
An Empirical Analysis of RL’s Drift
From Its Behaviorism Roots

Matthew Adams
North Carolina State University

mbadams3@ncsu.edu

Robert Loftin
North Carolina State University

rtloftin@ncsu.edu
Matthew E. Taylor
Lafayette College

taylorm@lafayette.edu

Michael Littman
Rutgers University

mlittman@cs.rutgers.edu

David Roberts
North Carolina State University

robertsd@ncsu.edu

ABSTRACT
We present an empirical survey of reinforcement learning tech-
niques and relate these techniques to concepts from behaviorism,
a field of psychology concerned with the learning process. Specifi-
cally, we examine two standard RL algorithms, model-free SARSA,
and model-based R-MAX, when used with various shaping tech-
niques. We consider multiple techniques for incorporating shaping
into these algorithms, including the use of options and potential-
based shaping. Findings indicate any improvement in sample com-
plexity that results from shaping is limited at best. We suggest
that this is either due to reinforcement learning not modeling be-
haviorism well, or behaviorism not modeling animal learning well.
We further suggest that a paradigm shift in reinforcement learning
techniques is required before the kind of learning performance that
techniques from behaviorism indicate are possible can be realized.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Theory, Performance

Keywords
Markov decision processes, reinforcement learning, behaviorism

1. INTRODUCTION
Human-canine collaboration is unique and astonishingly success-

ful. It is an existence proof that human beings can communicate
complex tasks to non-human autonomous agents. With only min-
imal communication tools, humans and dogs can work together to
play fetch, hunt, search for buried avalanche survivors, track miss-
ing persons, sniff for explosives/narcotics/contraband, or guide the
blind. Published literature on training going back to Skinner’s work
on behaviorism [8] provides insight into how dogs learn, and how
human trainers teach dogs complex tasks quickly and accurately.

At a very high level, machine reinforcement learning agents act
in a way similar to animals undergoing training. They take actions
from different states, and their behavior over time is affected by

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the rewards that they are given. In this paper, we report on a series
of experiments designed to illustrate how the performance of two
common machine reinforcement learning paradigms compares to
the experiences human trainers have when training dogs. Specifi-
cally, we examine two popular reinforcement learning techniques:
the model-free SARSA algorithm [9] and the model-based R-MAX
algorithm [11]. We performed a survey of popular dog training
methods methods and identified computational analogues to those
approaches. We ran experiments to evaluate whether reinforcement
learning would benefit from “shaping” inputs commonly used in
behaviorism-inspired dog training techniques. We were looking
for significant performance increases where learning would occur
in orders of magnitude less time or for problems to be learned that
weren’t learnable without these techniques.

Although a few of our experiments resulted in faster learning
rates for the agent, the benefits that were seen were nowhere near
the improvements in learning rates seen in animals when corre-
sponding training techniques are used. At best, applying shaping
techniques to reinforcement learning agents resulted in about half
as many atomic actions taken in order to learn an optimal policy.
This pales in comparison to the effects shaping has on animals.

2. CANINE LEARNING
Shaping by successive approximation [13] is a technique used in

animal training by which desired behaviors are taught to learners by
means of selectively rewarding actions closer and closer to the de-
sired behavior. At first, in order to obtain a reward, the animal only
needs to perform an action that is vaguely similar to the desired
one. Once the animal learns how to get the reward, the criteria is
tightened and the animal has to perform actions that are more sim-
ilar to the desired behavior in order to obtain a reward. Eventually,
the criteria converges and the goal behavior is learned.

Clicker training is a popular paradigm for shaping by successive
approximation in animal training [7]. First, the positive stimulus
of a treat is paired with the click sound from a noise-making de-
vice. This process of charging the clicker makes it a “conditioned
secondary reinforcer” using classical conditioning [6]. Because the
click is associated with a treat, the click noise indicates a promise
of a future reward. In order to train the dog to perform a certain
behavior, a click is given whenever the dog’s actions get closer to
the target behavior. After every click, a primary reinforcer (e.g., a
treat) is provided and the episode is over. The criteria for clicking is
tightened as the dog more closely approximates the target behavior.

Shaping by successive approximation in animal training allows
animals to learn much more rapidly than if the same rewards were
given only when the exact target behavior was performed. Without

Figure 1: The 10x10 open grid with goal locations.

any cue as to the sort of behavior the animal is supposed to be do-
ing, the animal can only behave arbitrarily until it finally stumbles
into performing the behavior. The addition of the shaping rewards
expedite the process by guiding the animal into the sort of behavior
it is supposed to perform.

There are many ways that a trainer can use shaping concepts.
The specifics of when to use what approach are part of the “art” of
training. That being said, there is overwhelming evidence that these
approaches enable efficient learning of complex tasks that wouldn’t
be realistic to learn without shaping (cf., [3, 7, 8]). We believe that
in order to get machine reinforcement learning to perform in some
of the awe-inspiring ways we see human-canine teams perform, the
algorithms must respond to the behavior shaping process in an ap-
propriate way. The experiments we describe in subsequent sections
of this paper illustrate that, unfortunately, RL algorithms do not
respond favorably to shaping.

