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Abstract. Substantial work has investigated balancing exploration and exploita-
tion, but relatively little has addressed this tradeoff in the context of coordinated
multi-agent interactions. This paper introduces a class of problems in which
agents must maximize their on-line reward, a decomposable function dependent
on pairs of agent’s decisions. Unlike previous work, agents must both learn the
reward function and exploit it on-line, critical properties for a class of physically-
motivated systems, such as mobile wireless networks. This paper introduces algo-
rithms motivated by the Distributed Constraint Optimization Problem framework
and demonstrates when, and at what cost, increasing agents’ coordination can im-
prove the global reward on such problems.

1 Introduction

While there has been significant work studying the exploration vs. exploitation
tradeoff, relatively little focuses on the more difficult multi-agent case. In this paper, we
define a class of problems, Distributed Coordination of Exploration and Exploitation
(D-CEE), where agents must balance coordinated exploration of an unknown environ-
ment with exploitation of its rewards. Methods in this paper assume a decomposable
reward function (e.g., inter-agent constraints). Examples of such real world domains
include network routing optimization, repeated task allocation and mobile network op-
timization (detailed in Section 2).

D-CEE problems extend the Distributed Constraint Optimization Problem (DCOP)
formulation (Mailler & Lesser, 2004; Petcu & Faltings, 2005; Modi et al., 2005). Like
DCOPs, D-CEEs are defined as collaborative problems in which the global reward func-
tion can be decomposed in terms of agent pairs (similar to a coordination graph (Guestrin
et al., 2001)). The reward for each pair is called a constraint and depends on values that
each agent has selected. The primary challenges are: 1) the reward function is unknown,
2) algorithms have limited time to run, making exhaustive exploration infeasible, 3) on-
line reward is critical, and 4) agents must coordinate to explore or exploit.

Our problem formulation differs from existing work along multiple dimensions.
Agents know their immediate constraints but not their reward function, whereas DCOPs
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Fig. 1. This figure depicts three agents in a D-CEE. Each agent can select a value (0 or 1 in this
example), and the global reward depends on pairs of agents’ selected values.

assume the rewards are known. Additionally, we assume there are too many possi-
ble combinations of agent values for exhaustive exploration. D-CEE agents seek to
maximize the global on-line (i.e., cumulative) reward over an episode of finite length,
whereas DCOP and optimal stopping problems (c.f., the Secretary Problem (Freeman,
1983)) only maximize final reward. While single-agent approaches to exploration vs.
exploitation may provide insight into D-CEE problems, this problem is more difficult
because agents must coordinate. For instance, single-agent solutions (c.f., multi-armed
bandits (Robbins, 1952)) do not account for the intrinsic coordinated nature of the prob-
lem. Because the reward function depends on pairs of agents, coordination is critical
(see Figure 1, further explained in Section 2.1).

This paper introduces algorithms that differ along four dimensions. First, algorithms
may be reactive or predictive. Second, in each neighborhood of the constraint network
(any agent which shares a constraint with agent i is considered a neighbor of i), ei-
ther a single agent may explore, or multiple agents may simultaneously explore. Third,
algorithms are designed to account for agents with different abilities: those that can
return to a previously visited setting and those that cannot. Fourth, in some situations,
agents may know the experiment length a priori, while in others they may only know
the probability of the experiment ending on the next time step.

Experiments on a simulated D-CEE domain demonstrate our algorithms’ ability to
successfully maximize the cumulative reward. Performance is analyzed over different
graph topologies, numbers of agents, and experiment durations. In general, additional
coordination among agents results in increased reward due to an increased amount of
exploration. Surprisingly, sometimes the additional coordination reduces the total re-
ward (not just the communication overhead), and we explain this counterintuitive result.
After this analysis we introduce a set of extensions to demonstrate additional power and
flexibility in the algorithms, discuss additional related work, and then conclude.

2 Domain

This section defines the D-CEE problem class and describes the mobile wireless net-
work problem used as this paper’s experimental testbed.

2.1 Problem Definition

This section introduces the terminology used to discuss D-CEE domains, which is
based heavily on the DCOP formulation. A D-CEE consists of a set V of n variables,



{x1, x2, . . . , xn}, assigned to a set of agents, where each agent controls one variable’s
assignment. Variable xi can take on any value from the finite domain Di. The goal is
to choose values for the variables such that the sum over a set of binary constraints and
associated payoff or reward functions, fij : Di×Dj → N , is maximized. More specif-
ically, find an assignment, A, s.t. F(A) is maximized: F (A) =

∑
xi,xj∈V fij(di, dj),

where di ∈ Di, dj ∈ Dj and xi ← di, xj ← dj ∈ A. Take the constraints in Figure 1 as
an example. x1, x2, and x3 are variables, each with a domain of {0,1} and the global re-
ward function as shown. If all agents choose the value 1, the total solution quality of this
complete assignment is 12, which is locally optimal as no single agent can change its
value to improve its reward (or the global reward). F ((x1 ← 0), (x2 ← 0), (x3 ← 0))
= 22 and is globally optimal.

