing and control, we developed a Create
driver for Player [6]. Robot navigation incurs errors in odom-
etry over larger distances. But, given that in our framework,
the distances are very small (at most 6 cm), the navigation
error is very small. For the speed of 0.20 cm/s, we measured
less than 1cm translation error and less than 0.14 radian
rotation error (as measured with a multifunction knob Grif-
fin PowerMate attached to the robot).
3.2. Configuration

Our initial experiments use five robots distributed
throughout an indoor office environment as shown in
Fig. 2. Robots 1, 2 and 3 are within line-of-sight of each
Fig. 1. This picture shows part of the experiment set up, which has a team
of iRobot Creates with an Ebox.

Please cite this article in press as: M.A.M. Vieira et al., Mitigating mul
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other, and the other robots are each not within line-of-
sight of any robot. Fig. 1 depicts part of our experiment,
showing robots 1–3.

The robots were configured to use 802.11b, with an
11 Mbits/s data rate (maximum data rate), in ad-hoc mode.
The transmission power was set to the lowest possible va-
lue so we could experiment with as many robots as possi-
ble. We use channel 14 (which is unused by commercial
cards in the US), ensuring that we do not observe external
interference. The network was configured with static rout-
ing to avoid routing flapping (a router forwards packets
via one route then changes to another router) interfering
with the measurements.

The network has three multi-hop flows, represented by
arrows in Fig. 2. The flows go through nodes 3-5-4, 4-1-2
and 5-3-2-1, which will be referred to as the 3–4 flow, 4–
2 flow and 5–1 flow respectively. The flows use all the links
in the network. Each flow takes 10 s for each sampling. We
avoid interference between flows by starting and measuring
the flows sequentially. This is deliberate: our objective is to
determine if micro-motion can enable good path selection
overall and running simultaneous flows would not have al-
lowed us to observe the impact of improved throughput as
a result of improving link quality because the simultaneous
flows would interfere with each other. Flows were created
with the iperf [7] tool and SNR values were measured (per
link) using the iwspy Linux utility.

3.3. Throughput improvement

The first set of experiments quantifies the throughput
improvement obtainable from small movements. The basic
methodology is to exhaustively evaluate all possible con-
figurations resulting from each robot executing a micro-
motion, and then measuring the throughput achieved by
all the flows in each configuration. Since the total number
of possible configurations is exponential with the number
of possible robot locations, we constrain robots to only
two positions for tractability. In a later section, we will re-
lax this assumption, allowing for more positions per robot.

We use five robots in our experiment, yielding a total of
32 possible configurations where each configuration is the
average sampled of at least five times. During all the
ti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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measurements, the noise was constant at �98 dBm, which
implies there were no external time-varying radio sources
contributing signal interference.

In this section, we present results for both TCP and UDP.
We consider TCP flows because TCP is the most commonly
used transport protocol. For completeness, we also present
results for UDP flows. The throughput loss for TCP and UDP
are within a constant factor of each other, suggesting that
the performance loss comes from packet drops as a result
of poor link quality, and not any other TCP artifact.

Figs. 3 and 4 show the multi-hop TCP and UDP flow,
respectively, per configuration. Indeed, there is high vari-
ability between the flows per configuration in both TCP
and UDP flows. Flow 3–4 is the flow with highest variance.
Flow 5–1 is the flow with the longest hops and has lowest
throughput on average. Fig. 3 shows that flow 3–4 has sig-
nificant differences in TCP throughput. We can also con-
clude that some flows will improve while others will
degrade such as flows 4–2 and 5–1 for configurations 16
and 20.

To quantify the variance, we sort the sum of the
throughputs of all the TCP (respectively UDP) flows in each
configuration. Fig. 5 (and Fig. 6) shows that there is a
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significant difference across configurations (recall that
each configuration can be attained from a starting configu-
ration by micro-motions of a subset of the five robots).
There is almost a 2.5� difference in total throughputs be-
tween the best configuration and the worst. Our topology
has not been especially engineered to achieve this result,
which leads us to believe that in other topologies we are
likely to see similar performance improvements. This sug-
gests that a mechanism for coordinated small movements
can improve performance significantly.

Now, we illustrate the variations in each link per posi-
tion. Fig. 7a–e show the SNR per link for each node for all
possible configurations. We can also visualize the variance
of SNR for each configuration. As expected, nodes with non
line-of-sight connectivity have lower SNR. We can con-
clude that one-hop metric SNR varies from micro-motions.