3. EXPERIMENTAL DESIGN
Reinforcement learning problems are related to Markov decision

processes (MDP). A MDP is defined by a tuple {S,A, T,R}, with
S the set of possible states, andA the set of actions which the agent
can take. The transition function T : S×A×S 7→ [1 : 0] represents
the probability of transitioning to state s′ after performing action a
in state s, and the reward function R : S×A 7→ R, determines the
reward received for performing action a in state s.

The goal of the learner is to find a policy π : S 7→ A, that maxi-
mizes the expected discounted total reward that the learner receives.
Model-based algorithms such as R-MAX learn explicit models of T
and R, whereas model-free methods such as SARSA learn a func-
tion Q : S × A 7→ R, which represents the expected discounted
total reward for taking action a in state s. If the state and action
spaces are discrete and of sufficiently small size, the transition and
reward models, or the Q function, as well as the policy π, can all
be represented as tables. For large or continuous state spaces, some
form of function approximation, such as a neural network or tile-
coding, is often used to represent these functions. For the purposes
of this paper, we focus on tabular representations only. Our goal is
not to scale these algorithms to large problems, but to see how their
performance on smaller problems changes when different behavior
shaping techniques are used in the learning process.

In order to determine the ability of current machine learning
algorithms to operate in paradigms similar to and display perfor-
mance characteristics similar to human-dog teams, we conducted a
series of simulation experiments on an open grid world. At each
timestep, the agent can move one step in any of the four cardinal
directions, and the result of each action is deterministic. The goal
state is in one corner of the grid, and reaching the goal state results
in a reward of 1 and the end of the episode. All other states have a
reward of zero. The discount factor was 0.8.

The initial state for each episode is in an adjacent corner to the
goal state (see Figure 1). Defining the problem this way, rather than
having the initial state and goal state on opposite corners, creates

a region of the state space that will not be reached by applying an
optimal policy, and therefore is not likely to be fruitful to explore.

One of the major advantages of using the simple grid space is the
incremental adjustments that we can make to the size of the state
space. The same dynamics of the space exist when the region is
small (e.g., 10x10) or large (e.g., 100x100), so good comparisons
can be made between methods on varying problem sizes.

Other reasons to use the grid space include the fact that the op-
timal policy is known and is easy to visualize. Because we know
what the optimal policy should be, we can compare it to the policy
that the agents actually learn and investigate how long it takes the
agents to approximate the optimal policy.

The simplicity of the grid space allows us to see how the agent
reacts to changes in the problem in accordance with what humans
might do when training animals. Many reinforcement learning
methodologies and improvements that have been investigated in the
past are only applicable to learning domains with very particular
properties. The basic grid space can accommodate many modifica-
tions that allow us to simulate the different sorts of training modi-
fications that are done in animal training.

By using this simple environment, we were better able to com-
pare the various algorithms’ performance under different condi-
tions. We sought to determine: Does the performance of learn-
ing algorithms improve in ways consistent with canine learners
when canine training techniques are used during machine train-
ing? To that end, we tested both a model-based learning algorithm
(R-MAX) and a model free learning algorithm (SARSA) in vari-
ous conditions modeled after common canine training techniques.
For each of these algorithms, we were looking for a significant im-
provement in performance when common variants of canine train-
ing techniques were applied to the machine training process. By
“significant,” we mean criteria commonly used in evaluating canine
behavior: speed of learning and accuracy of learned behaviors. Due
to the simplicity of our experimental domain, we focused entirely
on learning speed in the survey.

These two learning algorithms were chosen because they are
characteristic of the two major approaches to reinforcement learn-
ing problems. SARSA is a good representative of model free meth-
ods, whereas R-MAX is a good representative of model-based meth-
ods. Applying shaping techniques to both methods gives us a good
survey of how reinforcement learning methods react in general to
canine training techniques.
The SARSA Algorithm: The SARSA algorithm is an on-policy
temporal difference reinforcement learning method. The algorithm
builds a value table using the SARSA update rule, which updates
values using the action that will be taken at the next step, as op-
posed to the greedy action. We used a learning rate α = 0.1 and
optimistic Q-value initialization combined with a pure exploit pol-
icy. In part, we did this because it is a good model of the behavior
we observe in canines. They receive an “intrinsic” reward from the
environment, but a more valuable reward from the trainer. Once a
dog understands what behaviors cause rewards, it will relentlessly
exploit the reward until something better comes along [4].
The R-MAX Algorithm: The R-MAX algorithm [11] estimates a
model of both the MDP transition probabilities and reward func-
tion. These models are initialized to assume that all actions in all
states deterministically transition to the fictitious state G0, and re-
ceive a reward ofRmax. The algorithm keeps a record of what tran-
sitions and rewards have been observed for each state and action.
Initially, and whenever a new state-action pair becomes known, the
algorithm computes an optimal policy under the current model. In
our implementation this is done using value iteration with a conver-
gence threshold of 0.1. The problem that the R-MAX agent learns

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f

st
e
p

s
to

 l
e
a
rn

grid size

SARSA sample complexity

Figure 2: The number of steps taken to learn using SARSA as
a function of the grid size.