The agents in a DCOP are traditionally assumed to have a priori knowledge of the
corresponding reward functions. In order to more flexibly model a class of real world
domains, D-CEE problems do not make this assumption. Thus, D-CEE problems ap-
pear similar to DCOPs, but with the following features absent from DCOPs: (1) agents
initially know the constraint graph but only discover rewards when a pair of agents set
their values to explicitly discover a reward value, (2) problems last a set amount of time,
and (3) the agents’ seek to maximize the on-line global reward over this time horizon
T .

Existing DCOP algorithms can be divided into two classes. Complete algorithms
find the optimal solution but are NP-hard and do not scale to large domains due to
computation and communication costs (Modi et al., 2005). Incomplete algorithms scale
much better but only provide locally optimal solutions. In particular, k-optimal algo-
rithms guarantee that the final solution can only be improved if more than k agents
change values simultaneously (Maheswaran et al., 2004; Pearce & Tambe, 2007). As
k increases, communication and computation increase, but higher values of k typically
result in higher final (instantaneous) rewards. How to best trade off k with performance
considerations is an open problem — we investigate how D-CEE performance differs
when extending k = {1, 2} DCOP algorithms.

2.2 Problem Domain

A D-CEE approach is warranted when a set of agents need to coordinate to maximize
their shared reward but are unable to explore the entire space of their possible assign-
ments. Such a setting will most likely occur when there are many agents, a large number
of possible assignments, and a limited amount of time (i.e., a set number of variable as-
signments may be explored). Furthermore, we limit ourselves to distributed approaches,
which reduce communication, and improves robustness relative to centralization.

The D-CEE mobile wireless network problem is used as an example domain through-
out this paper. During natural disasters and other ad-hoc situations, personnel may
quickly form such a network by placing mobile robots in an area to relay information
(e.g., about endangered victims or fires). The robots must optimize the signal strengths
over the network to ensure reliable and effective communication for the duration of the
task. Value settings correspond to agent locations, constraints are determined by the
network topology, and rewards are signal strengths between robots.



Our formulation of the mobile wireless network problem is based on the capabilities
of current low-cost physical robots (see Figure 2). An agent can measure the wireless
signal strength between itself and each neighbor, corresponding to measuring the reward
for the pair of agent assignments. Agents select from a set of possible physical locations
(i.e., a variable assignment). Because the time for movement in physical robots domi-
nates communication and calculation time (Jain et al., 2009), we measure experiment
length by the number of rounds, defined by the period in which every agent may decide
to move to a new position and then reach that position. All agents may choose to either
stay in their current position or explore. We also consider agents which have the
ability to backtrack to a previously explored position.

Fig. 2. iRobot Creates were
successfully used to create
a mobile wireless network
testbed (Jain et al., 2009).

While wireless communication has predictable sig-
nal strengths when the receivers are within sight of
each other, we assume a multi-path setting where small
scale fading dominates, making signal strength predic-
tion difficult or impossible (Molisch, 2005). Instead,
agents can only determine signal strengths by moving
to a location and sampling. Additionally, because such
movements are small compared to the distance between
robots, we assume that the constraint graph does not
change over time. Signal strengths can be modeled as an
independent random number drawn from some distribu-
tion, and initial experiments on physical hardware sug-
gest that a Normal distribution is appropriate (Jain et al.,
2009). However, all D-CEE algorithms are distribution-
independent, allowing easy substitution by other (empir-
ically measured) distributions.

3 Algorithmic Contributions

This section describes our D-CEE algorithms. Our algorithms fall into two broad classes:
static estimation (SE) and decision theoretic (i.e., balanced exploration, or BE). Our pre-
vious work in this area (Jain et al., 2009) was motivated by k = 1 DCOP algorithms
in which agents coordinate to decide which (if any) agent in a neighborhood can select
a new value (Section 3.1). Novel algorithms in Section 3.2 follow the framework of
MGM-2 (Pearce & Tambe, 2007) and allow two agents in a neighborhood to coordinate
a joint variable change. Section 4 will compare the performance of both sets of algo-
rithms, as well as investigate a surprising result regarding the relative performance of
k = 1 and k = 2 algorithms.

3.1 Algorithms with k = 1

MGM-Omniscient is an algorithm based on MGM (Maheswaran et al., 2004) which
can be applied to D-CEE problems by artificially providing the full reward function
(hence, omniscient, as no exploration is necessary). MGM-Omniscient is an upper
bound on the solution quality for k = 1 agents. A round is defined as the period when



every agent: (1) communicates its current value to all its neighbors (2) calculates and
communicates its bid (the maximum gain in the reward it expects if allowed to change
values) (3) changes its value.. An agent with the highest bid, per neighborhood, is al-
lowed to change its value.

