
Common Subspace Transfer for Reinforcement Learning
Tasks

Haitham Bou Ammar
∗

Institute of Applied Research
Ravensburg-Weingarten University of Applied

Sciences, Germany
bouammha@hs-weingarten.de

Matthew E. Taylor
Department of Computer Science

Lafayette College, USA
taylorm@lafayette.edu

ABSTRACT
Agents in reinforcement learning tasks may learn slowly in large
or complex tasks — transfer learning is one technique to speed up
learning by providing an informative prior. How to best enable
transfer between tasks with different state representations and/or
actions is currently an open question. This paper introduces the
concept of a common task subspace, which is used to autonomously
learn how two tasks are related. Experiments in two different non-
linear domains empirically show that a learned inter-state mapping
can successfully be used by fitted value iteration, to (1) improving
the performance of a policy learned with a fixed number of sam-
ples, and (2) reducing the time required to converge to a (near-)
optimal policy with unlimited samples.

Categories and Subject Descriptors
I.1.2 [Algorithms]: Design and Analysis

General Terms
Transfer Learning

Keywords
Transfer Learning, Reinforcement Learning, Common Task-Subspace,
Inter-State mapping

1. INTRODUCTION
Reinforcement learning [9] (RL) is a popular framework that al-

lows agents to learn how to solve complex sequential-action tasks
with minimal feedback. Unfortunately, amount of experience or
time required for an RL agent to learn a high-quality policy may
grow exponentially with the number of dimensions in the input
(state) or output (action) space. Transfer learning [10] (TL) at-
tempts to decrease the amount of time or data required for learning
a complex (target) task by providing an informative prior, learned
on a simpler (source) task.

At a high level, there are two types of algorithms for TL in RL
tasks. The first broad category of algorithms transfer high-level
knowledge, such as partial policies, rules, advice, or important fea-
tures for learning. The second is to transfer low-level knowledge,
such as action-value functions or individual state transition data.
Our approach deals with the transfer of suggested state/action pairs
between different, but related, tasks.

As discussed later in Section 3.4, the source task can potentially
differ from the target task in many ways. If the tasks have differ-
ent representations of state or action spaces, some type of mapping
∗The author is also affiliated with the Instituite of Neural Informa-
tion Processing at the Ulm University, Germany.

between the tasks is required. While there have been a number of
successes in using such a mapping, it typically is hand-coded, and
may require substantial human knowledge [13, 10]. This paper in-
troduces a novel construct, a common task subspace, and shows that
1) an inter-state mapping can be learned, provided such a subspace
through task state transition mappings, and 2) this inter-state map-
ping can significantly improve learning by transferring state/action
data from one task to another based on the similarity of transitions
in both tasks.

This paper provides a proof-of-concept for our method, using
fitted value iteration with locally weighted regression in two ex-
periments. The first experiment shows successful transfer from a
single mass system into a double mass system. The second exper-
iment uses a policy learned on the simple inverted pendulum task
to improve learning on the cartpole swing-up problem. Our results
show:

1. an inter-state mapping can be learned from data collected in
the source and target tasks;

2. this inter-state mapping can effectively transfer information
from a source task to a target task, even if the state represen-
tations and actions differ;

3. an agent that uses transferred information can learn a higher
quality policy in the target task, relative to not using this in-
formation, when keeping the number of samples in the target
task fixed; and

4. an agent using information transferred from a source task can
learn an optimal policy faster in the target task, relative to not
using this information, when it has access to an unlimited
number of target task samples.

The rest of the paper proceeds as follows. Related work is pre-
sented next, in Section 2. Background information is presented in
Section 3. Section 4 describes how an inter-state mapping can be
learned between two tasks by leveraging a distance-minimization
algorithm. In Section 5, we show how the learned mapping can be
used to transfer information between a source task and target task.
Experiments in Section 6 evaluate the entire system on two pairs of
tasks. Section 7 concludes with a discussion of future work.

2. RELATED WORK
There has been a significant amount of work done in recent years

on transfer learning in RL domains [10]. This section outlines the
most related work (summarized in three classes) and contrast it with
this paper.

The first class of papers, providing motivation for this work, fo-
cus on using a hand-coded mapping between tasks with different

state variables and actions. For instance, [13] transfers advice, and
[11] transfers Q-values — both methods assume that a mapping
between the state and action variables in the two tasks has been
provided. Another approach is to frame different tasks as having
a shared agent space [5], so that no mapping is explicitly needed,
but this requires the agent acting in both tasks to share the same
actions and the human must map new sensors back into the agent
space. The primary contrast with these authors’ work and ours is
that we are interested in learning a mapping between states and ac-
tions in pairs of tasks, rather than assuming that it is provided or
unnecessary.

The second approach is to assume that a mapping between tasks
is not known, but that a high-level analysis can discover this map-
ping. For instance, [7] assume that a quantitative dynamic Bayes
network has been provided for each task. Their work uses a graph
mapping technique to efficiently find a mapping between tasks.
Other work [6] analyzes full information games, and shows that
information can be transferred between games by analyzing rule
graphs constructed from the (known) transition function. In both
cases, no data needs to be sampled from the environment, as the
transition function can be analyzed (in terms of a network or rule
graph, respectively). Our methods, rather than relying on analysis
of the Markov Decision Processes (MDPs), instead are data-driven
methods, using supervised learning techniques to find an accurate
mapping.