on is exactly the same as for the SARSA agent, with rewards of
1 for the goal state and 0 for all other states. As the agent acts
greedily, the parameter Rmax is set optimistically to 1.0 to encour-
age exploration, and its value affects the degree to which the learner
exploits its current knowledge. As the considered domains are fully
deterministic, a state-action pair is considered known when it has
been observed once.
Algorithm Performance: To be able to make solid empirical com-
parisons of the effects of various shaping techniques, it is critical
to have good metrics to compare the learning rates of the agents.
However, in order to compute metrics about how long it takes the
agent to learn a problem, it is necessary to make a decision about
when the agent has sufficiently learned a good policy for the prob-
lem. One common solution is to wait until the stored value of Q-
estimates converges, and no changes are made during an episode
that are greater than a certain threshold. Because this method can
result in the agent learning far after a decent policy has been es-
tablished, we decided to use a method that was more strictly per-
formance based. Because we know the optimal policy for the grid
space, we can determine how many steps the agent needs to take to
get to the goal in the ideal case. In order to declare that the agent
has learned the problem sufficiently, it needs to get to the goal in
four out of the five most recent episodes within 105% of the steps
the optimal policy would result in. This so called 80% criteria is a
common criteria used by dog trainers [2].

Unfortunately, passing this competence criteria does not guaran-
tee that the agent has a stored policy that leads exactly to the goal.
If the agent updates its policy during the last episode before it is
declared finished, the update can change the policy to something
invalid. In order to make sure this does not happen, we need to ex-
plicitly verify the policy before the trial is declared finished. To do
this, we simply walk through the policy from the start state without
making any policy updates. If the goal state is not reached, then we
let the agent continue learning until it passes both the competence
metric and the policy is deemed valid.

We opted to focus on measuring performance of the agent us-
ing the cumulative number of steps required across all episodes
in order for the algorithm to learn a policy according to the 80%
criterion described above. There are other metrics we could have
examined. For example, we could have measured the number of
episodes needed to learn the policy, the quality of the resulting pol-
icy, or the CPU time. However, as all of these measures are related
in some way and vary highly depending on the particular learning
algorithm, there was little insight we could gain beyond what was
available using the steps measure.

4. BASELINE PERFORMANCE
To establish a baseline for performance, we ran both algorithms

on the open grid. For SARSA, we scaled the grid size from 10x10
to 100x100. As shown in Figure 2, the number of steps taken

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 5 10 15 20 25 30 35 40 45 50

n
u
m

b
e
r

o
f

st
e
p

s
to

 l
e
a
rn

grid size

R-Max sample complexity

Figure 3: The growth rate of the number of actions required for
R-MAX to learn the optimal policy, as a function of the width
and height of the square grid.

to learn a policy in accordance with the competence criteria grew
rapidly with respect to the size of the state space.

In order for a shaping method to show adequate improvement
over the baseline SARSA methodology, the results need to show
either a reduction of the growth rate of steps in accordance with the
state space size, or cut the learning time by a significant constant
factor. Some shaping methods might trade higher or lower numbers
of episodes for shorter or longer episodes, so comparing the num-
ber of atomic actions taken to learn an adequate policy is a good
comparative metric for the shaping methodologies.

For R-MAX, we scaled the grid from 5x5 to 50x50, with the start
and goal states in the same positions as in the SARSA example.
The results are presented in Figure 3. The number of action steps
required to learn the policy grows roughly linearly in the number
of states (quadratically in the grid dimension). Because in this case
the algorithm only needs a single example to learn the model for
a given state-action pair, and since R-MAX can compute an opti-
mal policy as soon as it has a complete model, it makes sense that
the sample complexity would scale in this way. As a model-based
method, R-MAX performs much better in terms of sample com-
plexity than model-free SARSA. However, it should be noted that
R-MAX incurs a significant computational cost, as it must repeat-
edly plan a new policy. The complexity of computing this policy
also scales with the size of the state space, but is dependent on
the details of how that policy is computed. While this makes di-
rect comparison with SARSA difficult, here we are concerned with
how sample complexity can be improved for an algorithm relative
to itself using different training paradigms.

5. POTENTIAL-BASED METHODS
One common approach to shaping behaviors in canines is to use

a reward as a lure to instruct the desired behavior. For example, in
this “lure-reward” paradigm [3], if you were trying to teach a dog to
“heel” (stand at your side, facing forward, shoulders aligned with
your knees) you might do so with a treat as a lure. You would begin
by placing the treat in front of the dog’s nose, and moving it a few
inches toward your side. When the dog moves forward to grab it,
you give it to her. This is repeated, moving the lure closer to your
side until she is in position. This process of providing intermediate
rewards for each step towards the ultimate goal, is akin to reward
shaping in machine learning [5].