SE-Optimistic is a greedy approach that assumes agents will receive the maximum
possible reward for unexplored value settings. SE-Mean is more conservative and as-
sumes that an agent will receive the average reward for unexplored value settings. The
two SE methods differ only in how they calculate the expected gain. Recall that we
assume that a distribution over reward values is known.

BE-Rebid computes the expected utility of exploration based on the current re-
ward, the number of remaining rounds, and the distribution of rewards. It assumes an
agent may backtrack1 to an explored value (provided its neighbors have not changed
their values). Let Rb be the variable setting with the agent’s highest discovered re-
ward. The state of the agent is (Rb, T, n), where T is the number of rounds remaining
in the experiment and n is the number of neighbors. Agents decide between the ac-
tions backtrack, with a utility of Vback = RbT , and explore, with a utility of
Vexplore(Rb, T, n) =

max
0≤te≤T

{
teµ(n)+ ts

∫
x>Rb

xQ(x, n, te)∂x+ tsRbF (Rb, n)te

}
. (1)

The agent will bid to explore for te rounds and then exploit for ts = T − te rounds.
Q(x, n, te) gives the probability of x being the maximum reward among the te rewards
explored computed via order statistics. F (x) is the cumulative probability of drawing
a sample less than or equal to x and µ(n) is the average reward over n neighbors (Full
details can be found elsewhere (Jain et al., 2009)). The agent’s utility of state (Rb, T, n)
is:

V (Rb, T ) = max
{
Vback(Rb, T ), Vexplore(Rb, T, n)

}
.

BE-Stay is applicable when agents are unable to backtrack. In this approach, every
agent considers its current total reward and compares the expected reward it would
receive if it kept the same variable assignment (Vstay) with the expected reward of
exploring (Vexplore). The reward of exploration, given the current reward Rc and T
rounds remaining in the experiment is calculated as:

V (Rc, T, n) =

(
Vstay(Rc, 0) = Vexplore(·, 0, ·) = 0 for T = 0

max(Vstay(Rc, T ), Vexplore(Rc, T, n)) for T > 0

The expected rewards of the two actions stay and explore are calculated recur-
sively as:

Vstay(Rc, T ) = RcT (2)

Vexplore(Rc, T, n) =
∫ ∞
−∞

Q(x, n)(V (x, T − 1) + x)∂x (3)

1 If the current reward equals the best reward found thus far, backtrack is equivalent to not
changing any values.



3.2 Algorithms with k = 2

This section introduces our novel coordination algorithms, building upon the framework
of MGM-2. Algorithms in this section are used to test the hypothesis that increasing
coordination between agents accrues higher total reward in D-CEEs. Salient differences
are summarized in Table 1.

MGM-Omniscient-2 is an implementation of MGM-2 (Maheswaran et al., 2004)
which is artificially provided with the full reward matrix, similar to MGM-Omniscient.
MGM-Omniscient-2 then finds a locally optimal solution where no combination of one
agent or two neighboring agents can improve the global reward, representing an upper
bound for k = 2 algorithms. A round is defined as the period in which each agent: (1)
picks a neighbor and sends an offer for a joint variable change, based on the maximal
gain. (2) for each received offer, send an accept or reject message based on whether the
agents wants to pair with that particular neighbor or not. Agents choose the neighbor
with the maximum offer. (3) calculate the joint gain of the pair if offer is accepted,
otherwise calculate gain of individual change. (4) the agent with the highest gain per
neighborhood may change its variable setting. If the agent was part of the pair and its
offer had been accepted, then a go message is sent to the partnering agent. (5) execute
the joint / individual assignment.

MGM-Omniscient-2 pays a higher communication cost than MGM-Omniscient, but
it generally leads to a higher solution quality (Pearce & Tambe, 2007). Like MGM-
Omniscient, MGM-Omniscient-2 monotonically increases its solution quality (Mah-
eswaran et al., 2004). Note that single agents may act alone, subsuming MGM-Omniscient.
The algorithms in the remainder of this section are based on this framework and thus we
expect that these k = 2 algorithms will typically outperform their k = 1 counterparts,
but with increased communication.

SE-Optimistic-2 makes the same assumption as SE-Optimistic: any unexplored
reward is assumed to be optimal. Agents bid their gain on step 1 ( n × Rmax − Rc,
where Rmax is the maximum possible reward per constraint and Rc is the current total
reward) and the joint gain (step 3) is the sum of its bid with the chosen neighbor (without
double-counting the shared constraint). SE-Mean-2 makes the same assumption as SE-
Mean. Agents bid the value n × µ − Rc on step 1, but are otherwise unchanged from
SE-Optimistic-2.