A third approach involves learning a mapping between tasks us-
ing data gathered while agents interact with the environment. [8]
supply an agent with a series of possible state transformations and a
description of how actions are related in a pair of tasks. Over time
the agent can learn the correct mapping by balancing exploration
of the different transformations and exploiting the transformation
thought to be best. In contrast to this method, our framework does
not assume that the agent knows how the actions are related be-
tween the two tasks, nor does it rely on finding the correct mapping
via exploration. Other work [12] learns both the state and action
mapping simultaneously by gathering data in both the source task
and the target task. They then use a classifier to find the most con-
sistent mapping. However, this approach is computationally expen-
sive and scales exponentially with the number of state variables and
actions in the two tasks. In contrast, our approach will scale much
better with higher dimensional tasks, assuming that a smaller task
specific subspace can be found.

Finally, unlike all other existing methods (to the best of our knowl-
edge), we assume differences among all the variables of MDPs
describing the tasks and focus on learning an inter-state mapping,
rather than a state-variable mapping. Our framework can also map
different actions depending on the state. For instance, it could be
that in some parts of the target task, action a1,target in the target
task is most similar to action a1,source in the source task, while
in other parts of the target task, action a1,target is most similar
to action a2,source. Since our framework relies on state transition
similarities in both the target and source task, then it allows such a
flexibility for the action choices in certain regions of the state space,
while other existing algorithms do not.

3. BACKGROUND
This section provides the reader with a short background in rein-

forcement learning, transfer learning, locally weighted regression
for function approximation and the learning methods used in this
paper.

3.1 Reinforcement Learning

In an RL problem, an agent must decide how to sequentially se-
lect actions in order to maximize its long term expected reward [9].
Such problems are typically formalized as Markov decision pro-
cesses (MDPs). An MDP is defined by 〈S,A, P,R, γ〉, where S
is the (potentially infinite) set of states, A is the set of all possible
actions that the agent may execute, P : S × A → S is a state
transition probability function describing the transition dynamics,
R : S → R is the reward function measuring the performance of
the agent, and γ ∈ [0, 1) is the discount factor. A policy π : S → A
is defined as a mapping from a state to an action. The goal of an
RL agent is to improve its policy, potentially reaching the optimal
policy π∗ that maximizes the discounted total long term reward:

V ∗(s) = max
π

E

[
∞∑
t=0

γtR(st)|s = s0, π

]

3.2 Fitted Value Iteration
When operating in a continuous state space, the value function

cannot be enumerated in a table [3]. Instead, some sort of function
approximation must be used. The fitted value iteration (FVI) algo-
rithm [3], as shown in Algorithm 1, is one approach to the problem
of approximating a continuous function. The key idea of FVI is
to approximate the value function after sampling a finite number
of states using a parametric or nonparametric combination of some
feature vector of the states. The value function, estimating the long-
term value of a state, is

V (s) = ΨTΦ(s) (1)

where ΨT is a vector of parameters to be fitted and Φ(s) is an ap-
propriate feature vector mapping of the states. For each state in the
finite sample and for each action a ∈ A, Algorithm 1 determines
a quantity y(i) which is an approximation of the value function.
Then it solves a linear regression problem to fit the Ψ values mak-
ing V (s) as close as possible to y(i).1

3.3 Locally Weighted Regression
Locally weighted regression [1] (LWR) is a supervised learning

algorithm used in function approximation where local models are
fitted near query points. LWR is a lazy or memory-based learning
method, where generalization is delayed until a query is made. In
LWR, a weighted least squares criteria is used to fit local models.
Such an approximation method is suited to our problem because
state-action pairs are collected offline, as described in Section 5.1.

3.4 Transfer Learning in RL Tasks
In transfer learning, there typically exists a source and a target

task, where the goal is to increase the performance and to reduce
the learning times in the target task agent [10]. This is done by al-
lowing an agent in a target task to reuse knowledge and behaviors
acquired by an agent in one or more source tasks. In our transfer
learning framework, we assume that there are two different but re-
lated tasks: a source and a target. We define both tasks as MDPs,
where information is transferred from the source task (MDP1) into
the target task (MDP2).

MDP1 is defined by the tuple (S1, A1, P1, R1, γ1), while MDP2

by (S2, A2, P2, R2, γ2), where Si ∈ Rdi , Ai ∈ Rqi , Pi, Ri :
Si → R and γi for i ∈ {1, 2} represent the state space, action
space, transition probability and the discount factor of each of the
1In case of stochastic MDPs then q(a) on line 7 is found by aver-
aging over a number of successor states.