5.1 Potential Bands
Reward schemes based on potentials are a traditional method in

reinforcement learning to introduce the idea of shaping behavior.
Each state in the state space is associated with a potential value,
and the reward given for any action is simply the difference in po-
tentials of the resultant state and the original state. By changing the
potential values of states, the characteristics of the agent’s learned

Figure 4: A depiction of various potential bands. As the num-
ber of bands grows, the resulting potential function is an in-
creasingly accurate approximation of the true potential.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 5 10 15 20 25 30 35 40

n
u
m

b
e
r

o
f

st
e
p

s
to

 l
e
a
rn

number of potential bands

SARSA, potential bands, 40x40

Figure 5: The growth rate of the number of actions required
for SARSA to learn the optimal policy on a 40x40 grid, as a
function of the number of distinct potential bands.

policy can be changed.
A simple way to use potentials for shaping by successive approx-

imation is to group states according to how far away they are from
the desired goal state, and then to assign potentials based on how
far the group is from the goal. In this way, the groups of states are
different approximations of the desired behavior, for which closer
and closer approximations are preferred.

We set the potential for the goal state to 1, and the potential for
the state farthest from the goal state to zero. We then equally space
bands of potentials between those two states. The potential value
for each state in that band is:

Φ(state) = 1− dist(band, goal)

dist(start, goal)
, (1)

where dist(x, y) is the distance between either a state or band x
and another state y. The potential values for the bands thus increase
regularly as the states get closer to the goal.

Figure 4 contains an illustration of how “bands” are used to esti-
mate the true potential function. As seen in Figure 5, as one might
expect, the more bands of potentials that were used, the faster that
the agent was able to learn how to get to the goal state—more
potential bands equate to a more accurate approximation of the
true potential of each action. Using more bands entailed narrow
bands and decreased potential differences between the bands. As
the number of bands increases, the average distance that the agent
has to move before it gets a reward drops. With all of this extra
information, the agent learns much faster. With as few as 10 bands
on a 40x40 grid, with a width of each band of 4, the agent using
SARSA learns at nearly its maximum pace.

In the case with the maximum number of potential bands, the
agent receives a positive reward whenever it moves closer to the
goal, and a negative reward any time it moves away. As one would
expect, it learns extremely rapidly in this scenario. In the degen-
erate case with just one band, the problem is identical to the basic
case, and the agent learns at the basic rate.

However, these potential bands do not correspond very well with

Figure 6: The growth rate of the number of actions required
for SARSA to learn the optimal policy on a 40x40 grid, as a
function of the number of potential thresholds used.

how dogs are generally trained. Dogs generally don’t get feedback
at every point that it gets closer or farther from the desired behav-
ior. Even in the lure-reward paradigm, the rewards are spaced out
over time. As our goal is to investigate how the agents react when
canine training techniques are used, it makes sense to try a different
method for using potentials to better simulate those techniques.

5.2 Potential Thresholds
In training methods that try to shape by successive approxima-

tion, the animal is rewarded when its behavior approximates the
desired behavior within a certain “distance”. When the animal
demonstrates proficiency on behavior within a given approxima-
tion, the threshold is made tighter so that the animal has to get even
closer to the desired behavior. For example, when teaching a dog
to “watch me,” they are first asked to look for just a few seconds.
Once they are proficient, the duration of maintaining eye contact is
expected to increase (a new threshold).

A more accurate way to shape agent behavior by successive ap-
proximation using potential shaping is to use a threshold function
for the potential value. For simplicity and consistency, the values
of our function are zero and one.

Φ(state) =

{
0 : dist(state, goal) > threshold
1 : dist(state, goal) ≤ threshold (2)

Once the agent crosses the boundary between the potentials and re-
ceives a reward, the episode terminates. Once the current threshold
has been learned sufficiently, the criteria is changed and a lower
threshold (closer approximation to the desired behavior) is used.

In order to train the agent to reach the goal state, we need to de-
cide when it is appropriate to up the criteria and move the threshold
closer to the goal. We use the same criteria inspired by dog training
to decide whether or not the agent has sufficiently learned the prob-
lem as a whole to decide whether or not the agent has learned the
subproblem [2]. In order to move on to the next potential thresh-
old, the agent has to cross the threshold boundary within 105% of
the minimum steps four out of the five most recent trials (the 80%
rule). Again, because criteria changes are determined during learn-
ing (and not in a separate evaluation process) a policy verification
step is necessary to make sure a Q-table update during the last trial
did not make the policy invalid.

As shown in Figure 6, the performance for the agent using po-
tential thresholds did not change much. The number of steps taken
to learn the policy in accordance with the competence criteria was
fairly consistent with the base SARSA algorithm (illustrated in Fig-
ure 7) regardless of the number of thresholds used. Thus, despite
starting with easier tasks and slowly increasing complexity (i.e.,
by using more thresholds), RL algorithms perform essentially the
same. This is because, regardless of the number of potential thresh-
olds, the world must be explored to build the Q-table.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f

st
e
p

s
to

 l
e
a
rn

grid size

SARSA with potential thresholds

5
10

2
base SARSA

Figure 7: The growth rate of the number of actions required for
SARSA to learn the optimal policy, with 2, 5, and 10 potential
thresholds, as a function of the square grid size.

