
In The AAMAS workshop on Agents Learning Interactively from Human Teachers (ALIHT-10),
Toronto, Canada, May 2010.

Integrating Human Demonstration and Reinforcement
Learning: Initial Results in Human-Agent Transfer

Matthew E. Taylor Sonia Chernova
University of Southern California MIT Media Laboratory

Los Angeles, CA Cambridge, MA
taylorm@usc.edu chernova@media.mit.edu

ABSTRACT

This work introduces Human-Agent Transfer (HAT), a method that

combines transfer learning, learning from demonstration and rein-

forcement learning to achieve rapid learning and high performance

in complex domains. Using experiments in a simulated robot soc-

cer domain, we show that human demonstrations can be transferred

into a baseline policy for an agent, and reinforcement learning can

be used to significantly improve policy performance. These results

are an important initial step that suggest that agents can not only

quickly learn to mimic human actions, but that they can also learn

to surpass the abilities of the teacher.

1. INTRODUCTION
Agent technologies for virtual agents and physical robots are

rapidly expanding in industrial and research fields, enabling greater

automation, increased levels of efficiency, and new applications.

However, existing systems are designed to provide niche solutions

to very specific problems and each system may require significant

effort. The ability to acquire new behaviors through learning is fun-

damentally important for the development of general-purpose agent

platforms that can be used for a variety of tasks.

Existing approaches to agent learning generally fall into two cat-

egories: independent learning through exploration and learning from

labeled training data. Agents often learn independently from ex-

ploration via Reinforcement learning (RL) [35]. While such tech-

niques have had great success in offline learning and software ap-

plications, the large amount of data and high exploration times they

require make them intractable for most real-world domains.

On the other end of the spectrum are learning from demonstra-

tion (LfD) algorithms [1, 8, 10, 11, 17, 21]. These approaches

leverage the vast experience and task knowledge of a person to

enable fast learning, which is critical in real-world applications.

However, the final policy performance achieved by these methods

is limited by the quality of the dataset and the performance of the

teacher. Human teachers provide especially noisy and suboptimal

data due to differences in embodiment (e.g., degrees of freedom,

action speed, precision) and limitations of human ability.

This paper proposes a novel approach: use RL transfer learn-

ing methods [38] to combine LfD and RL and achieve fast learning

and high performance in a complex domain. In transfer learning,

knowledge from a source task is used in a target task to speed up

learning. Equivalently, knowledge from a source agent is used to

speed up learning in a target agent. For instance, knowledge has

been successfully transferred between agents that balance differ-

ent length poles [29], that solve a series of mazes [9, 45], or that

play different soccer tasks [39, 41, 42]. The key insight of transfer

learning is that previous knowledge can be effectively reused, even

if the source task and target task are not identical. This results in

substantially improved learning times because the agent no longer

relies on an uninformed (arbitrary) prior.

In this work, we show that we can effectively transfer knowledge

from a human to an agent, even when they have different percep-

tions of state. Our method, Human-Agent Transfer (HAT): 1) allows

a human (or agent) teacher to perform a series of demonstrations

in a domain, 2) uses an existing transfer learning algorithm, Rule

Transfer [36] to bias learning in an agent, and 3) allows the agent to

improve upon the transferred policy using RL. HAT is empirically

evaluated in a simulated robot soccer domain and the results serve

as a positive proof of concept.

2. BACKGROUND
This section provides background on the three key techniques

discussed in this paper: reinforcement learning, learning from demon-

strations, and transfer learning.

2.1 Reinforcement Learning
A common approach for an agent to learning from experience is

reinforcement learning (RL). We define reinforcement learning us-

ing the standard notation of Markov decision processes (MDPs) [25].

At every time step the agent observes its state s ∈ S as a vector of

k state variables such that s = 〈x1, x2, . . . , xk〉. The agent selects

an action from the set of available actions A at every time step. An

MDP’s reward function R : S ×A 7→ R and (stochastic) transition

function T : S×A 7→ S fully describe the system’s dynamics. The

agent will attempt to maximize the long-term reward determined by

the (initially unknown) reward and transition functions.