From this section, we conclude that there is a significant
difference in UDP and TCP throughput obtainable from mi-
cro-motions. In the next section, we discuss how to design
a system to take advantage of micro-motions to improve
throughput.
4. Using distributed reasoning for micro-motion based
throughput improvement

In this section, we describe the distributed constraint
optimization framework and how we use it to design a
decentralized method for throughput improvement in mo-
bile mesh networks.

A distributed constraint optimization problem (DCOP)
consists of a set V of n variables, {x1,x2, . . . ,xn}, assigned to
a set of agents (e.g., independent reasoning entities), where
each agent controls one variable’s assignment. Variable xi

can take on any value from the discrete finite domain Di.
The goal is to choose values for the variables such that the
sum over a set of binary constraints and associated payoff
or reward functions, fij: Di � Dj ? N, is maximized. More
specifically, to find an assignment, A, s.t. F(A) is maximized:
FðAÞ ¼

P
xi ;xj2V fijðdi; djÞ, where di 2 Di, dj 2 Dj and xi di,

xj dj 2 A. For example, in Fig. 8, x1, x2, and x3 are variables,
each with a domain of {0,1} and the reward function as
shown. If agents 2 and three choose the value 1, the agent
pair gets a reward of 9. If agent 1 now chooses value 1 as
well, the total solution quality of this complete assignment
is 12, which is locally-optimal as no single agent can change
its value to improve its own reward (and that of the entire
DCOP). F((x1 0), (x2 0), (x3 0)) = 22 and is globally
optimal.

In this problem, we model each mobile radio as an
agent. Every value an agent can take is one possible phys-
ical position for the mobile radio. Constraint exist between
neighbors in the wireless network. Rewards on the con-
straints are defined by a local metric, such as the packet
reception rate on the wireless link between two neighbors.

While there are many approaches to solving DCOPs, we
implemented the Maximum Gain Message (MGM [8])
DCOP method. The MGM algorithm will find a locally-opti-
mal assignment of values for all agents. MGM defines a
round as a period in which every agent: (1) communicates
its current value to all its neighbors, (2) calculates and
lti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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communicates its bid (the maximum gain in its local re-
ward if it is allowed to change values) to all its neighbors,
and (3) changes its value (if allowed). An agent is allowed
to change its value if its bid is larger than all the bids it re-
ceives from its neighbors. At quiescence, no one agent can
deviate from the proposed assignment and increase the net
reward. We denominate MGM-Omniscient when the
agents have the reward for each possible value. MGM-
Omniscient gives an upper bound.

The agents in a DCOP are traditionally assumed to
have a priori knowledge of the corresponding reward
functions. In order to more flexibly model a class of real
world domains, we previously introduced Distributed
Cooperative Exploration and Exploitation (D-CEE) [9] prob-
lems, which do not make this assumption. Thus, D-CEE

problems appear similar to DCOPs, but with the follow-
ing features absent from DCOPs: (1) agents initially know
the constraint graph but only discover rewards when a
Please cite this article in press as: M.A.M. Vieira et al., Mitigating mul
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pair of agents set their values to explicitly discover a re-
ward value, (2) problems last a set amount of time, and
(3) the agents’ seek to maximize the on-line global re-
ward over this time horizon T.

The mapping from our network optimization problem
onto a D-CEE is similar to that of a DCOP, with one important
difference. Agents (robots in our case) must explore differ-
ent locations to determine the value of local (point-to-
point) metrics, and we provide a time horizon after which
the agents must stop optimizing (to ensure that the net-
work converges quickly) and the on-line reward is maxi-
mized (ensuring that the network will quickly improve,
and that it will be performing as well as possible during
the optimization).

SE-Mean [9], a D-CEE algorithm used in this paper, as-
sumes the average reward (denoted l) on each constraint
for all unexplored values for agents. On every round, each
agent bids its expected gain: NumberLinks � l � Rc where
ti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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Rc is the current reward. The algorithm then proceeds as in
MGM-Omniscient. This algorithm causes the agents to
greedily explore until they achieve the average reward,
allowing them to converge on an assignment.
Please cite this article in press as: M.A.M. Vieira et al., Mitigating mu
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The overall algorithm thus consists of two phases. In the
first phase, each robot independently, and without coordi-
nating with other robots, samples the local metric. After
computing the local metric with respect each neighbor,
lti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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each agent calculates the mean (l) and standard deviation
to be used as input to the SE-Mean. The second phase con-
sists of running the DCOP as explained above. The pseudo-
code of the algorithm is presented in Algorithm 1.