Algorithm 1 Fitted Value Iteration for deterministic MDPs
1: Randomly sample m states from the MDP
2: Ψ← 0
3: n← the number of available actions in A
4: repeat
5: for i = 1→m do
6: for all a ∈ A do
7: q(a)← R(s(i)) + γV (s(j)′)

8: y(i) ← max q(a)

9: Ψ← arg minΨ

∑m
i=1 (y(i) −ΨTΦ(s(i)))

2

10: until Ψ Converges

MDP respectively. In this paper, we assume that the source task
can be easily learned and that an optimal policy, π∗1 , has already
been found.2 We note that our methods do not require similarities
between any given pairs of source task / target task constituents. In
other words, the source and target task can have differences in state
spaces, action spaces, transition probabilities, reward functions,
and/or discount factors. In Section 6, we show positive results
when transferring between tasks that have different state spaces,
action spaces, transition probabilities, and reward functions.

3.5 Inter-State Mapping
In order to enable transfer between tasks with different state and

action spaces, some type of inter-state mapping, χ, must be used.
The inter-state mapping, χ : S2 → S1, is a function mapping

the state space of MDP2 into MDP1. It describes the relationship
between the state space representations among the different but re-
lated MDPs by finding a label s1 ∈ S1, to an input s2 ∈ S2. For at-
taining such an inter-State mapping a supervised learning algorithm
should be used. The major problem for any function approximator
is the missing correspondence between the inputs, being states in
S2 to the outputs being states in S1. We approach this problem by
finding this correspondence between the inputs and the labels in a
common task-subspace as described in Section 4.

Such a function is essential to our transfer framework since it is
used to transfer knowledge from a source task agent into a target
task agent, which acts in a different state space, with a different
state representation (as described in Section 5.1).

4. LEARNING AN INTER-STATE MAPPING
At a high-level, our transfer framework can be decomposed into

three major phases. In the first phase, the function χ is learned,
mapping the states from MDP2 into MDP1. As discussed in this
section, χ is learned by collecting transitions from the source task
and target task and identifying correspondences. The second phase
finds an initial policy for task two, πtr in MDP2, by identifying ac-
tions in the target task that are most similar to actions selected in the
source task by π∗1 (see Section 5.1). The third phase uses samples
gathered by πtr as an initialization for fitted value iteration, rather
than using randomly selected samples, finding an optimal policy
π2
∗ of MDP2 (see Section 5.2).
We define a common task subspace, Sc, as a subspace that de-

scribes shared characteristics between the tasks MDP1 and MDP2.
Generally, Sc has a lower dimensionality than S1 or S2 and is de-
termined by common state semantics shared between the two tasks.

2The framework is not limiting to having an optimal policy — we
believe suboptimal policies could also be used successfully — but
we focus on optimal policies for clarity of exposition.

This subspace is described via the control problem’s definition or
is user defined. In many cases, manually defining such a common
task subspace is relatively easy. In the case of control problems,
the subspace construction can be influenced by the particular goal
or goals an agent must achieve in a task. As an illustration, consider
the problem of transfer between agents with two different robotic
arms, each of which has acts in a different dimensionality space
(i.e., has a different description of state because of different sensors
and or degrees of freedom). In this case, Sc can be defined as the
position and orientation of the end effector in both robots. Thus,
even with such a nonlinear continuous MDPs setting, attaining a
common task space requires less effort than trying to manually en-
code the action and state variables mappings.
Sc is used to determine the correspondence between state suc-

cessor state pairs of MDP1 and MDP2, which in turn will generate
data used to approximate χ. Given that the two tasks are related
through some common task subspace Sc ∈ Rdc , we proceed by
learning a function χ : S2 → S1, mapping the two state spaces of
MDP1 and MDP2 together. As discussed in Section 5.1, χ alone is
capable of transferring policies from MDP1 to MDP2 by effectively
finding a good prior for the agent in MDP2.

We now explain how χ is learned. We take as input (1) n1

state successor state patterns of the d1 dimensional state space S1,
〈s1, s

′
1〉 (gathered from interactions with the source task), (2) n2

state successor state patterns of the d2 dimensional state space S2,
〈s2, s

′
2〉 (gathered from interactions with the target task), and (3)

a common task subspace Sc with dimensions dc ≤ min{d1, d2}.
Algorithm 2 proceeds by projecting each of the above patterns into
Sc, attaining n1 patterns of the form 〈s(i)

c,1, s
′(i)
c,1 〉, were the sub-

script {c, 1} denotes mapping states from S1 into states in Sc, for
i = {1, 2, . . . , n1}, corresponding to the projected S1 states (line 2
of Algorithm 2). Additionally, n2 patterns of 〈s(j)

c,2, s
′(j)
c,2 〉 are found

on line 4 of Algorithm 2, where the subscript {c, 2} represents the
notion of state space S2 states in Sc and j = {1, 2, . . . , n2}, corre-
sponding to the projected S2 states. The algorithm next calculates
a minimum distance on the n1 and n2 patterns (lines 6–8). Once a
correspondence between the projected states in Sc has been found,
full states rather than subspace states are required to train χ. These
are found by trying all the combinations in S1 and S2, lines 10–
12, generating the recommended sc,1 and sc,2 (further discussed in
Section 4.2). The algorithm collects these combinations (line 12)
so that χ represents a best fit mapping between S2 and S1 via Sc.