6. SUCCESSIVE APPROXIMATIONS
A paradigm that is gaining significant momentum in the dog

training world is clicker training [7]. Through the use of a con-
ditioned secondary reinforcer [6] humans are able to more effec-
tively shape the behavior of canines by requiring them to perform
increasingly more accurate approximations of the desired behavior.
Shaping, conceived of this way, is a process by which a common
start state is used (e.g., the dog is in a standing position) and the
goal state is moved closer and closer to the ultimate goal (e.g., the
dog’s behind is closer and closer to the floor for a sit behavior).
In this section, we report on a variety of experiments that use this
shaping by successive approximations technique.

A straightforward method of performing successive approxima-
tion is to introduce the idea of subgoal states. Rather than giving
a reward for the agent reaching the ultimate goal state, we give a
reward once the agent has reached some state that lies along the
optimal trajectory between the start state and the goal state.

For a given optimal trajectory between a start state and a goal
state, we choose a number of subgoals spaced evenly between the
start state and the goal state.1 We begin by running episodes start-
ing from the same start state, but where a reward is given and the
episode is terminated when the agent reaches the first subgoal.

We determine when the agent has sufficiently learned how to
get to the subgoal by the same competence criteria as used in the
previous experiments. When the agent has learned how to get to a
particular subgoal, the subgoal that is next closest to the goal state
becomes the current subgoal and is the only state that is rewarded.

Once the agent has demonstrated that it knows how to get to the
final subgoal, the true goal state becomes the state that is rewarded.
As in the original problem, the agent must get to the goal state
within 105% of the minimum distance to the goal four out of five
of the most recent trials and the policy must be verified to lead
to the goal in order for the agent to be done. Our primary metric
of concern was the total number of steps taken. The total number
of episodes used to learn is an interesting measure, but use of the
subgoal architecture is likely to result in a shorter average episode
length because the start and goal states are closer.

It is worth noting that any time the criteria changes and a new
subgoal is selected, the old Q-values become inaccurate because
the reward is non-stationary. The Q estimate for all actions of states
close to the subgoal will be fairly close to the reward value, as they
are only a few states away from getting a reward. When the Markov
decision process is changed so that the subgoal is farther away, all
of those values will need to decrease, rendering the work done to

1Although omitted from this paper, we found that the spacing of
subgoals had no effect on performance. This is actually contrary to
what we observe in dog training, where subtask complexity can in-
crease as learning persists. We believe that curriculum design [12]
is actually crucial to algorithm performance in the long run.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 0 10 20 30 40 50 60 70 80 90

n
u
m

b
e
r

o
f

st
e
p

s
to

 l
e
a
rn

grid size

SARSA with subgoals

10
5
2

base SARSA

Figure 8: The growth rate in the number of actions required
for SARSA to learn the optimal policy for varying numbers of
subgoals, as a function of grid size.

give preference to the action along the optimal trajectory futile.
Even worse, the policy for states that are between the subgoal

and the goal state are likely to point back to the previous subgoal
even when the subgoal state is moved closer to the goal. Time is
wasted when the episode does not terminate when the agent reaches
the previous subgoal, and the policy for states closer to the goal
pushes the agent backwards. That portion of the policy has to be
unlearned before the agent can move on to reaching the subgoals
closer to the goal. The data we present support these observations.

6.1 Simple Subgoal Decompositions
In our testing we found that SARSA with optimistic initializa-

tion and a fixed exploit policy was frequently unable to learn an
optimal policy in the face of non-stationary rewards. Because cer-
tain Q-values that should reflect a reward for later subgoals in the
decomposition may be learned to have low Q-values during train-
ing on earlier subgoals in the decomposition, the learner may have
a hard time converging on more accurate higher values when the
subgoal criteria changes. In those cases, learning may get stuck.
Therefore, to better compare the results of using subgoals to the
basic agent, we used an epsilon-greedy action selection policy for
the agent that used the simple subgoal decomposition. The agent
takes a random, exploratory action 5% of the time, which fixes the
issue by allowing the agent to discover the fact that the optimal
trajectory has a higher value than the one that is stored.

Figure 8 shows that the performance of agents using the sub-
goal architecture was consistently worse than agents learning on
the base problem. The more subgoals that are included in the ar-
chitecture of the problem, the longer that the agent takes to com-
plete the problem. The growth rate of the number of steps that the
agent takes versus the number of subgoals used is not directly pro-
portional, which points to the fact that there is some benefit gained
to having the knowledge of how to get to the previous subgoal over
starting from scratch on each subgoal state. However, this benefit
is dwarfed by the amount of overhead taken up by the subgoal ar-
chitecture, either by proving that the agent knows a policy to get to
the subgoal well enough, or by relearning parts of the policy that
differ once the subgoal is moved.