A learner chooses which action to take in a state via a policy,

π : S 7→ A. π is modified by the learner over time to improve per-

formance, which is defined as the expected total reward. Instead of

learning π directly, many RL algorithms instead approximate the

action-value function, Q : S × A 7→ R, which maps state-action

pairs to the expected real-valued return. In this paper, agents learn

using Sarsa [26, 30], a well known but relatively simple temporal

difference RL algorithm, which learns to estimate Q(s, a). While

some RL algorithms are more sample efficient than Sarsa, this pa-

per will focus on Sarsa for the sake of clarity.

Although RL approaches have enjoyed multiple past successes

(e.g., TDGammon [40], inverted Helicopter control [19], and agent

locomotion [27]), they frequently take substantial amounts of data

to learn a reasonable control policy. In many domains, collect-

ing such data may be slow, expensive, or infeasible, motivating the

need for ways of making RL algorithms more sample-efficient.

2.2 Learning from Demonstration
Learning from demonstration (LfD) is a growing area of ma-

chine learning research that explores techniques for learning a pol-

icy from examples, or demonstrations, provided by a human teacher.

We define demonstrations as sequences of state-action pairs that

are recorded by the agent while the teacher executes the desired

behavior. LfD algorithms utilize this dataset of examples to de-

rive a policy that reproduces the demonstrated behavior. Com-

pared to exploration-based methods, such as reinforcement learn-

ing, demonstration learning reduces the learning time and elimi-

nates the frequently difficult task of defining a detailed reward func-

tion [2, 32].

The field of learning from demonstration is broadly defined and

many different algorithms have been proposed within its scope [1].

Approaches vary based on how demonstrations are performed (e.g.,

teleoperation [6, 10, 20], teacher following [21], kinesthetic teach-

ing [12], external observation [17, 23]), and the type of policy

learning method used (e.g., regression [5, 10], classification [6, 28],

or planning [43, 44]).

Demonstration learning algorithms have been highly effective

for real-world agent systems. LfD techniques possess a number

of key strengths. Most significantly, demonstration leverages the

vast task knowledge of the human teacher to significantly speed up

learning times either by eliminating exploration entirely [10, 20], or

by focusing learning on the most relevant areas of the state space

[32]. Demonstration also provides an intuitive programming inter-

face for humans, opening possibilities for policy development to

non-agents-experts.

LfD algorithms are inherently limited by the quality of the in-

formation provided by the human teacher. Algorithms typically as-

sume the dataset to contain high quality demonstrations performed

by an expert. In reality, however, teacher demonstrations may be

ambiguous, unsuccessful, or suboptimal in certain areas of the state

space. A naïvely learned policy will likely perform poorly in such

areas [2]. To enable the agent to improve beyond the performance

of the teacher, learning from demonstration must be combined with

learning from experience. Previous work by Smart and Kaelbling

showed that human demonstration can be used to bootstrap rein-

forcement learning in domains with sparse rewards [32]. However,

their evaluation was performed in relatively simple domains with

small feature spaces, and the cost of refining the policy using RL in

more complex domains has not been previously addressed.

2.3 Transfer Learning
The insight behind transfer learning (TL) is that generalization

may occur not only within tasks, but also across tasks, allowing an

agent to begin learning with an informative prior instead of relying

on random exploration.

Transfer learning methods for reinforcement learning agents can

transfer a variety of information between agents. However, many

transfer methods restrict what type of learning algorithm is used by

both agents (for instance, some methods require temporal differ-

ence learning [39] or a particular function approximator [42] to be

used in both agents). However, when transferring from a human, it

is impossible to copy a human’s “value function” — both because

the human would likely be incapable of providing a complete and

consistent value function, and because the human would quickly

grow wary of evaluating a large number of state, action pairs.