4.1 Problem: Mapping Unrelated States
At this stage two potential problems arise. The first is that it is

possible that states in S2 are mapped into states in S1, even when
they are not related. This is a common problem in transfer learning
(related to the problem of negative transfer [10]) which we can-
not solve, but work to avoid by considering the distance between
successor states.

Consider patterns in the target task, 〈s2, s
′
2〉, and a pattern in

the source task, 〈s1, s
′
1〉. Using Algorithm 2, lines 2 and 4, we

find that f2 and f1 maps each of the successor states into the com-
mon sub-space as 〈sc,2, s′c,2〉 and 〈sc,1, s′c,1〉 respectively. If the
distance d, as measured by ||〈sc,1, s′c,1〉, 〈sc,2, s′c,2〉||2, is greater
than some threshold parameter (line 9), it suggests this mapping is
suspect because the initial state successor state pair, 〈s2, s

′
2〉, has a

poor correspondence with the source task pattern, potentially harm-
ing the agent’s performance in MDP2.3 This state may not be the
best choice for a prior in the target task — only states with small

3Even if the two tasks are closely related this could occur due to a
large difference in the action spaces of the two tasks.

Algorithm 2 Learn an Inter-State Mapping

Require: n1 random samples of 〈s(i)
1 , s

′(i)
1 〉

n1
i=1; n2 random sam-

ples of 〈s(k)
2 , s

′(k)
2 〉n2

j=1; f1 and f2 representing the functions
projecting S1 and S2 into Sc, respectively; and threshold β1

1: for i = 1→ n1 do
2: 〈s(i)

c,1, s
′(i)
c,1 〉 ← f1〈s(i)

1 , s
′(i)
1 〉

3: for j = 1→ n2 do
4: 〈s(j)

c,2, s
′(j)
c,2 〉 ← f2〈s(j)

2 , s
′(j)
2 〉

5: for k = 1→ n2 do
6: for l = 1→ n1 do
7: d(l) ← ||〈s(l)

c,1, s
′(l)
c,1 〉 − 〈s

(k)
c,2 , s

′(k)
c,2 〉||2

8: Calculate l∗ ← arg minl d
(l)

9: if d(l∗)
best ≤ β1 then

10: s
(k)
c,1 ← all combinations of s1

11: s
(l∗)
c,2 ← the combinations of s2

12: Collect all combinations of the latter s2 and s1 as inputs
and outputs, respectively, to approximate χ

13: else
14: Do Nothing {ignore current sample}
15: Approximate χ

distances are used as inputs and outputs for the supervised learning
algorithm.

4.2 Problem: Non-injective Mapping
The second potential problem is that the function χ must map

all state variables from the target task into the source task. How-
ever, the correspondence between the inputs, states in S2, and the
outputs, states in S1, was found in the common state subspace Sc.
The projection functions, f1 and f2, from S1 and S2 respectively,
are not-injective. Thus, there may be a problem when attempting
to fully recover the initial data points in S1 and S2, corresponding
to sc,1 and sc,2, which is critical when approximating χ.

We approach this problem by verifying all possible states in s1 ∈
S1 and s2 ∈ S2 corresponding to the intended sc,1 and sc,2 respec-
tively. We then consider all combinations of the initial states, on
line 12, that were mapped together using Algorithm 2, as inputs
and outputs. By that, the authors have avoided the need for an in-
verse mapping f−1

1 and f−1
2 to recover the original states in S1

and S2. Once the correspondence between the patterns of S1 and
S2 has been determined, a supervised learning scheme attains χ.
LWR was used (line 15 of Algorithm 2) to approximate χ, which
is used in turn to determine the transferred policy, πtr , as described
in the following section.

5. POLICY TRANSFER AND RL IMPROVE-
MENT

To transfer between agents with differences in the action spaces
some type of a mapping representing the relations between the al-
lowed actions of the source and target agent should be conducted.
In finding a mapping of the action spaces between the tasks, there
exists a major problem. The problem relates to the difference in
dimensions between the two action spaces. Solving this problem
could not be approached as done for the state space case in Sec-
tion 3.5, since it is not trivial at all to determine some common
action space shared between the tasks to be projected to so to find
the inputs and labels which in turn would be used to map the action

Algorithm 3 Collect State-action Pairs
Require: m random initial s2 states, optimal policy of the first

system π∗1 , probability transition functions of the two systems
P1(s1, a1) and P2(s2, a2), the action space of system two A2,
and distance threshold β2

1: Set q2 to be the size of A2

2: for i = 1→m do
3: s1

(i) ← χ(s2
(i))

4: a
(i)
1 ← π∗1(s

(i)
1)

5: Attain s
′(i)
1 ∼ P1(s1

(i), a1
(i)) sampled according to the

state transition probability P1

6: for k = 1→ q2 do
7: Attain s′(k)

