
Agents Teaching Agents:
Preliminary Results for 1 vs. 1 Tactics in Starcraft

Nicholas Carboni
Computer Science Department

Lafayette College
carbonin@lafayette.edu

Matthew E. Taylor
∗

School of EECS
Washington State University
taylorm@eecs.wsu.edu

ABSTRACT
This paper describes the development and analysis of two algo-
rithms designed to allow one agent, the teacher, to give advice to
another agent, the student. These algorithms contribute to a fam-
ily of algorithms designed to allow teaching with limited advice.
We compare the ability of the student to learn using reinforcement
learning with and without such advice. Experiments are conducted
in the Starcraft domain, a challenging but appropriate domain for
this type of research. Our results show that the time at which advice
is given has a significant effect on the result of student learning and
that agents with the best performance in a task may not always be
the most effective teachers.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Reinforcement Learning, Agent Teaching, Starcraft

1. INTRODUCTION
Reinforcement learning (RL) algorithms have become increas-

ingly powerful, solving an impressive number of virtual and phys-
ical tasks [8, 22, 23]. However, the majority of work assumes that
agents learn tabula rasa, even if another agent has already learned
the task. Transfer learning [25] is one approach to solving this
problem, allowing one agent to transfer knowledge to another agent
in a similar task, but it typically relies on a deep understanding of
the agents’ internal representations. For example, an action-value
function learned in one task could be used to speed up learning in
a similar task. However, if the second agent has a different state
representation or does not use temporal difference learning, this
action-value function may be useless. If the agents do not have a
shared robust communication protocol, e.g., they were made by dif-
ferent manufacturers, one agent may not understand what the other
agent is trying to communicate. Finally, if the second agent is a
human, a very different method of transfer would be required.

In this paper we consider the problem of a teacher agent teach-
ing another student agent. The agents may use different learning
algorithms and they may have different ways of representing the
state of their environment. This is particularly important in light
∗Much of this research was done while the second author was at
Lafayette College.

of the long-term goal of having human students, but it is also im-
portant to enable agents with different implementations (e.g., cre-
ated by different companies) to teach each other without significant
re-engineering. This work focuses on how one agent can provide
action advice to another agent: as the student practices, the teacher
suggests actions to take. We advocate this method because it re-
quires minimal similarity between teachers and students — only
a common action set. Action advice allows teaching with 1) lim-
ited compatibility requirements for the pairs of agents and 2) no
dependence on the agent’s underlying learning representation. We
do not assume that the teacher is optimal — it is important that a
student can learn to outperform its teacher, particularly if the stu-
dent is more capable than the teacher. While this work does not
consider a human in the loop, our long-term goal is to develop al-
gorithms that will facilitate a productive relationship between an
agent teacher and a human student. Teaching algorithms should
thus have outputs that are human-understandable.

Our recent work [27] showed that agent-agent teaching was pos-
sible in the mountain car and pac-man domains. This paper focuses
on Starcraft, a popular real time strategy domain that is significantly
more complex than the past domains considered. We consider two
novel advice algorithms, contributing to this family of algorithms
designed to provide limited amounts of advice. Experiments com-
pare the two algorithms and evaluate their ability to improve the
performance of a student, relative to learning without a teacher. We
also test how student performance changes with different teacher
abilities.

Experiments are conducted in a 1 vs. 1 Starcraft battle. Results
show that providing advice for just 1

16

th of the total training time
can induce significant improvements to learning speed. Further,
we show that student performance can depend on the ability of a
teacher in a non-intuitive manner — an agent with high perfor-
mance may not always be a better teacher than an agent with poorer
performance.

2. BACKGROUND
This section provides a brief overview of background informa-

tion necessary to understand our methods, discussed in Section 3.