This paper uses Rule Transfer [36], a particularly appropriate

transfer method that is agnostic to the knowledge representation

of the source learner. The ability to transfer knowledge between

agents that have different state representations and/or actions is a

critical ability when considering transfer of knowledge between a

human and an agent. The following steps summarize Rule Transfer:

1a: Learn a policy (π : S 7→ A) in the source task. Any type of

reinforcement learning algorithm may be used.

1b: Generate samples from the learned policy After training

has finished, or during the final training episodes, the agent

records some number of interactions with the environment in

the form of (S, A) pairs while following the learned policy.

2: Learn a decision list (Ds : S 7→ A) that summarizes the

source policy. After the data is collected, a propositional

rule learner is used to summarize the collected data to ap-

proximate the learned policy.1 This decision list is used as a

type of inter-lingua, allowing the following step to be inde-

pendent of the type of policy learned (step 1a).

3: Use Dt to bootstrap learning of an improved policy in the

target task. Our previous work [36] has suggested that pro-

viding the agent a pseudo-action, which when selected al-

ways executes the action suggested by the decision list, is

an effective method for allowing the agent to both exploit

the transferred knowledge, as well as learn when to ignore

the knowledge (by selecting one of the base actions in the

MDP).

2.4 Additional Related Work
Learning from demonstration and transfer learning work has been

discussed earlier. This section briefly summarizes three additional

lines of related work.

Within psychology, behavioral shaping [31] is a training proce-

dure that uses reinforcement to condition the desired behavior in

a human or animal. During training, the reward signal is initially

used to reinforce any tendency towards the correct behavior, but is

gradually changed to reward successively more difficult elements

of the task. Shaping methods with human-controlled rewards have

been successfully demonstrated in a variety of software agent ap-

plications [3, 13]. In contrast to shaping, LfD allows a human to

demonstrate complete behaviors, which may contain much more

information than simple positive/negative rewards.

Most similar to our approach is the recent work by Knox and

Stone [15] which combines shaping with reinforcement learning.

Their TAMER [14] system learns to predict and maximize a reward

that is interactively provided by a human. The learned human re-

ward is combined in various ways with Sarsa(λ), providing signif-

icant improvements. The primary difference between HAT and this

method is that we focus on leveraging human demonstration, rather

than human reinforcement.

Transfer learning problems are typically framed as leveraging

knowledge learned on a source task to improve learning on a re-

lated, but different, target task. Representation transfer [37] ex-

amines the complimentary task of transferring knowledge between

agents with different internal representations (i.e., the function ap-

proximator or learning algorithm) of the same task. This idea is

somewhat similar to implicit imitation [24], in that one agent teaches

another how to act in a task. Allowing for such shifts in represen-

tation gives additional flexibility to an agent designer; past experi-

ence may be transferred rather than discarded if a new representa-

tion is desired. Representation transfer is similar in spirit to HAT in

that both the teacher and the learner function in the same task, but

very different techniques are used since the human’s “value func-

tion” cannot be directly examined.

High-level advice and suggestions have also been used to bias

agent learning. Such advice can provide a powerful learning tech-

nique that speeds up learning by moulding the behavior of an agent

1Additionally, if the agents in the source and target task use dif-
ferent state representations or have different available actions, the
decision list can be translated via inter-task mappings [36, 39] (as
step 2b). For the current paper, this translation is not necessary, as
the source and target agents operate in the same domain.

and reducing the policy search space. However, existing methods

typically require either a significant user sophistication (e.g., the

human must use a specific programming language to provide ad-

vice [18]) or significant effort is needed to design a human inter-

face (e.g., the learning agent must have natural language process-

ing abilities [16]). Allowing a teacher to demonstrate behaviors

is preferable in domains where demonstrating a policy is a more

natural interaction than providing such high-level advice.

3. METHODOLOGY
In this section we present HAT, our approach to combining LfD

and RL. HAT consists of three steps, similar to those used in Rule

Transfer:

Phase 1: Source Demonstration The agent performs the task un-

der the teleoperated control by a human teacher, or by exe-

cuting an existing suboptimal controller. During execution,

the agent records all state-action transitions. Multiple task

executions may be performed (similar to rule transfer’s step

1b).