2 ∼ P2(s2
(i), a2

(k)) sampled according to the
state transition probability P2

8: Attain the corresponding s′(k)
1,c ← χ(s

′(k)
2) using the inter-

state mapping χ
9: d(k) ← ||s′(i)1 − s′(k)

1,c ||2
10: d

(i)
best ← mink(d(k))

11: j ← arg mink d
(k)

12: if d(i)
best ≤ β2 then

13: Collect the following pattern (s
(i)
2 , a

(j)
2) as one training

pattern to approximate π2

14: else
15: Do Nothing {Ignore this sample}
16: Using collected patterns, approximate πtr

spaces together4.
Rather than approaching this problem explicitly and conduct-

ing a mapping between the action spaces of the tasks, we perform
an implicit mapping using the inter-state mapping learned in Sec-
tion 3.5.

The inter-state mapping, χ, will enable transfer from MDP1 to
MDP2. This transfer is based on a similarity measure between state
successor states in both MDPs, in the sense that only state transi-
tions that relatively have acceptable distance measures are taken
into account. Then, the action producing such a successor state in
MDP2 is held as the best action. This section will further detail
the above scheme and explain how χ is used to conduct a policy
transfer between the two MDPs.

5.1 Policy Transfer Scheme
The inter-state mapping, as learned in the previous section, is

capable of providing the agent in the target task with an informative
prior. Finding the transferred policy, πtr , is done in two phases.
First, state-action pairs are collected in the source task, according to
π∗1 (see Algorithm 3). Second, πtr is constructed from the collected
samples, and the learned inter-state mapping.

Algorithm 3 needs to be able to generate successor states for both
MDPs, lines 5–7. Thus, it is not necessary for Algorithm 3 to have
access to a transition model or simulator, where agents in both tasks
can generate next states by taking actions.

Algorithm 3 finds an action, a2 ∈ A2, for a state s2 ∈ S2, by
using the inter-state mapping, χ, and a user-defined threshold, β2.
Using χ, the algorithm maps each of the m random states, s(1)

2 –
s

(m)
2 , to corresponding states, s(1)

1 –s(m)
1 . It then selects on action,

a1, for a state in S1, according to the optimal policy of MDP1,

4This is in addition to the problem of determining an inverse map-
ping for χ, since we need to approximate a starting policy in the
target task.

Algorithm 4 Fitted Value Iteration Algorithm + Transfer
1: Starting from random initial states, sample f states according

to πtr
2: Ψ← 0
3: n2 ← the size of the action space A2

4: repeat
5: for i = 1→ f do
6: for all a2 ∈ A2 do
7: q(a2)← R(s(i)) + γV (s(j)′)

8: y(i) ← maxa2∈A2 q(a2)

9: Ψ← arg minΨ

∑f
i=1 (y(i) −ΨTΦ(s(i)))

2

10: Greedily sample new f states according to the fitted Ψ val-
ues representing πfit = arg maxaEs′∼Psa [ΨTΦ(s′)]

11: until Ψ converges
12: Represent π∗2 = arg maxaEs′∼Psa [ΨTΦ(s′)]

and transients into the optimal s′1 state according to the probability
transition function P1(s1, a1).

The algorithm examines all possible actions inA2 from the given
initial state s(i)

2 to transient to q2 different subsequent states s′2 (see
line 6 – 7 of Algorithm 3). Then for each s′2, χ is used again to
find the corresponding s′1 denoted by s′1,c in the algorithm, line 8.
At this stage, a minimum distance search between the attained s′1,c
and the one recommended by π∗1 is conducted. If the distance is
below the user defined threshold β2 then the action a2 correspond-
ing to the minimum distance is chosen to be the best action for that
random initial state s2. This sequence is repeated for the m differ-
ent random initial states of S2, resulting in a data set of state-action
pairs in the target task, guided by π∗1 .

This data set is used to approximate πtr , done via LWR in our
experiments, and this policy will be used as a starting policy by the
target task agent.

5.2 Improving the Transferred Policy
The policy πtr serves as an initial policy for the MDP2 agent —

this section describes how the policy is improved via FVI, using an
initial trajectory produced by πtr .

We used a minor variant of FVI, where the value function is re-
peatedly approximated after fitting the Ψ values. Starting from a
small number of initial states, f , sampled through πtr , we attempt
to find an optimal policy π∗2 , by iteratively re-sampling using the
fitted Ψ values as needed.

Algorithm 4 works to find optimal values for the parameters to fit
the value function (Equation 1) on a set number of samples, which
were sampled using πtr . Then, after each iteration of the repeat
loop, Algorithm 4 samples a new set of states according to current
policy represented by πfit. The sampling / value fitting process is
repeated until convergence, attaining an optimal policy. The dif-
ference between Algorithm 4 to the one described in Section 3.2,
is that the initial samples are not gathered according to a random
policy, but by following πtr . Assuming that πtr is a good prior,
this procedure will better focus exploration of the policy space.