Algorithm 1. D-CEE Algorithm
1: {Explore Phase}
2: for subset of positions do
3: Sample
4: Move
5: end for
6: Calculate average reward l
7: {Second Phase – Extended MGM Algorithm}
8: repeat
9: Sample

10: Communicate current value
11: Calculate and Communicate bid
12: Winner of bid Moves
13: until achieve average reward over all neighbors

In summary, we model the problem of maximizing
throughput as a DCOP/D-CEE problem, where robots must
coordinate their movements in a decentralized fashion.
The overall goal is to maximize the throughput of a set
W of (possibly multi-hop) flows wij between nodes, but
by using purely local metrics. These local metrics enable
nodes to effectively use micro-motion to escape from deep
fades, improving link quality as well as wij. An important
component of our design is the choice of the appropriate
local metric. As it turns out, this choice makes a significant
difference to the performance of our algorithm, which we
evaluate in the next section.
5. Results

In this section, we experimentally evaluate our system
using the distributed constraint optimization framework.
Initially, we explore four different local metrics, and show
that the choice of local metric is important for the perfor-
mance of our algorithm. Thereafter, we quantify the per-
formance improvement attainable in practical settings by
demonstrating end-to-end evaluations of our algorithm.

5.1. Local metrics

This section evaluates the possible local metrics to be
used as a local reward to the coordination algorithms so
that the system can achieve a global reward improvement.
These results will prove essential to understanding the sys-
tem performance, described in the following subsection.
Please cite this article in press as: M.A.M. Vieira et al., Mitigating mul
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We evaluate four local metrics, each of which defines
the reward of a particular agent (and thus how likely it will
attempt to change its position):

� minimum SNR (Signal-to-Noise Ratio) is the minimum
SNR on an agent’s links
� the summation of SNR is the sum of all SNRs on an

agent’s links
� the minimum PRR (Packet Reception Rate) is the mini-

mum PRR on an agent’s links
� and the summation of PRR is the sum of all PRRs on an

agent’s links

Our specific choice of these four metrics is driven by
their simplicity: these metrics can be estimated cheaply
and quickly so that network reconfiguration can be done
faster than if other, more heavyweight methods (such as
direct throughput measurement) were used. Our work bor-
rows heavily from the wireless literature, which has long
used SNR [10–12] and PRR [13–15] as predictors for link
quality and throughput in 802.11 radios.

However, a link quality metric alone does not define a re-
ward function. In general, each node in a network may have
many neighbors, and the reward function is defined per
node. There are two natural choices for the reward function
for a node: the min of the link quality metric (either SNR or
PRR) over all neighbors, or their sum. This results in four
choices for the local metric, which we evaluate below.

To evaluate the local metrics, we conducted experi-
ments with the same configuration as in Section 3.2. There
are five robots, each with two possible positions, yielding a
total of 32 possible configurations where each configura-
tion was sampled at least five times. We present results
for TCP flows because TCP is the most commonly used
transport protocol. As shown in Section 3 the results for
TCP and UDP were very similar, modulo a scale factor.

We have the ground truth for the experiments as we
measured the actual throughput for each flow in every
configuration. In this way, we know which configuration
was optimal. It is also important to notice that we do not
need to estimate (SE-Mean) the reward matrices since
we collected data for all possible configurations.

We evaluate the overall system improvement obtained
by using MGM-Omniscient. We focus on the four local
metrics. We evaluated each local metric using the data ob-
tained from exhaustive search experiments. Recall that
each agent will work to maximize its local reward (in this
case, the sum or max of the SNR or PRR on its links), which
will ideally maximize the global metric. Although the
agents work to maximize SNR and PRR, this section shows
that the corresponding network flows are also maximized,
even though they are not directly measured by the agents for
optimization purposes.

We compare the best local metric to predict global gain.
Fig. 9 shows how close to the optimal the configurations
are when using the local metric. First, we can conclude that
the local metric matters when designing the system. For
instance, the min SNR metric improves the total through-
put on average by almost 45%. The improvement is not
higher than this because our approach uses a local metric
to maximize a global metric, and because the local metric
ti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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might incur prediction error. Secondly, we can also con-
clude that it is possible to achieve a near-optimal perfor-
mance with a carefully chosen metric: as the figure
shows, Sum PRR metric shows that it is possible to achieve
the near-optimal performance.

In summary, we can improve throughput by carefully
choosing a local metric (Sum PRR) within the DCOP
Framework.