As seen in Figure 9, similar problems can be seen when using
R-MAX with subgoals. To incorporate subgoals into R-MAX, we
attempted to consider all subgoals simultaneously. The transition
and reward models for the current subgoal are updated to reflect
the fact that the episode terminates there, and are set such that any
action causes the agent to remain in the subgoal with 0 reward.
When any subgoal is reached and it is determined that the current
policy is optimal for that subgoal, then the subgoal is removed.
When a subgoal is removed, the model is reset to show all actions
from that state leading to state G0 with reward Rmax. When a
transition or reward does not match the current model, the value for

Figure 9: The growth rate of the sample complexity for R-MAX
using subgoals, as a function of the number of subgoals

Figure 10: The growth rate of the sample complexity of R-MAX,
as a function of the number of subtasks.

that transition is replaced, and the optimal policy is recomputed.
This allows the agent to adjust its model to reflect the removal of
subgoals. Once the reward for an earlier subgoal was reduced, the
new greedy policy would be exploratory until the new (sub)goal
was learned. However, because there were still many unexplored
states when the subgoal was moved, the exploration policy would
not always be efficient at finding the new goal. As a result, it took
longer to find each new subgoal, as well as the final goal, than it
would have taken without the subgoals.

For the R-MAX algorithm, subgoals lead to unnecessary explo-
ration, and so we attempt to address this issue by decomposing
the full task into subtasks which should require less exploration to
solve. In this case, we consider moving from one subgoal to the
next as distinct subtasks that are learned separately by R-MAX, and
the final policy then consists of a chain of policies from the start
state, through each subgoal, to the final goal. Each subtask is pro-
cessed in order going towards the goal, but as is the case for the
Q-tables for options, each subtask is learned independently, with-
out sharing transition or reward models. Learning on a subtask
completes when an optimal policy for that task has been found.

Figure 10 shows that with a sufficient number of subtasks, that
is, with subtasks that are sufficiently small, a lower sample com-
plexity can be achieved. For a smaller number of subtasks, how-
ever, the number of steps required actually increases. There is a
specific number of subtasks for each grid size at which the sample
complexity peaks and then begins to decrease. With a sufficient
number of subtasks the total sample complexity of solving all of
the subtasks is actually less than that of solving the full task. One
likely explanation for this is that once the number of subgoals be-
comes large enough, and consequently the distance from one sub-
goal to the next drops below a certain threshold, the optimal pol-
icy at the earlier subgoal is to move towards the next subgoal, in-
stead of trying to reach unexplored states, which it assumes yield
reward Rmax, but now incur a greater penalty to reach than the
subgoal. Chained R-MAX does show a substantial improvement
in performance, in terms of sample complexity, over the base R-
MAX. There is, however, a point after which sample complexity
begins to increase again as a function of the number of subgoals,

Figure 11: The growth rate of the sample complexity using op-
tions, as a function of the number of options.

suggesting that there is still a limit to how much of an improve-
ment can be gained through this method. Further, these gains can
only be realized when each subgoal is considered an independent
subtask—something that does not model real-world learning.

6.2 Subgoals with Options
In order to avoid the issue of forcing the agent performing SARSA

to do extra work by unlearning the Q-estimates near the previous
subgoal, we can leverage the options framework [10] to try to im-
prove shaping by successive approximation. We still start with giv-
ing a reward to the agent when it reaches the first subgoal. How-
ever, when the agent has demonstrated that it knows how to get to
the subgoal according to the 80% competence criteria, instead of
using the same table of Q-estimates for the following subgoal, we
start with a fresh table of Q-estimates and package the previous Q-
table as an option available at the start state (including recursively-
defined options). The initiation set for the option is just the original
start state. The option exits with probability 1.0 upon reaching the
subgoal for which the option was built, and probability 0.0 other-
wise. The Q-estimate for the option is initialized in the same opti-
mistic manner as for the other actions. The agent is not forced to
take the option, but is very likely to learn to do so as the option will
follow a near-optimal policy towards the next subgoal.

Because the policy for each subgoal is required to pass policy
verification before being declared complete, the option is guaran-
teed to terminate. It is possible, and very likely, that the policy that
is wrapped into an option contains a previous option as part of the
policy. As the problem progresses, there could be a recursive stack
of options potentially as large as the total number of subgoals. Each
of the options on the stack ultimately controls the behavior from its
corresponding previous subgoal to its own subgoal state.

As seen in Figure 11, using options in this way increases the
sample complexity over the basic algorithm, that is, the case with
only 1 option. The problem caused by inconsistency between the
optimal policies to reach different subgoals is avoided by using the
options architecture. However, there is an additional sample over-
head caused by the fact that the agent must learn, with every new
subgoal, that it needs to take the provided option over the atomic
actions. It seems that this overhead is still much greater than the
benefits to be had by shaping the behavior of the agent with sub-
goals that are easier to reach.

7. LEARNING FROM EASY MISSIONS
Shaping by successive approximation, as described above, is a

common tool for teaching dogs simple behaviors (like sit, stay, or
down). However, it is also very common when teaching dogs more
complex behaviors to use a slightly different approach. Strictly
speaking, this other approach is still shaping by successive approxi-
mation. However, rather than keeping a fixed start state and varying
the goal, a fixed goal is used and the start state is moved increas-

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f

st
e
p

s
to

 l
e
a
rn

grid size

LEM SARSA

2
5

10
base SARSA

Figure 12: The growth rate of the LEM agent as the grid size
scales as compared to the basic agent.

ingly “farther” away. This technique is very commonly used when
training working dogs (e.g., hunting dogs [2]).