2.1 Reinforcement Learning
Reinforcement learning agents execute actions in different en-

vironmental states, learning to maximize the expected long-term
real-valued reward. On every step, the agent observes a state in the
environment, s ∈ S. It then selects an available action, a ∈ A. The
environment’s transition function, T : S ×A 7→ S, determines the
next state the agent reaches, and the environment’s reward function,
R : S 7→ R, supplies the agent with the immediate reward. This
work uses the common episodic setting, where learning is broken

into a series of independent learning traces. Each episode begins at
a fixed start state, s0, and ends in a set of final states. In our setting,
a final state corresponds to one of the agents “winning” the battle.

Agents learn a control policy, π : S 7→ A. A common way to
represent such a policy is with a Q-function, Q : S × A 7→ R,
which estimates the total reward an agent will earn starting by tak-
ing action a in state s. An agent can maximize its rewards by al-
ways choosing the action with the maximal Q-value, assuming the
Q-function is accurate. To improve the agent’s estimate of Q, this
work uses the common ε-greedy exploration approach, where the
agent chooses a random action with a small probability ε (explore),
and selects the estimated best action with probability ε−1 (exploit).

This work focuses on a task with a very large state space, mak-
ing a tabular Q-function representation intractable. Instead, we
will use tile coding, a function approximator that allows the agent
to both generalize across nearby states, as well as distinguish be-
tween states with different Q-values [22]. In particular, there are
a large set of features {f1, f2, ...} which uniquely describe ev-
ery state. The Q-function is a linear function of these weights,
Q(s, a) =

∑
i wifi, and learning an accurate Q-function reduces

to learning accurate weights {w1, w2, ...}. For the experiments
in this paper, we use Sarsa with tile coding function approxima-
tion. The tile coding is optimized pessimistically, as our previous
work [27] found that pessimistic initialization outperformed opti-
mistic initialization when providing advice to agents.

2.2 Teaching Agents
There is a growing body of work on improving RL agents by

leveraging knowledge from other agents or humans. This section
focuses on methods that work for both agent and human students.
A more comprehensive discussion can be found in Section 6.

Learning from Demonstration [4] (LfD) is primarily used by the
robotics community, but is also applicable to virtual robots. In this
paradigm, a student agent will watch another agent or human and
learn the teacher’s policy. The main problem is one of generaliza-
tion: how can the student learn to act in situations where it has not
seen an explicit demonstration? LfD typically does not try to max-
imize an external environmental reward, which is often not present
in real-world situations. In contrast, our work assumes that the
agent acts inside a well defined MDP and should act to maximize a
reward, not just to mimic a teacher.

A similar difference is observed in the inverse reinforcement
learning [1, 5, 17, 28] (IRL) setting. Here, a student agent observes
a teacher and tries to infer the teacher’s reward function. Once es-
timating the teacher’s reward function, the student autonomously
learns to maximize it. IRL typically focuses on cases where the
student cannot observe rewards. The teacher is typically a human
who has domain knowledge about what constitutes a “good” policy
and the student is an agent. Again, our work assumes rewards are
available to the student.

Other prior work involves observing a teacher performing a task
repeatedly and then summarizing the behavior via rules using the
student’s state description. This method successfully allows the
student and teacher to have different state representations (i.e., use
different state variables). Using this method, a student agent has
effectively improved learning both from an agent teacher [24] and
from a human teacher [26].

More similar are the ideas of apprentice learning [11], in which a
student asks a teacher for advice whenever its confidence in a state
is low, and advice exchange [18], in which peers ask for advice
from each other based on heuristics of self-confidence and trust.
Our work diverges from these by having an expert teacher decide
when to give advice, and by focusing on the effective use of small

Algorithm 1 Early Episodes Advice
procedure EARLYEPISODESADVICE(πs, πt, n)

for each each episode do
for each visited state s visited by the student do

if n > 0 then
Advise πt(s)

else
Follow πs(s)

end if
end for
n← n− 1

end for
end procedure

amounts of advice (to help make the use of a human student feasi-
ble).

Unlike the previous methods, our previous work on agent teach-
ing [27] interweaves teacher advice with autonomous student learn-
ing and focuses on the teacher deciding when to give advice. In
particular, multiple methods were introduced for when a teacher
should provide action advice to the student. This allowed the teacher
to focus its advice on areas where the student performance was poor
and/or the teacher was very confident, reducing the total amount of
advice given. This reduction is important because it 1) allows the
student to surpass the teacher’s performance, and 2) is an impor-
tant step towards minimizing the amount of advice needed to teach
a student, which is critical if the student is an (impatient) human.