5.2. Optimizing with more positions

We have also conducted experiments in which robots are
allowed to sample more positions. Our approach is generic
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and does not need to be modified to support additional posi-
tions. For our experiments, we allowed each robot to have
five possible positions as illustrated in Fig. 10a. The work
by Lindhé et al. [5] solves the problem of how many samples
are needed for given communication performance.

It is not practical for agents to visit all positions since
the number of configurations is exponential. Thus, in this
case (unlike our experiments above where there were few-
er positions) agents need to estimate the local metrics for
unexplored positions, which is calculated by the Static
Estimation (SE) Mean Algorithm.

Thus, the overall algorithm consists of two phases. In
the first phase, each robot independently samples the local
metric. There is no coordination and the robots sample
simultaneously. After collecting the local metric to all its
neighbors, agents calculate the mean (l) and standard
deviation to be used as input to the SE-Mean. The second
phase consists of running DCOP as explained previously.

Fig. 10b shows the experiment’s physical configuration.
We run the experiments with five robots and three flows.
Each robot can move to five positions. The SE-Mean algo-
rithm is used to estimate the local metric values for the
unexplored positions. Robot 2 has no free line-of-sight
with respect to the others.

Fig. 10c illustrates the overall percentage gain over each
round (line 8 of Algorithm 1). The base is the initial total
throughput. The system gain is about 32%. Table 1 shows
the gain and the number of rounds for three instances of
(b) Topology with 5 robots
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Table 1
Experiments with five robots.

Experiment Gain Rounds

#1 1.32 13
#2 1.27 9
#3 1.30 10
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the experiments. In Section 3, we showed that up to a 2.5�
performance improvement is possible with micro-motion.
Our results from this experiment do not contradict our ear-
lier finding: that finding discusses the performance differ-
ence between the worst and the best configuration. In this
experiment, we started with an arbitrary configuration
that was not guaranteed to be the worst and therefore
the actual performance improvement we observe is not
as high.

In some rounds, the overall gain decreased when com-
pared to previous round. This is because the robots do
not know the direction of its neighbors. When a robot
moves, the robot might go to the opposite direction of
the neighbor with the weakest local metric. The system
can overcome this in the next round since robots will move
again. The iterations stop when the local metric has im-
proved more than a threshold (line 13 of Algorithm 1).
These results are encouraging because, even with relatively
simple local algorithms, and using small movements, we
could significantly improvement system throughput.

Fig. 10d shows each flow’s throughput per round. Two
flows have little variance over time, while one flow’s
throughput increases significantly as a result of micro-mo-
tion. Therefore, we can conclude that by using SE-Mean to
estimate unexplored positions, the system can handle
many positions and still improve throughput.

5.3. Temporal variation

Could our performance improvements have been ex-
plained by temporal variation of wireless signals? To test
this, we disabled robot motion so we could measure how
the wireless signal varies over time. Fig. 11 depicts the sta-
tic total throughput variation over time. The maximum
variation is about 5%, which fails to explain the 35%
improvements seen in our experiments. Thus, system
improvements do not arise simply from changes in the
environment.
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5.4. Experiments with more robots

We also conducted experiments with more than five ro-
bots to validate our distributed system. Fig. 12a shows an
experiment configuration which has seven robots and
three multi-hop flows. Only robots 5, 6, and 7 have free
line-of-sight with respect to each other. Each robot can
move five positions. Table 2 shows the gain and the num-
ber of rounds for three instances of experiments. Fig. 12b
illustrates the overall percentage gain over each round
for a given experiment. In this configuration, we achieve
an overall system-wide performance gain of about 30%,
further validating our approach to distributed optimization
via robot micro-motion.
6. Related work

Using small movements to combat the multi-path fad-
ing effects in complex environments has promise and this
paper is not the first to examine such effects. In [2,3], the
authors showed that, for a pair of nodes, micro-motion
can increase receive signal power and improve packet
reception more than any coding scheme could achieve.
We, on the other, focus on an approach to improve global
network throughput using explicit coordinated micro-mo-
tion. Other work includes [5], where the authors propose a
methodology for exploiting multi-path fading by control-
ling the robot according to radio signal strength. They solve
the problem of how many samples are needed for given
communications performance and how they should be
spaced and provide lower bounds on the number of sam-
ples for a single robot. Using 802.15.4 radio, they also show
there is room for improvement (as much as 20 dB in RSSI).