Phase 2: Policy Transfer HAT uses the state-action transition data

recorded during Phase 1 to derive rules summarizing the pol-

icy (similar to rule transfer step 2). These rules are used to

bootstrap autonomous learning.

Phase 3: Independent Learning The agent learns independently

in the task via reinforcement learning, using the transferred

policy to bias its learning (similar to rule transfer step 3). In

this phase, the agent initially executes actions based solely

on the transferred rules so that it learns the value of the trans-

ferred policy. After this initial training, the agent is allowed

to either execute the action suggested by the transfered rules,

or it can execute one of the MDP actions. Through explo-

ration, the RL agent can decide when it should follow the

transferred rules or when it should execute a different action

(e.g., the transfered rules are sub-optimal).

4. EXPERIMENTAL VALIDATION
This section first discusses Keepaway [34], a simulated robot

soccer domain, explains the experimental methodology used to test

HAT, and then reports on results in this domain that confirm the

efficacy of our method.

4.1 Keepaway
In this section we discuss Keepaway, a domain with a continuous

state space and significant amounts of noise in the agent’s actions

and sensors. One team, the keepers, attempts to maintain posses-

sion of the ball within a 20m × 20m region while another team, the

takers, attempts to steal the ball or force it out of bounds. The sim-

ulator places the players at their initial positions at the start of each

episode and ends an episode when the ball leaves the play region

or is taken away from the keepers.

The keeper with the ball has the option to either pass the ball to

one of its two teammates or to hold the ball. In 3 vs. 2 Keepaway (3

keepers and 2 takers), the state is defined by 13 hand-selected state

variables (see Figure 1) as defined elsewhere [34]. The reward to

the learning algorithm is the number of time steps the ball remains

in play after an action is taken. The keepers learn in a constrained

policy space: they have the freedom to decide which action to take

only when in possession of the ball. Keepers not in possession

of the ball are required to execute the Receive macro-action in

which the player who can reach the ball the fastest goes to the ball

K3

T2

Center of field

Ball K2

K1

T1

Figure 1: This diagram shows the distances and angles used to

construct the 13 state variables used for learning with 3 keepers

and 2 takers. Relevant objects are the 3 keepers (K) and the

two takers (T), both ordered by distance from the ball, and the

center of the field.

and the remaining players follow a handcoded strategy to try to get

open for a pass.

The Keepaway problem maps fairly directly onto the discrete-

time, episodic RL framework. As a way of incorporating domain

knowledge, the learners choose not from the simulator’s primitive

actions but from a set of higher-level macro-actions implemented

as part of the player [34]. These macro-actions can last more than

one time step and the keepers have opportunities to make deci-

sions only when an on-going macro-action terminates. The macro-

actions (Hold, Pass1, and Pass2 in 3 vs. 2) that the learners se-

lect among can last more than one time step, and the keepers have

opportunities to make decisions only when an on-going macro-

action terminates. To handle such situations, it is convenient to

treat the problem as a semi-Markov decision process, or SMDP [4,

25], where agents reason over multi-step macro actions. Agents

then make decisions at discrete time steps (when macro-actions are

initiated and terminated).

To learn Keepaway with Sarsa, each keeper is controlled by a

separate agent. Many kinds of function approximation have been

successfully used to approximate an action-value function in Keep-

away, but a Gaussian Radial Basis Function Approximation (RBF)

has been one of the most successful [33]. All weights in the RBF

function approximator are initially set to zero; every initial state-

action value is zero and the action-value function is uniform. Ex-

periments in this paper use version 9.4.5 of the RoboCup Soccer

Server [22], and version 0.6 of UT-Austin’s Keepaway players [33].

4.2 Experimental Setup
When measuring speedup in RL tasks, there are many possible

metrics. In this paper, we measure the success of HAT along two

(related) dimensions.