2.3 Learning in RTS Games
Real Time Strategy (RTS) games are a popular research platform

due in part to their complexity and availability of highly-skilled
human players. For instance, there have been multiple RTS tourna-
ments created specifically for artificial agents [7]. There are many
relevant subproblems for successful RTS play, including opponent
modeling [12], planning build orders [10], and planning individual
agent actions [6]. More recent work by Gemine et al. [13] consid-
ers a supervised learning approach to imitate observed trajectories.

More relevant to our paper are works that focus on reinforce-
ment learning. For instance, Kresten et al. [3] and Marthi et al. [16]
look at both base building and controlling individual units by tak-
ing a hierarchical RL approach. This is in contrast to the current
work, where we focus on the more simple task of only controlling
units. Other work [20] considers only controlling the movement of
agents, but focuses on transfer between different scenarios through
a case based reasoning mechanism. In contrast, our paper focuses
on transferring knowledge not between similar agents in different
tasks, but between different agents in the same task.

3. TEACHING ALGORITHMS
This work investigates two different algorithms that allow one

agent (the teacher) to provide advice to another agent (the student).
Both the student and the teacher know the current state of the stu-
dent. The teacher then decides if it should tell the student what
action to take. We assume that the student always executes an ac-
tion suggested by the teacher when it is given. Other desired objec-
tives are to 1) allow improvements to learning with relatively little
advice and 2) allow the student to outperform the teacher.

3.1 Early Episodes Advice
The Early Episodes Advice algorithm (Algorithm 1) has the teacher

provide all advice to the student as quickly as possible by telling

Algorithm 2 Alternating Advice
procedure ALTERNATINGADVICE(πs, πt, eps, ept, n)

episode← 0
for each each episode do

if episode = eps + ept then
episode← 0

end if
for each state s visited by the student do

if episode < ept & n > 0 then
Advise πt(s)

else
Follow πs(s)

end if
end for
episode← episode+ 1
n← n− 1

end for
end procedure

the student what action to take, according to its learned policy πt,
for the first n episodes. This algorithm leverages the intuition that
advice is more valuable earlier in the learning process when the stu-
dent knows little about its domain. Also, getting information earlier
allows the the student to use that knowledge for a longer time and
possibly gain a larger total reward. The downside to this algorithm
is that the student agent is only given advice about a small percent-
age of the state space (i.e., only those states visited when following
the teacher’s advice). Thus, the student will be directed to a goal
state early in learning, but it will not have experience in states not
visited by the teacher’s policy when it must follow its own policy,
πs.

3.2 Alternating Advice
The shortcomings of Early Episodes Advice lead us to develop

an additional algorithm, Alternating Advice, which allows the stu-
dent agent to experience more of the state space than is covered
by the teacher’s policy. To do this, Algorithm 2 alternates episodes
where the teacher provides advice with episodes in which the teacher
provides no advice. The teacher again provides a total of n episodes
of advice. Now, however, the teacher will provide advice for all the
states in ept episodes, according to the teacher’s policy πt, and then
the student will follow its own policy for eps episodes, using πs.
This way the student is allowed to explore more of the state space
in the context of the advice it was given before the teacher exhausts
the amount of advice it was allotted. Although this algorithm gives
the student more wide ranging knowledge of the domain, it will
likely drift away from the optimal trajectory.

4. STARCRAFT
This section provides a brief introduction to Starcraft and the

details necessary to recreate the experimental results discussed in
the following section.

4.1 The Full Game of Starcraft
Starcraft is an RTS game in which human and/or computer play-

ers work against each other to destroy the opposing player’s struc-
tures and units. The traditional game consists of three playable
races; each of which comes with their own set of units and struc-
tures. Players must 1) collect resources which can be spent on 2)
creating buildings, 3) creating units, and 4) upgrading unit capabil-
ities. As units are created, the players must explore the world and

attempt to eliminate the other teams. A diverse set of skills, includ-
ing resource management, build order, upgrade order, exploration,
offensive and defense strategy, and small-scale tactics are required
for successful play at the highest levels.