One of the major problems that slows down shaping by succes-
sive approximation using simple subgoals is the fact that the Q-
estimates that are learned for each subgoal are inconsistent with
the Q? values for the optimal policy. This results from moving the
goal state to perform shaping. Instead of using a complex method
such as applying the options framework in order to get around this
issue arising from moving subgoals, we can instead keep the goal
location fixed and vary the start state (like in hunting dog training).
This process is known as “learning from easy missions” in RL [1].

A set of start states are evenly spaced between the ultimate start
state and the goal state. The agent starts by performing episodes
starting from the start state closest to the goal. Once the agent
reaches the 80% competence criteria as before and the policy is
verified to lead to the goal, the start state is moved back to the next
position. This process is repeated until the agent demonstrates that
it knows how to get from the final start state to the goal state.

The major advantage that fixing the goal state has over the basic
subgoal method is that the portions of the Q-table that are learned
initially according to the early start states do not need to change
when the start state is moved away from the goal state. Because
the same state is always rewarded, intermediary states’ values are
unchanged and there is nothing unlearned when subgoals change.

The agent performed strictly better than the agent using the basic
subgoals architecture (see Figure 8). However, as seen in Figure 12,
like the agent that used potential thresholds, any performance gains
over the baseline SARSA were limited. This result held regardless
of the size of the state space or the number of start states.

Compared to the agent not using subgoals at all, there is a fair
amount of sample overhead that comes with using multiple start
states. A speed gain is accomplished when the agent spends more
time closer to the goal and thus less time wandering aimlessly far
from the goal. The most productive learning can occur just outside
the region for which the agent has a good policy to get to the goal,
and thus reasonable estimates for the value of the actions. Because
the agent is using dynamic programming, the agent is able to ex-
pand that region outward to new states when it is on the frontier
just outside of the region it knows well. With the start state moving
progressively backward, the agent is able to spend a larger percent-
age of time on the productive frontier learning rapidly. The EVFA
algorithm [14] for approximating solutions to MDP’s can be said to
do something similar to this. It maintains a set of states for which it
has an accurate value estimate. The algorithm uses those estimates
to expand the set by learning values for nearby states.

R-MAX is well suited to the LEM approach, as neither the transi-
tion function nor the reward function change when the start state
is moved. In this case, the start state is moved back when an
optimal policy from the current start has been found. The same
transition and reward models are used for each start state, and the

Figure 13: The sample complexity of the LEM R-MAX agent as
a function of the number of start states.

known/unknown parameters are not changed. As seen in Figure 13
LEM does not degrade the performance of R-MAX, it does not im-
prove it either. As the start state is moved back, the algorithm may
need to explore states that it did not need to when the start state was
closer to the goal, and so the total number of actions taken is the
same as if the full task were solved at once.

8. EPISODIC INTERRUPTION
One of the challenging things when training dogs is to deal with

the fact that they frequently will lose interest in training. Perhaps
they get full and a food reward becomes less enticing. Sometimes,
especially when they are puppies, they lose focus focus and wander
off. Whatever the cause, it is often necessary as a dog trainer to
interrupt an errant dog and start the trial over again. Generally,
this is accompanied by a verbal correction so the dog knows its
actions were inconsistent with the task. By using this technique,
dog trainers are able to focus their training sessions on reinforcing
successful trials, thereby reducing the amount of time dogs spend
performing irrelevant actions.

One observation about the performance of agents in our state
space is that they spend a large portion of their time wandering in
the large region away from both the start state and the goal state.
The agent using SARSA and the LEM approach on a 50x50 grid
space spent, on average, only 7.5% of its steps in states that are
within two steps of the optimal trajectory between the start and goal
state. The policy near the goal state is well-defined, and once the
agent nears the goal state, the episode ends within a short period of
time. However, the policy far from the goal state is nearly random,
and the agent can spend a lot of time in the distant region. Addi-
tionally, little utility is gained from spending time in that region.
Temporal difference learning relies on the fact that the stored value
for the next state the agent will enter is a reasonable estimate for
the future value of the previous state. However, the stored values
in this unexplored region are mostly arbitrary, so not much useful
learning can actually happen.

An additional observation is that the most rapid learning takes
place on the frontier between the region near the goal state for
which it has a near-optimal policy, and the region far from the goal
state for which it has an arbitrary policy. If the agent is closer to the
goal state, it does not improve much on the already near-optimal
policy. If the agent is too far from the goal state, it wanders aim-
lessly without a good way to improve its policy. However, when
it is on that frontier, it can expand what it knows about the region
near the goal state into the area farther from the goal state.

In order to improve the performance of the algorithm, we can
force it to spend more time on the productive frontier than in other
regions. One way to do this is to end the episode early if the agent
takes more than a certain number of steps. The number of steps
is set to some amount greater than the minimum number of steps
between the current start state and the goal. If the agent enters

Figure 14: How the parameter determining how long to wait
before resetting the trial affects how long the agent takes to
learn on a 100x100 grid.

the area near the goal for which the policy is already near-optimal,
then the episode will end anyway. However, if the agent enters a
region far from the goal state and starts to wander, than it will get
cut off before it wastes too much time wandering aimlessly. In the
Learning from Easy Missions framework, the current start state is
always near, but not in, the area that the agent already has a good
policy for. Thus the potential advantage of giving more attempts to
learn between the current start state and solidified region is large.