The initial performance of an agent in a target task may be im-

proved by transfer. Such a jumpstart (relative to the initial perfor-

mance of an agent learning without the benefit of any prior informa-

tion), suggests that transferred information is immediately useful

to the agent. In Keepaway, the jumpstart is measured as the aver-

age episode reward (corresponding to the average episode length

in seconds), averaged over 1,000 episodes without learning. The

jumpstart is a particularly important metric when learning is slow

and/or expensive.

The total reward accumulated by an agent (i.e., the area under

the learning curve) may also be improved. This metric measures

the ability of the agent to continue to learn after transfer, but is

heavily dependant on the length of the experiment. In Keepaway,

the total reward is the sum of the average episode durations at every

integral hour of training:
X

t:0→n

(average episode reward at training hour t)

where the experiment lasts n hours and each average reward is

computed by using a sliding window over the past 1,000 episodes

(to help combat the high noise in the Keepaway domain).

In this work, we consider two types of policies which can boot-

strap learning (Phase 1 of HAT).

1. Previous work [34] defined a policy that was hand-tuned to

play 3 vs. 2 Keepaway. This static policy performs signifi-

cantly better than allowing the keepers to select actions ran-

domly, but players that learn can surpass its performance.

2. In the simulator, Keepaway players can be controlled by the

keyboard. This allows a human to watch the visualization

and instruct the keeper with the ball to execute the Hold,

Pass1, or Pass2 actions.

In experiments, we record all (s, a) pairs selected by the hand-tuned

policy and from a human’s control. It is worth noting that while the

hand-tuned policy uses the same state variables (i.e., representation

of state) that the target task learning agent uses, the human has a

very different representation. Rather than observing a 13 dimen-

sional state vector, the human uses a visualizer (Figure 2), which

contains more detailed information. This additional information

may or may not be useful for executing a high-performing policy,

but it is critical that whatever method used to glean information

about the human’s policy does not require the agent and the human

to have identical representations of state.

To evaluate HAT, we compare the outcome from four distinct

experiments.

1. “No Prior”: The agent learns the task using Sarsa with an

uninitialized (arbitrary) Q-value function.

2. “20 Episodes: Hand-coded Policy”: Allow the hand-coded

agent to demonstrate its policy for 20 episodes, transfer this

information to the target task agents, and then continue learn-

ing with Sarsa.

3. “10 Episodes: Human Training”: Allow a human to demon-

strate a policy for 10 episodes, transfer this information to

the target task agents, and then continue learning with Sarsa.

4. “18 Episodes: Human Training”: Allow a human to demon-

strate a policy for 18 episodes, transfer this information to

the target task agents, and then continue learning with Sarsa.

It is worth noting that while keepaway learning trials are measured

in simulator hours, the above three demonstration periods are sig-

nificantly shorter. For example, it takes less than three simulator

minutes for the hand-coded policy to demonstrate 10 episodes of 3

vs. 2 Keepaway.

In Phase 2, we use a simple propositional rule learner to generate

a decision list summarizing the policy (that is, it learns to generalize

which action is selected in every state). For these experiments, we

use JRip, an implementation of RIPPER [7] included in Weka [46].

Figure 2: This figure shows a screenshot of the visualizer used

for the human to demonstrate a policy in 3 vs. 2 Keepaway.

The human controls the keeper with the ball (shown as a hollow

white circle) by telling the agent when, and to whom, to pass.

When no input is received, the keeper with the ball executes the

Hold action, attempting to maintain possession of the ball.

In Phase 3, this decision list is loaded by all three keepers, af-

ter which they learn and act independently. The decision list is

treated as a pseudo-action [36], which the agent may select, and

then execute the action indicated by the decision list. For the first

100 episodes, all keepers are forced to execute this pseudo-action,

attempting to mimic the policy demonstrated in Phase 1. During

these 100 episodes, the keepers learn the value of the transferred

decision list.