4.2 Starcraft Experimental Domain
The full game of Starcraft is beyond the scope of the current

work. Instead, we focus on one-on-one tactics with two common
units. Figure 1 shows the center of the board used in experiments.
A Terran Marine and a Zerg Zergling begin the episode at fixed
start locations. The primary difference between these units is that
the Marine is a ranged unit and the Zergling is not; it must be within
close range of its enemy to attack.

This map consists of one island on which the two previously
mentioned units fight. There is also a barrier between the two units
through which they can not pass.

4.3 Learning in Starcraft
Our goal is to have the Marine learn to consistently kill the Zer-

gling. The Zergling is controlled by the standard game AI: it is
stationary until the Marine is close enough for it to see it, or if
the Marine shoots at it. A trial in our experiment consists of 800
total episodes which alternate between learning episodes and test
episodes in which learning and teaching is disabled in order to ex-
amine the agent’s progress. Each episode begins from the fixed start
state. The episode ends when one of the units dies, or a maximum
of 1000 actions have been executed by the agent.1

If the Marine could simply run around the barrier and kill the
Zergling immediately, then our problem would be trivial. In fact, if
the Marine were to get too close he would surely die; hit point and
damage values were set so that in a close range fight the Zergling
will always win. The ideal policy is for the Marine to attack the
Zergling from over the barrier and kill it before it is able to reach
him and attack.

The agent represents the current state using six state variables:
the agent’s X and Y position, the straight line distance to the en-
emy, the difference in hit points between the agent and the enemy,
a boolean value for whether the enemy is stationary, and the angle
of the enemy relative to the agent.

The agent receives a reward of -0.3 on every step. At the end
of an episode (when the agent does not exceed 1000 actions), we
calculate the difference in the health of the agent and the enemy
as the reward for the final step of the episode. Episodes often last
the full 1000 actions during initial learning because the agent never
engages the enemy; in this case the agent receives a final reward
of -300 because it has executed 1000 actions, each of which has a
small penalty. Some agents converge to a policy which suggests
walking directly towards the enemy to kill themselves and lose the
episode as quickly as possible, avoiding the penalty for taking a
large number of steps. This case results in a reward of roughly -15.
In the best case scenario our agent will kill the enemy from behind
cover without being hit. This scenario would result in an episode
reward of roughly 20.

In any state the agent can execute one of seven actions. For one
time step the agent can stop, attack the enemy, move towards the
enemy, move south, move north, move east, or move west. The
attack command will cause the Marine to shoot the enemy if it is

1In our implementation, if 1000 actions have been executed, this
typically means that the Marine is exploring the state space far
away from the Zergling. If the maximum number of actions is ex-
ceeded, further learning is disabled for the remainder of the episode
and the Marine runs to the Zergling without firing, killing itself to
end the episode.

Figure 1: This screenshot shows the Starcraft map used in ex-
periments. A Marine and Zergling have fixed start positions.
If the Marine rushes at the Zergling, he will lose the encounter.
However, if he begins attacking from cover, he will survive.

within range, or move towards the enemy if is not. Recall that be-
cause the Zergling will quickly kill the Marine if the Marine does
not begin its attack from cover, the attack action and the move to-
wards enemy action often result in the agent’s death, making it
particularly difficult for the agent to learn to correctly attack the
enemy.

The agent learns using Sarsa with a fixed exploration rate of 0.1
and a fixed learning rate of 0.1. A CMAC [2] tile coding is used
for function approximation, where each of the 6 state variables are
tiled independently with 32 tilings.

Starcraft, like most similar strategy games uses fog of war to
deliberately obscure units and structures from the players’ views.
To simplify our experiments, the fog of war was disabled at the start
of experiments. (If the fog of war is enabled, and the Marine has not
yet moved close enough to the Zergling, the actions for attacking
the enemy and moving towards the enemy have no effect.)