In order to explore the effect of resetting the episode when the
agent takes too long, we ran a series of trials on grids of different
sizes with different parameters for when the episode was cut off.
The episode was cut off when the number of steps taken reached
some multiple of the minimum steps necessary to reach the goal
from the current start state along the optimal trajectory. This mul-
tiple was varied from 1.0 to 10.0.

As in shown in figure Figure 14, the performance of the agent is
highly contingent upon when the episode is cut off. If the param-
eter is set too high and the episode is allowed to go on too long,
the performance converges upward to the performance of the agent
without cutting episodes off, as one might expect. However, if the
parameter is set too low and the agent is cut off to early, perfor-
mance rapidly deteriorates because the agent has trouble reaching
the goal state before the episode terminates.

The optimal parameter for resetting the episode seems to be to
reset the episode when the agent takes a number of steps around
twice the minimum distance necessary to reach the goal. In this
case, the agent takes about two-thirds as many steps as it would
without cutting off any episodes early. In addition, on the 50x50
grid space, it spends 17.1% of its steps on average in states within
2 steps of the optimal trajectory versus 7.5% for the agent that does
not use episodic interruption. Although this improvement is no-
table, it is not indicative of a strong change in the agent’s ability to
solve the problem when subgoals are introduced.

9. CONCLUSION
In this paper, we have surveyed a number of techniques for shap-

ing behavior. We have drawn connections between these topics in
the canine training literature and the machine learning literature.
We have conducted an empirical analysis of these techniques on a
simple, open grid environment where complete policy and perfor-
mance comparisons can be made. Overwhelmingly, we found that
the “behavior” of both model-based and model-free reinforcement
learning algorithms did not match our expectations based on our
experience training dogs and on relevant dog training literature.

Based on these data, we conclude that shaping techniques are un-
likely to yield significant improvements in the performance of stan-
dard reinforcement learning algorithms in simple grid (and sim-
ilar) domains. As these shaping concepts enable dog trainers to
train dogs to incredibly high performance, it would be expected

that any model of animal learning should see similar gains when
such techniques are applied. The fact that similar improvements are
not found suggests that standard reinforcement learning algorithms
are insufficient as models of animal learning. It may be the case
that, for certain domains and state representations, shaping tech-
niques may prove more effective, or it may be that these learning
algorithms are fundamentally unsuitable for this form of training.
Regardless of which may be true, reinforcement learning—being
more a dynamic programming technique than model of learning—
may need a paradigm shift if it is to benefit from the training regi-
mens that human trainers use with animal learners.

Future analyses will extend this work to stochastic domains, as
well as to domains with continuous or factored state spaces, using
function approximation. Additional work will examine different
environments and learning tasks to determine what properties of
tasks, if any, afford shaping. Future work will also contribute the
development of algorithms which are more suitable to shaping.

10. REFERENCES
[1] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda.

Purposive behavior acquisition for a real robot by
vision-based reinforcement learning. Machine Learning,
223:279–303, 1996.

[2] J. Barry, M. Emmen, and S. Smith. Positive Gun Dogs:
Clicker Training for Sporting Breeds. Sunshine Books, 2007.

[3] I. Dunbar. Before and After Getting Your Puppy: The
Positive Approach to Raising a Happy, Healthy, and
Well-Behaved Dog. New World Library, 2004.

[4] S. R. Lindsay. Handbook of Applied Dog Behavior and
Training, Procedures and Protocols, volume 3.
Wiley-Blackwell, 2008.

[5] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under
reward transformations: Theory and application to reward
shaping. In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 278–287. Morgan
Kaufmann, 1999.

[6] I. P. Pavlov. Conditional Reflexes. Oxford Univ. Press, 1927.
[7] K. Pryor. Don’t Shoot the Dog!: The New Art of Teaching

and Training. Bantam, 1999.
[8] B. F. Skinner. Science and Human Behavior. Macmillan,

1953.
[9] R. Sutton and A. Barto. Reinforcement Learning. MIT Press,

1998.
[10] R. Sutton, D. Precup, and S. Singh. Between mdps and

semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112:181–211,
1999.

[11] P. Tadepalli and D. Ok. Model-based average reward
reinforcement learning. Artificial Intelligence,
100(1-2):177–224, April 1998.

[12] M. E. Taylor. Assisting transfer-enabled machine learning
algorithms: Leveraging human knowledge for curriculum
design. In Proceedings of the AAAI 2009 Spring Symposium
on Agents that Learn from Human Teachers, 2009.

[13] E. L. Thorndike. Animal intelligence: An experimental study
of the associative processes in animals. Psychological
Review Monograph, Supplement 2:1–109, 1901.

[14] P. Zang, A. J. Irani, P. Zhou, C. L. Isbell, and A. L. Thomaz.
Using training regimens to teach expanding function
approximators. In Proceedings of the Ninth International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS10), pages 341–348, 2010.