After the first 100 episodes, keepers can select from the three

MDP-level actions (Hold, Pass1, or Pass2 actions) and the pseudo-

action, which executes the action suggested by the decision list for

the current state. The agent is free to explore (using ǫ-greedy ex-

ploration), allowing it to discover the value of executing actions

that disagree with the transferred decision list. Specifically, over

time, the agent learns to execute actions in areas of the state space

that differ from that suggested by the decision list when the demon-

strated policy’s actions are sub-optimal. (Were the agent to always

execute the pseudo-action, the agent would never learn but would

simply mimic the policy demonstrated in Phase 1.)

4.3 Experimental Results
This section presents preliminary results showing that HAT is ef-

fective by using demonstration and Rule Transfer to bootstrap RL

in Keepaway agents.

Figure 3 compares the performance of the four experimental set-

tings discussed above. Each experiment was run five times and

the performance was analyzed at every hour, using a 1,000 episode

sliding window. For readability only one line per experiment is

shown, the average of the five trials, and error bars show the stan-

dard error of the five trials. The “No Prior” line shows the perfor-

mance of agents learning without the benefit of transfer. The other

three lines show the performance of HAT after demonstration by

a hand-coded policy and by a human. Table 1 compares the four

experiments according to their jumpstart and total reward. A Stu-

dent’s t-test suggests2 that all jumpstarts are statistically significant

(p < 0.05), relative to learning with no prior. Note that a jumpstart

2Note that 5 trials is not sufficient for the normality assumption

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

18 Episodes: Human Training
10 Episodes: Human Training

20 Episodes: Hand-coded Policy
No Prior

Figure 3: This graph summarizes performance of Sarsa learn-

ing in Keepaway using four different settings, averaged over

five trials each. Error bars show the standard error in the per-

formance.

Table 1: This table shows the jumpstart and total reward met-

rics for 3 vs. 2 Keepaway.

Method Jumpstart Total Reward

No Prior 0 531

20 Episodes, Hand-coded 5.8 512

10 Episodes, Human 5.6 559

18 Episodes, Human 6.5 606

of roughly six seconds is also “practically significant,” as policies

learned from scratch reach an average possession time of 14 sec-

onds per episode after training. Only the difference in total reward

between no prior and 18 episodes of human training is statistically

significant (p < 0.05).

These results show that the “No Prior” agents initially perform

very poorly, learning a reasonable control policy only after spend-

ing significant amounts of time exploring the environment. In all

three cases, HAT is able to improve the jumpstart of the learner.

This shows that the demonstrated policy is indeed useful to the

agent during initial learning. Such a result is particularly important

when training is slow and/or expensive — for the first 9 simula-

tor hours, the HAT keepers dominate the keepers learning with an

uninformed prior.

In terms of both the jumpstart and total reward, human demon-

strations were more useful than the hand-coded policy, likely be-

cause the human was able to achieve higher performance using

keyboard control than the hand-coded policy. Using more human

demonstrations achieved higher performance, likely because the

extra data allowed the decision list learned in Phase 2 to more ac-

curately approximate the demonstrated policy.

Transferring information via HAT from both the hand-coded pol-

icy and the human results in significant improvements over learning

without prior knowledge.

5. FUTURE WORK AND CONCLUSION
This paper has introduced HAT, a novel method to combine learn-

ing from demonstration with reinforcement learning by leveraging

used by a t-test and technically a more sophisticated statistical test
should be used.

an existing transfer learning algorithm. Initial empirical results in

the Keepaway domain have shown that HAT can improve learning

by using demonstrations generated by a hand-coded policy or by a

human.

In order to better understand HAT and possible variants, future

work will address the following questions:

• Why do keepers have trouble improving their performance

after using HAT to learn from hand-coded policy demonstra-

tions? Is this a statistical quirk, is the hand-coded policy near

a local maximum, or is there another (currently unknown) ef-

fect at work?

• How does the quality of the demonstration affect learning?

• How does the quantity or state space coverage of demonstra-

tions affect learning?