5. EXPERIMENTAL RESULTS
Figure 2 shows the results of learning in this Starcraft task. All

learning curves are averaged over 20 trials with a 10-episode mov-
ing window. Each trial was 800 episodes long. On even numbered
episodes, the agent was allowed to learn (with or without advice).
Odd numbered episodes were test episodes, in which learning was
disabled. If training episodes were graphed, they would show near-
perfect performance on episodes in which the agent received advice
from a good teacher, and similar performance to the test episodes
if no advice was received. Graphs in this section show only the
performance on test episodes.

The No Teaching line shows the performance of the agent learn-
ing without any prior knowledge. This is the baseline performance
of the Sarsa algorithm. Each trial took approximately 30 minutes
on a 2.5 GHz laptop running Windows Vista. Standard error bars
over 20 trials are shown every 10 episodes to give an idea of the
noise inherent in evaluating policies in this domain.

5.1 Using a Good Teacher
The Early Episodes Advice algorithm gives all advice at the be-

ginning of each trial. We chose n = 25, so that the learning agent
was given teacher advice for the first 25 episodes. We expected the

student to use the advice it was given early on to inform its future
actions therefore making learning easier.

The Alternating Advice algorithm was also allowed to give ad-
vice for 25 episodes. However, it spreads its advice out more, al-
lowing the agent to interweave its own unassisted learning. The
line “Alternating Advice, 1” set eps = ept = 1, so that advice
was given every other episode. The line “Alternating Advice, 5”
instead alternated gave advice for 5 episodes with 5 episodes of au-
tonomous learning, up to a total of 25 episodes of advice. In both
cases, after all the advice was provided, the student was left to learn
on its own for the remainder of the trial.

The dotted horizontal line in Figure 2 shows the performance
of the teaching agent, which had been trained for 500 episodes.
The three experiments that use this teacher all outperform the "No
Teaching" benchmark, showing that advice does indeed improve
performance.

The three teaching algorithms begin with roughly the same per-
formance. Recall that only test episodes are graphed — if the
training episodes were graphed, where the student followed the
teacher’s advice, the performance would be similar to the Aver-
age Teacher Performance line. After 40 episodes, the average per-
formance of all of the teaching-enabled methods are outperform-
ing the average performance of learning without teachers. This
average relative performance improvement continues through the
end of the trial, although we expect all methods to converge in
the limit. Counter to our expectations, none of the three teaching
methods dominated the other two. One notable difference is that
the performance of the student using Early Episodes Advice, does
drop significantly around episode 25, where the advice has been ex-
hausted, whereas the two Alternating Advice methods do not suffer
this drop.

On average all of these algorithms lead the Marine to consis-
tantly kill the Zergling as we had hoped, from behind cover before
it was wounded.

5.2 Using a Poor Teacher
To study the effect of teacher quality on our algorithms, we al-

lowed an agent to learn for only 250 episodes, resulting in a pol-
icy whose average performance is graphed in Figure 3 as “Aver-
age Teacher Performance.” Because this teacher’s performance is
significantly worse than the previous teacher, we expected student
performance to significantly decrease. Surprisingly, we find that
the initial performance of the student is increased, relative to the
good teacher. The performance of the algorithms using the poor
teacher is better than the algorithms using the good teacher for the
first 100 episodes. After the first 100 episodes, the performance of
the students in Figure 2) outperform those of the poor teacher.

When the students follow the teacher’s advice, they achieve a re-
ward very similar to that of the poor teacher. However, when the
agents execute their learned policy (as graphed in Figure 3), the
agents actually reach a much higher performance than the teacher
because they have learned to quickly kill themselves. This local
maximum is better than continually wandering around the state
space until the episode ends, but is much worse than correctly killing
the enemy. Because the agent stumbles upon this sub-optimal lo-
cal maximum, it actually makes learning the optimal policy much
harder.