Other approaches have leveraged more general forms of
mobility (beyond micro-motion) for network throughput
improvement or to build and configure mobile mesh net-
works. Early theoretical work [16] shows that mobility in-
creases capacity with random source-destination pairs
with loose delay constraints. Other work [17] considers
the problem of controlling a team of robots to ensure
end-to-end communication. To mitigate environmental
interference, they propose two different metrics, point-
to-point signal strength and data throughput, to monitor
the network connectivity of the system. Even ad-hoc com-
munication protocols pose difficult challenges during mul-
ti-robot experimentation, as shown by Zeiger et al. [18].
However, their focus is not on micro-motions, they need
a map of the environment and optimizing network
throughput is not one of their goals.

Complementary to our work [19], discusses a game-the-
oretic dynamic programming algorithm to guarantee that a
single mobile user is connected to a base station by moving
a chain of robotic routers.

Multiple-input multiple-output (MIMO) [20] tech-
niques with multiple antennas [21] take advantage of spa-
tial diversity and spatial multiplexing and can improve
performance by avoiding deep fades through diversity.
For example, consider the scenario of two transmit anten-
nas at a node sending to one receiving antenna. This adds
spatial diversity because of the independently faded paths.
ti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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Table 2
Experiments with seven robots.

Experiment Gain Rounds

#1 1.32 9
#2 1.28 9
#3 1.25 10
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However, when node positions are fixed, there are limits to
diversity gains. For example, in certain scenarios such as at
low SNR, the extra transmit antennas make little difference
in performance [21]. Our approach is complementary,
since it uses explicit micro-motions to improve perfor-
mance, and can improve performance in scenarios where
MIMO gains are limited. We intend to investigate the per-
formance gain of micro-motions with MIMO configuration
in future work. For more information, we refer the inter-
ested reader to check textbooks on wireless communica-
tions and MIMO [22–24].

Delay-tolerant networking (DTN) [25,26] is a computer
network that may lack continuous network connectivity
Please cite this article in press as: M.A.M. Vieira et al., Mitigating mu
doi:10.1016/j.adhoc.2011.01.014
but is still operable. DTNs can take advantage of mobility
to deliver messages. Unlike DTNs, where nodes may only
have intermittent connectivity, our work applies to mesh
networks where a communication backbone exists in the
network.

The distributed constraint optimization framework has
been studied extensively in the multi-agent literature. In
[9], the D-CEE framework is presented to study the problem
of how to coordinate mobile nodes to maximize the cumu-
lative RSSI. The paper’s focus is on algorithms to study the
trade-off between exploration and exploitation. We, on the
other hand, focus on different local metrics (SNR, PRR) and
how it affects the overall network. We quantify how much
gain the network can benefit from small movements and
how we can design a system to improve the real-world
network throughput.

In addition to the DCOP work discussed in earlier sec-
tions, previous work in distributed constraint reasoning
in sensor networks [27,28] uses a precursor method to
the DCOP formulation which does not handle unknown
lti-path fading in a mobile mesh network, Ad Hoc Netw. (2011),
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reward matrices. Marder et al. [29] formulate dynamic
sensor coverage as a ‘‘potential game,’’ which is similar to
a DCOP. However, like other DCOP work, the reward matrix
is known, there is no time limit, and only final reward is
considered. Cheng et al. [30] suggest an approach for coor-
dinating a set of robots based on swarm intelligence, how-
ever the objective of the work is to disperse the robots
evenly within a specified shape, and not to optimize the
signal strengths across the network.

Correll et al. [31] look at optimizing a wireless network
of mobile robots using a distributed swarm optimization,
but are concerned with changing the topology (i.e., neigh-
bors) of the network rather than optimizing signal
strength. Gerkey et al. [32] address a similar problem,
but use auction mechanism and the goals of agents are sig-
nificantly different (agents modify the topology of the net-
work and on-line reward is not emphasized). Farinelli et al.
[33] perform decentralized coordination on physical hard-
ware using factor graphs, however, rewards are known and
cumulative reward is not considered.

7. Conclusion

In this paper, we demonstrate that mobile robots can be
used successfully in a mesh network. With robotic routers
forming a network, nodes can avoid deep face caused by
multi-path fading. Our study shows that small movements
can improve network performance and that the total net-
work throughput could vary as much as 170% when the ro-
bots moved on the order of half a wavelength. Avoiding
deep fades is a pairwise problem between sender and re-
ceiver, which requires coordination. Thus, we designed a
practical system which uses the distributed constraint
optimization framework to improve communication. We
studied four local metric (min SNR, min PRR, sum SNR,
sum PRR) to estimate the global throughput. Our results
are encouraging because we can achieve an average global
performance improvement of 30% while maximizing only
local metrics.
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