• Rather than performing 1-shot transfer, could HAT be ex-

tended so that the learning agent and teacher could iterate be-

tween learning autonomously and providing additional demon-

strations?

• Are there other transfer techniques that would better allow

an agent to learn from a recorded demonstration?

• In this work, the human teacher and the learning agent had

different representations of state. Will HAT still be useful if

the teacher and agent have different actions? How similar

do the source task and target tasks need to be for effective

learning improvement?

• Is using a pseudo-action efficient? Previous work [36] sug-

gested that using the pseudo-action was superior to a set of

possible transfer learning variants, but this should be re-investigated

in the context of human-agent transfer.

• Could we combine these techniques with inverse reinforce-

ment learning? For instance, it could be that the human is

maximizing a different reward function, which accounts in

part for the human’s higher performance.

Acknowledgements

The authors would like to thank Shivaram Kalyanakrishnan for

sharing his code to allow a human to control the keepers via key-

board input. We also thank the anonymous reviewers and W. Bradley

Knox for useful comments and suggestions.

6. REFERENCES

[1] B. Argall, S. Chernova, M. Veloso, and B. Browning. A

survey of robot learning from demonstration. Robotics and

Autonomous Systems, 57(5):469 – 483, 2009.

[2] C. G. Atkeson and S. Schaal. Robot learning from

demonstration. In ICML, 1997.

[3] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. P.

Johnson, and B. Tomlinson. Integrated learning for

interactive synthetic characters. ACM Trans. Graph.,

21(3):417–426, 2002.

[4] S. J. Bradtke and M. O. Duff. Reinforcement learning

methods for continuous-time Markov decision problems. In

NIPS, 1995

[5] B. Browning, L. Xu, and M. Veloso. Skill acquisition and use

for a dynamically-balancing soccer robot. In AAAI, 2004.

[6] S. Chernova and M. Veloso. Interactive policy learning

through confidence-based autonomy. Journal of Artificial

Inelligence Research, 34(1):1–25, 2009.

[7] W. W. Cohen. Fast effective rule induction. In ICML, 1995.

[8] Y. Demiris and A. Billard. Special Issue on Robot Learning

by Observation, Demonstration and Imitation. IEEE

Transaction on Systems, Man and Cybernetics, 2006.

[9] F. Fernandez and M. Veloso. Probabilistic policy reuse in a

reinforcement learning agent. In AAMAS, 2006.

[10] D. H. Grollman and O. C. Jenkins. Dogged learning for

robots. In ICRA, 2007.

[11] D. H. Grollman and O. C. Jenkins. Sparse incremental

learning for interactive robot control policy estimation. In

ICRA, 2008.

[12] M. Hersch, F. Guenter, S. Calinon, and A. Billard.

Dynamical system modulation for robot learning via

kinesthetic demonstrations. IEEE Transactions on Robotics,

24(6):1463–1467, Dec. 2008.

[13] F. Kaplan, P.-Y. Oudeyer, E. Kubinyi, and A. Miklosi.

Robotic clicker training. In Robotics and Autonomous

Systems, 38(3-4):197 – 206, 2002.

[14] W. B. Knox and P. Stone. Interactively shaping agents via

human reinforcement: The tamer framework. In K-CAP,

2009.

[15] W. B. Knox and P. Stone. Combining manual feedback with

subsequent MDP reward signals for reinforcment learning. In

AAMAS, 2010.

[16] G. Kuhlmann, P. Stone, R. J. Mooney, and J. W. Shavlik.

Guiding a reinforcement learner with natural language

advice: Initial results in robocup soccer. In AAAI Workshop

on Supervisory Control of Learning and Adaptive Systems,

2004.

[17] A. Lockerd and C. Breazeal. Tutelage and socially guided

robot learning. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2004.

[18] R. Maclin and J. W. Shavlik. Creating advice-taking

reinforcement learners. Machine Learning, 22(1-3):251–281,

1996.

[19] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte,

B. Tse, E. Berger, and E. Liang. Inverted autonomous

helicopter flight via reinforcement learning. In International

Symposium on Experimental Robotics, 2004.