6. EXPERIMENTS
As a proof of concept, our algorithms were tested on two differ-

ent systems. The first was the transfer from a single mass spring
damper system to a double mass spring damper system, as shown
in Figure 1. The second experiment transferred between the in-
verted pendulum task to the cartpole swing-up task [2] (see Fig-
ure 2). The following two sub-sections will discuss the details of

(a) Simple Mass System (b) Double Mass System

Figure 1: The first experiment uses a policy for the single mass
spring damper system in (a) to speed up learning a policy for
the double mass spring damper system in (b).

(a) Simple Pen-
dulum

(b) Cartpole swing-up

Figure 2: The second experiment uses a policy for the inverted
pendulum in (a) to speed up learning a policy for the bench-
mark cartpole swing-up task in (b).

the experiments and their results.
The values of the discount factor γ, used in Algorithms 1 and 4

were fixed to 0.8 while those of β1 and β2, used in algorithms 2
and 3, were fixed at 0.9 and 1.5, respectively. In fact, we found
that varying the values of β1 and β2 did not significantly affect the
performance of the algorithms, suggesting that our algorithms are
robust to changes in these parameters.5

6.1 Single to Double Mass
For our first experiment, we transferred a policy between the sys-

tems shown in Figure 1. Detailed descriptions of the tasks’ dynam-
ics can be found elsewhere [4]. S1 is described by the {x1,1, ẋ1,1}
variables, representing the position and the velocity of the mass
M1,1. S2 = {x1,2, ẋ1,2, x2,2, ẋ2,2}, representing the position and
the velocity of M1,2 and M2,2.

A reward of +1 is given to the agent of system one if the position
of the mass M1,1 is 1 and −1 otherwise. On the other hand, a re-
ward of +10 is given to the agent of system two if the position and
the velocity of the massM1,2 is 1 and 0 respectively, and otherwise
a reward of −10 is given. The action spaces of the two systems
are A1 = {−15, 0, 15} and A2 = {−15,−10, 0,+10,−15}, de-
scribing the force of the controller in Newtons. The agent’s goal is
to bring the mass of system two, M1,2, to the state s2 = {1, 0},
which corresponds to a position of 1 (x1,2 = 1) and a velocity of
zero (ẋ1,2 = 0). In our transfer learning setting, the agent relies on
an initial policy delivered from the controller of the system MDP1

and improves on it. In the source task, FVI found a policy to bring
the mass M1,1 to the s1 = {1, 0} goal state.

6.1.1 Common Task Subspace

5We believe that carefully setting β1 and β2 may only be necessary
when the source and target tasks are very dissimilar.

In both systems the control goal is to settle the first mass so that
it reaches location x = 1 with zero velocity. Thus, the common
task subspace Sc is described via the variables x and ẋ for mass #1
in both systems.

6.1.2 Source Task: Single Mass System
The FVI algorithm was used to learn an optimal policy, π∗1 , for

the first mass system. A parametric representation of the value
function was used:

V (s) = ΨTΦ(s)

V (s) =
(
ψ1 ψ2 ψ3 ψ4 ψ5

)

x1,1
2

x1,1

ẋ2
1,1

ẋ1,1

1

The second variant of Algorithm 1, described via Algorithm 4

but starting from random samples (source task), was able to con-
verge to the optimal parametric values approximating the value
function on a single core of a dual core 2.2 GHz processor in about
18 minutes, after starting with 5000 random initial samples. The
resulting controller, represented as values in Ψ, was able, in 0.3
seconds, to control the first mass system in its intended final state:
s1 = {1, 0}.

6.1.3 Target Task: Double Mass System
To test the efficacy of our learned χ by Algorithm 2 and transfer

method using Algorithms 3 and 4, we varied the values for n1 and
n2 from 1000–8000, which corresponds to the number of samples
used in the target task.6 Algorithm 1 was run with these different
sets of samples, which were in turn used to generate policies for the
target task. The performance of these policies in the target task, af-
ter convergence, are shown in Figure 3, and are compared to using
random initial samples (i.e., no transfer).

The results in Figure 3 show that FVI performs better when ini-
tialized with a small number of states sampled from πtr than when
the states are generated by a random policy. Further, results con-
firm that as the number of samples increase, both transfer and non-
transfer learning methods converge to the (same) optimal policy.

Conclusion 1: πtr , which uses the learned χ, allows an agent
to achieve a higher performance with a fixed number of sampled
target task states compared to a random scheme.

Finally, Algorithm 4 was used to attain the optimal policy π∗2
when supplied with 7000 initial points, where the points were sam-
pled randomly and from πtr . The convergence time to attain an
optimal policy starting from the initial states generated through πtr
was approximately 4.5 times less than that starting from randomly
sampled initial states.

Conclusion 2: πtr allows an agent to converge to an optimal
policy faster by intelligently sampling the initial states for FVI that
are improved on.

6.2 Inverted Pendulum to the Cartpole Swing-
up

For the second experiment, we transfered between the systems
shown in Figure 2. A detailed description of the task’s dynam-
ics can be found elsewhere [2]. S1 is described by the θ1 and θ̇1

variables representing the angle and angular speed of the inverted

6This corresponds to roughly 10–175 states ignored in Algo-
rithm 2, line 14.