This behavior exposes the fact that different teachers may help
agents optimize different types of learning improvement. Depend-
ing on the scenario, initial performance in a new task may be criti-
cal. For instance, in a robotic task, it may be extremely important to
quickly learn to execute actions that do not harm the robot. On the
other hand, the total reward or the final reward may be the most im-

-200

-150

-100

-50

 0

 0 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 O

ff
lin

e
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

Training Episodes

1v1 Starcraft, Good Teacher

Average Teacher Performance
No Teaching

Early Advising
Alternating Advice, 1
Alternating Advice, 5

Figure 2: This graph shows the performance of different learning algorithms. The x-axis shows how many training episodes have
passed. The y-axis is the average reward of the training method, tested with learning disabled. The No Teaching line is the baseline
performance of Sarsa. The Average Teacher Performance shows the average performance of the teacher, used by the three learning
methods that make use of a teacher, which all outperform learning without teaching.

portant metric to maximize. We currently have little intuition as to
how to best pick teachers to maximize different speed-up metrics,
but this will be an important question for future work.

6. ADDITIONAL RELATED WORK
There are many possible ways for agents to help agents learn,

but few 1) are also applicable to human students and 2) maximize
an environmental reward rather than mimicking a teacher. This
section considers other methods for helping agent learning that are
not directly applicable to the scenarios discussed in this paper.

Imitation learning [19] allows a student to learn by observing a
teacher, using supervised learning to attempt to mimic the teacher.
It is related to Learning from Demonstration [4], where agents
learning to mimic a (typically, human) demonstrator.

There are several types of related work in the area of helping
agents learn. Some of this work involves teaching in non-RL set-
tings, such as classification [9], or involves collaborative teams of
RL agents [21]. These areas of research address the same high-level
goal of productive agent interaction, but their problem settings are
somewhat different.

More closely related work has one RL agent teach another. For
example, in experience replay [14], a student trains on the recorded
experiences of a teacher. This requires the student to have an iden-
tical state representation, which is a limitation our methods avoid.

Lastly, there has also been work on allowing humans to com-
municate rules expressing their knowledge of a domain [15]. Re-
search in these areas tends to focus on compensating for human

error, whereas we wish to design our methods to account for sub-
optimal teachers.

7. CONCLUSIONS AND FUTURE WORK
Our experiments showed that the three types of advice produced

improvement in student learning, while the performance of the stu-
dent learning with Early Episodes Advice is initially lower than that
of the Alternating Advice algorithm.

From these results we can conclude that both Early Episodes Ad-
vice and Alternating Advice are effective algorithms for teaching
an agent a complex task in a teacher-student framework. Alternat-
ing Advice proved to be slightly more effective than Early Episodes
Advice. We believe this advantage stems from the student gaining a
more comprehensive knowledge of the domain earlier than it would
in Early Episodes Advice.

Future work will change our algorithms to alternate per action,
rather than per episode, and to attempt to further integrate student
exploration with teacher advice. We would like to study how differ-
ent types of teacher behaviors affect student performance and test
whether the benefits of teaching can be predicated, or if different
teachers can be combined to teach a single student. Lastly, these
teaching algorithms should be tested on human students and with
more than two agents in a task, for which purposes Starcraft is a
very attractive domain.

-200

-150

-100

-50

 0

 0 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 O

ff
lin

e
 R

e
w

a
rd

 p
e

r
E

p
is

o
d

e

Training Episodes

1v1 Starcraft, Poor Teacher

Average Teacher Performance
No Teaching

Early Episodes Advice
Alternating Advice, 1
Alternating Advice, 5

Figure 3: This graph shows the performance of the same algorithms as in Figure 2. However, now the teacher is significantly worse
than in the previous set of experiments. Surprisingly, agents using this poor teacher are initially better than agents in the previous
figure, but this advantage is reversed after the first 100 episodes. An average reward greater than zero means the student, on average,
kill the enemy more often than not.

8. ACKNOWLEDGMENTS
The authors thank Lisa Torrey for her helpful comments and sug-

gestions. This work was supported in part by NSF IIS-1149917.