[20] M. Nicolescu, O. Jenkins, A. Olenderski, and E. Fritzinger.

Learning behavior fusion from demonstration. Interaction

Studies, 9(2):319–352, Jun 2008.

[21] M. N. Nicolescu and M. J. Mataric. Methods for robot task

learning: Demonstrations, generalization and practice. In

AAMAS, 2003.

[22] I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer

server: A tool for research on multiagent systems. Applied

Artificial Intelligence, 12:233–250, 1998.

[23] N. Pollard and J. K. Hodgins. Generalizing demonstrated

manipulation tasks. In Workshop on the Algorithmic

Foundations of Robotics, 2002.

[24] B. Price and C. Boutilier. Accelerating reinforcement

learning through implicit imitation. Journal of Artificial

Intelligence Research, 19:569–629, 2003.

[25] M. L. Puterman. Markov Decision Processes: Discrete

Stochastic Dynamic Programming. John Wiley & Sons, Inc.,

1994.

[26] G. Rummery and M. Niranjan. On-line Q-learning using

connectionist systems. Technical Report

CUED/F-INFENG-RT 116, Engineering Department,

Cambridge University, 1994.

[27] M. Saggar, T. D’Silva, N. Kohl, and P. Stone. Autonomous

learning of stable quadruped locomotion. In RoboCup-2006:

Robot Soccer World Cup X, 2007.

[28] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching

robots by moulding behavior and scaffolding the

environment. In ACM SIGCHI/SIGART conference on

Human-robot interaction, 2006.

[29] O. G. Selfridge, R. S. Sutton, and A. G. Barto. Training and

tracking in robotics. In IJCAI, 1985.

[30] S. Singh and R. S. Sutton. Reinforcement learning with

replacing eligibility traces. Machine Learning, 22:123–158,

1996.

[31] B. F. Skinner. Science and Human Behavior.

Colliler-Macmillian, 1953.

[32] W. D. Smart and L. P. Kaelbling. Effective reinforcement

learning for mobile robots. In ICRA, 2002.

[33] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu. Keepaway

soccer: From machine learning testbed to benchmark. In

RoboCup-2005: Robot Soccer World Cup IX, 2006.

[34] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement

learning for RoboCup-soccer keepaway. Adaptive Behavior,

13(3):165–188, 2005.

[35] R. S. Sutton and A. G. Barto. Introduction to Reinforcement

Learning. MIT Press, 1998.

[36] M. E. Taylor and P. Stone. Cross-domain transfer for

reinforcement learning. In ICML, 2007.

[37] M. E. Taylor and P. Stone. Representation transfer for

reinforcement learning. In AAAI 2007 Fall Symposium on

Computational Approaches to Representation Change during

Learning and Development, 2007.

[38] M. E. Taylor and P. Stone. Transfer learning for

reinforcement learning domains: A survey. Journal of

Machine Learning Research, 10(1):1633–1685, 2009.

[39] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via

inter-task mappings for temporal difference learning. Journal

of Machine Learning Research, 8(1):2125–2167, 2007.

[40] G. Tesauro. TD-Gammon, a self-teaching backgammon

program, achieves master-level play. Neural Computation,

6(2):215–219, 1994.

[41] L. Torrey, J. W. Shavlik, T. Walker, and R. Maclin. Relational

macros for transfer in reinforcement learning. In ILP, 2007.

[42] L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin. Using

advice to transfer knowledge acquired in one reinforcement

learning task to another. In ECML, 2005.

[43] M. van Lent and J. E. Laird. Learning procedural knowledge

through observation. In K-CAP, 2001.

[44] H. Veeraraghavan and M. Veloso. Learning task specific

plans through sound and visually interpretable

demonstrations. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2599–2604, Sept.

2008.

[45] A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task

reinforcement learning: a hierarchical Bayesian approach. In

ICML, 2007.

[46] I. H. Witten and E. Frank. Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann, 2005.