Figure 3: This graph compares the performance of converged
policies on the double mass system, as measured over 1000 in-
dependent samples of random start states in the target task
measured over independent 500 trials. The x-axis shows the
number of target task states used by FVI and the y-axis shows
the average reward after FVI has converged (without resam-
pling the states).

pendulum respectively. S2 is described by θ2, θ̇2, x, and ẋ rep-
resenting the angle, angular speed, position, and velocity of the
cartpole, respectively.

The reward of system one (inverted pendulum) was defined as
Rsys1 = cos(θ1) while that of system two (cartpole swing up)
was Rsys2 = 10 cos(θ2). The action spaces of the two systems
are A1 = {−15,−1, 0, 1, 15} and A2 = {−10, 10}, describing
the allowed torques, in Newton meters, and forces, in Newtons,
respectively. The cart is able to move between −2.5 ≤ x ≤ 2.5.
The agent’s goal in the source task is to bring the pendulum of
system two to state s2 = {0, 0}, which corresponds to an angle
of 0 (θ2 = 0) and an angular velocity (θ̇2 = 0). In our transfer
learning setting, the agent relies on an initial policy delivered from
the controller of the first system and improves on it. In the source
task, FVI found a policy to bring the pendulum to the state s1 =
{0, 0}.

6.2.1 Common Task Subspace
In both systems the control goal is to settle the pendulums in

the {0, 0} upright state corresponding to an angle of zero and an
angular velocity of zero. Thus, the common task subspace Sc is
described via the variables θ and θ̇ of both systems.

6.2.2 Source Task: Simple Pendulum
The FVI algorithm was used to learn an optimal policy, π∗1 . As

shown in Equation 1, a parametric representation of the value func-
tion was used:

Figure 4: This figure compares the performance of the cartpole
swing-up task, measured by the averaged reward, vs. different
numbers of initial starting states. Starting states can be sam-
pled via the transfer policy (from the inverted pendulum task)
or randomly.

V (s) = ΨTΦ(s)

V (s) =
(
ψ1 ψ2 ψ3 ψ4 ψ5

)

θ2
1

θ1

θ̇1
2

θ̇1

1

The second variant of Algorithm 1 described via Algorithm 4,

was able to converge to the optimal parametric values approximat-
ing the value function when on a single core of a dual core 2.2 GHz
processor in about 23 minutes after starting from 5000 random ini-
tial samples. Then the controller was able, in 0.2 sec, to control the
inverted pendulum in its intended final state s1 = {0, 0}.

6.2.3 Target Task: Cartpole Swing-up
To test the efficacy of our learned χ using Algorithm 2 and trans-

fer method using Algorithms 3 and 4, we varied the values for n1

and n2 from 1000 – 10000, which corresponded to the number of
samples in the target task.7 Algorithm 1 was run with these differ-
ent sets of samples, which were in turn used to generate policies for
the target task. The performance of these policies in the target task,
after convergence, are shown in Figure 4, and are compared to the
random scheme (i.e., no transfer).

The results in Figure 4 show that FVI performs better when ini-
tialized with a small number of states sampled from πtr than when
the states are generated by a random policy. Further, the results
confirm that as the number of samples increase, both transfer and
non-transfer learning methods converge to the (same) optimal pol-
icy.

Finally, Algorithm 4 was used to attain the optimal policy π∗2
when supplied with 7000 initial points, where the points were sam-
pled randomly and from πtr . The convergence time to attain an
7This corresponds to roughly 18 – 250 states ignored in Algo-
rithm 2, line 14.

Table 1: Experiment Results Summary

DOUBLE MASS SYSTEM
NO TL WITH TL

TRANSITIONS REWARD TIME REWARD TIME

1000 1.7 6.5 3.9 4.5
5000 8.7 27 9.1 9.5

10000 9.9 43 9.9 11.8
CARTPOLE SWING-UP

NO TL WITH TL
TRANSITIONS REWARD TIME REWARD TIME

1000 1.4 10 3.1 7
5000 6.09 32 8.4 15

10000 9.9 160 9.9 27

optimal policy starting from the initial states generated through πtr
was approximately a factor of 6.3 less than that starting from ran-
domly sampled initial states.

These results, summarized in Table 1, confirm the conclusions
made in Section 6.1.3. The performance, as measured by the fi-
nal average reward, was higher when using TL than when using
randomly selected states. Furthermore, FVI was able to find an
optimal policy in fewer minutes, denoted by T in the table, when
using TL than when using randomly selected initial states.

7. CONCLUSIONS & FUTURE WORK
We have presented a novel transfer learning approach based on

the presence of a common subspace relating two tasks together.
The overall high level scheme shown in Figure 5 emphasizes that
our frame work constitutes of three major phases.

The first is the determination of the inter-state mapping χ, relat-
ing the state spaces of the tasks, using a common task subspace,
Sc, as described in Section 4. It relies on distance measures among
state successor state pairs in both task to achieve the goal of find-
ing a correspondence between the state spaces of the two tasks and
then conducts a function approximation technique to attain χ.