9. REFERENCES
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, 2004.

[2] J. S. Albus. Brains, Behavior, and Robotics. Byte Books,
Peterborough, NH, 1981.

[3] K. T. Andersen, Y. Zeng, D. D. Christensen, and D. Tran.
Experiments with online reinforcement learning in real-time
strategy games. Applied Artificial Intelligence,
23(9):855–871, 2009.

[4] B. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning from demonstration. Robotics and
Autonomous Systems, 57(5):469 – 483, 2009.

[5] M. Babes-Vroman, V. Mari, K. Subramanian, and
M. Littman. Apprenticeship learning about multiple
intentions. In Proceeding of International Conference on
Machine Learning, 2010.

[6] R.-K. Balla and A. Fern. UCT for tactical assault planning in
real-time strategy games. In C. Boutilier, editor, IJCAI, pages
40–45, 2009.

[7] M. Buro and D. Churchill. Real-time strategy game
competitions. AI Magazine, 33(3):106–108, 2012.

[8] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst.
Reinforcement Learning and Dynamic Programming Using
Function Approximators. CRC Press, 2010.

[9] D. Chakraborty and S. Sen. Teaching new teammates. In
Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multi Agent Systems, pages
691–693, 2006.

[10] D. Churchill and M. Buro. Build order optimization in
starcraft. In AIIDE, 2011.

[11] J. A. Clouse. On integrating apprentice learning and
reinforcement learning. PhD thesis, University of
Massachusetts, 1996.

[12] E. W. Dereszynski, J. Hostetler, A. Fern, T. G. Dietterich,
T.-T. Hoang, and M. Udarbe. Learning probabilistic behavior
models in real-time strategy games. In AIIDE, 2011.

[13] Q. Gemine, F. Safadi, R. Fonteneau, and D. Ernst. Imitative
learning for real-time strategy games. In CIG, pages
424–429. IEEE, 2012.

[14] L. J. Lin. Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
Learning, 8:293–321, 1992.

[15] R. Maclin and J. W. Shavlik. Creating advice-taking
reinforcement learners. Machine Learning, 22(1-3):251–281,
1996.

[16] B. Marthi, S. Russell, D. Latham, and C. Guestrin.
Concurrent hierarchical reinforcement learning. In
Proceedings of the 19th international joint conference on
Artificial intelligence, IJCAI’05, pages 779–785, San
Francisco, CA, USA, 2005. Morgan Kaufmann Publishers
Inc.

[17] G. Neu. Apprenticeship learning using inverse reinforcement
learning and gradient methods. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence, 2007.

[18] L. Nunes and E. Oliveira. On learning by exchanging advice.
AISB Journal, 1(3), 2003.

[19] B. Price and C. Boutilier. Accelerating reinforcement
learning through implicit imitation. Journal of Artificial
Intelligence Research, 19:569–629, 2003.

[20] M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Isbell,

and A. Ram. Transfer learning in real-time strategy games
using hybrid CBR/RL. In In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence,
2007.

[21] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein.
Ad hoc autonomous agent teams: Collaboration without
pre-coordination. In Proceedings of the Twenty-Fourth
Conference on Artificial Intelligence, July 2010.

[22] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, 1998.

[23] C. Szepesvári. Algorithms for Reinforcement Learning.
Morgan and Claypool, 2009.

[24] M. E. Taylor and P. Stone. Cross-domain transfer for
reinforcement learning. In Proceedings of the Twenty-Fourth
International Conference on Machine Learning, June 2007.

[25] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(1):1633–1685, 2009.

[26] M. E. Taylor, H. B. Suay, and S. Chernova. Integrating
reinforcement learning with human demonstrations of
varying ability. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), May 2011. 22

[27] L. Torrey and M. E. Taylor. Teaching on a budget: Agents
advising agents in reinforcement learning. In Proceedings of
the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), May 2013.

[28] B. Ziebart , A. Maas, J. A. D. Bagnell, and A. Dey.
Maximum entropy inverse reinforcement learning. In
Proceeding of 23rd AAAI Conference on AI, July 2008.