The second, is the determination of starting policy in the tar-
get task, πtr , based on similarity transition measures between the
two related tasks as presented in Section 5.1. This is achieved by
mapping state successor states pairs in the target task back to cor-
responding pairs in the source task and then conducting a search
to the most similar transition recommended by the optimal policy
of the source task. The action in the target task with the closest
similarity to that in the source task accompanied with the intended
initial state is collected as in a data set to approximate a good prior
in the target task.

Since πtr is a good starting prior for the agent in the target task
to start from it needed improvement. The last point constitutes the
third phase of our framework, as shown in Figure 5, which was
conducted using FVI and detailed in Section 5. Here, the states
recommended by πtr are used as an initial trajectory to start from
and improve on.

In our approach, the common subspace was determined manu-
ally which was a good trade-off over the determination of the inter-
task mapping manually. Such a space is relatively easy to design
by a human just from knowing the control problem goal.

Results show that our algorithm was able to surpass ordinary fit-
ted value iteration algorithms by attaining higher reward with fewer

Figure 5: This figure represents the overall scheme of our
framework constituting of three major phases.

initial states. Additionally, our results showed significant time re-
ductions when attempting to find optimal policies in the target task,
relative to the normal FVI algorithms.

Our future work will involve three major goals. The first is to
extend our algorithms to operate in stochastic model-free MDP set-
tings. The second is to determine the common subspace automat-
ically in both the action and state spaces. Various ideas could be
used to achieve such a goal, one of which could be a dimension-
ality reduction scheme constrained by the common characteristics
shared by the different tasks. The third is to test our transfer method
with multiple algorithms including policy iteration, Sarsa(λ) and
Q-learning.

8. ACKNOWLEDGMENTS
This work was supported by the Collaborative Center of Applied

Research on Service Robotics (ZAFH Service Robotics). The au-
thors would like to thank Wolfgang Ertel for the discussions.

References
Atkeson, Christopher G., Moore, Andrew W., and Schaal, Stefan.
Locally weighted learning. A.I. Rev., 11(1-5):11–73, 1997.

Barto, Andrew G., Sutton, Richard S., and Anderson, Charles W.
Neuronlike adaptive elements that can solve difficult learning con-
trol problems, pp. 81–93. IEEE Press, 1990.

Busoniu, Lucian, Babuska, Robert, Schutter, Bart De, and Ernst,
Damien. Reinforcement Learning and Dynamic Programming Us-
ing Function Approximators. CRC Press, Inc., Boca Raton, FL,
USA, 1st edition, 2010.

Charles M. Close, Dean K. Fredrick and Newel, Jonathan C. Mod-
eling and Analysis of Dynamic Systems. John Wiley & Sons, Inc.,
Third Avenue, NY, USA, 3rd edition, 2002.

Konidaris, George and Barto, Andrew. Autonomous shaping:
Knowledge transfer in reinforcement learning. In ICML, 2006.

Kuhlmann, Gregory and Stone, Peter. Graph-based domain map-
ping for transfer learning in general games. In ECML, 2007.

Liu, Yaxin and Stone, Peter. Value-function-based transfer for
reinforcement learning using structure mapping. In AAAI, July
2006.

Soni, Vishal and Singh, Satinder. Using homomorphisms to trans-
fer options across continuous reinforcement learning domains. In
AAAI, July 2006.

Sutton, Richard S. and Barto, Andrew G. Reinforcement learning:
An introduction. IEEE Transactions on Neural Networks, 9(5):
1054–1054, 1998.

Taylor, Matthew E. and Stone, Peter. Transfer learning for re-
inforcement learning domains: A survey. Journal of Machine
Learning Research, 10:1633–1685, 2009.

Taylor, Matthew E. Stone, Peter, and Liu, Yaxin. Transfer learn-
ing via inter-task mappings for temporal difference learning. J. of
Machine Learning Research, 8(1):2125–2167, 2007.
Taylor, Matthew E., Jong, Nicholas K., and Stone, Peter. Transfer-
ring instances for model-based reinforcement learning. In ECML,
2008.

Torrey, Lisa, Walker, Trevor, Shavlik, Jude W., and Maclin,
Richard. Using advice to transfer knowledge acquired in one re-
inforcement learning task to another. In ECML, 2005.

	Introduction
	Related Work
	Background
	Reinforcement Learning
	Fitted Value Iteration
	Locally Weighted Regression
	Transfer Learning in RL Tasks
	Inter-State Mapping

	Learning an Inter-State Mapping
	Problem: Mapping Unrelated States
	Problem: Non-injective Mapping

	Policy Transfer and RL Improvement
	Policy Transfer Scheme
	Improving the Transferred Policy

	Experiments
	Single to Double Mass
	Common Task Subspace
	Source Task: Single Mass System
	Target Task: Double Mass System

	Inverted Pendulum to the Cartpole Swing-up
	Common Task Subspace
	Source Task: Simple Pendulum
	Target Task: Cartpole Swing-up

	Conclusions & Future Work
	Acknowledgments