BE-Rebid-2 extends the BE-Rebid algorithm by allowing pairs of agents to select
exploration and exploitation actions. Pairs of agents bid to (1) explore-explore
(2) explore-stay (3) stay-explore (4) coordinated backtrack.2 The
coordinated backtrack action is unique to this algorithm, as it allows two agents
to simultaneously backtrack to a previous setting — two agents simultaneously exploit
their knowledge of the global reward function.

The gain of explore and backtrack actions are calculated like BE-Rebid; the
utility of explore, or Vexplore(Rb, T, n) is given by Equation 1, and the utility of
backtrack is again Vback = RbT . The gain of an action is the difference between
the expected utility of the action and RcT . As in MGM-Omniscient-2, agents bid these

2 An agent may not change its value if a neighbor is executing backtrack —
explore-backtrack and backtrack-explore are not considered valid joint actions.



Table 1. This table summarizes D-CEE algorithms by the number of allowed simultaneous value
changes, the type of reward information needed, whether agents can backtrack, and if agents
require the rounds per experiment.

Method k = 2?
Info. Can #

Required Backtrack? Rounds
SE-Mean µ

SE-Mean-2 X µ
SE-Opti Rmax

SE-Opti-2 X Rmax

BE-Rebid µ, σ X X
BE-Rebid-2 X µ, σ X X

BE-Stay µ, σ X
BE-Stay-2 X µ, σ X

MGM-Omni all rewards
MGM-Omni-2 X all rewards

individual gains to their neighbors and then agents bid to pair with the neighbor which
offers the maximum gain. The utility of joint exploration by agents i and j, as calculated
by agent j, is:

Vexp−exp = Vexplore:i(Rb:i, T, ni)+Vexplore:j(Rb:j , T, nj−1)

which calculates the sum of two gains, not double counting the shared constraint (via
nj − 1). The gains of explore-stay and stay-explore are determined by the
exploring agent. The gain of coordinated backtrack is the difference between
the best joint reward of two agents and the current reward.

BE-Stay-2 may be used by agents that cannot backtrack. The utility of explore
action is calculated as for BE-Stay in Section 3.1. Joint gains are calculated from a
combination of these two actions. As in BE-Rebid-2, the gain of joint exploration is
calculated as the sum of individual exploration bids, not double counting on the com-
mon constraint. Again, the gain of explore-stay and stay-explore is given
by the gain of the exploring agent. The gain of stay-stay is 0, by definition. The
bidding process followed is same as in BE-Rebid-2 and agents are again allowed to act
individually if no coalition yields a higher expected utility.

4 Experimental Analysis

Experiments in this section compare the performance of our D-CEE algorithms in mul-
tiple instances of the mobile sensor wireless network problem. Our custom simulator
allows us to generate random network topologies and random reward functions and then
sequentially test our algorithms on the same problem instance. Lower and upper bounds
were determined by disallowing all agent movement and using MGM-Omniscient-2, re-
spectively. The results are reported as a scaled gain, scaled on [0,1]. Any gain greater
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Fig. 3. This graph compares the scaled cumulative gain of different algorithms with different
numbers of agents.

than zero represents an improvement in the total reward. Signal strengths used in the
simulations are drawn from a normal distribution with a µ = 100 and σ = 16.3

4.1 Scaling Tests

The results presented in Figure 3 show the relative performance of algorithms as the
number of agents is varied. All trials were conducted with 100 rounds on fully con-
nected graphs and each result is averaged over 30 independent runs. Notice that MGM-
Omniscient underperforms MGM-Omniscient-2 (which scores 1.0 by definition), sug-
gesting that k = 2 algorithms are able to provide improvements in D-CEE domains. In
fact, the first important trend in these results is that for 20 or more agents, all k = 2
algorithms are statistically significantly better than the corresponding k = 1 algorithm
(paired t-tests, p < 0.05). In experiments with 10 agents, BE-Rebid outperforms BE-
Rebid-2, likely because there are relatively few constraints to optimize, and thus the
magnitude of the variance is relatively low (see Section 4.3 for more discussion of this
effect). The second trend to note is that Rebid algorithms outperform Stay algorithms,
as the former allows agents to return to good configurations, improving the agents’ abil-
ity to exploit their knowledge. We ran supplemental experiments (not shown) using 25,
50, 75, and 100 rounds and 20 agents, and found the relative performance unchanged.

3 The range µ − 6σ to µ + 6σ covers 99.999% of the samples for a normal distribution; we
considered signals with integral values within [0,200].
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Fig. 4. This graph shows the scaled cumulative gain for algorithms on different network topolo-
gies. Algorithms are divided into “aggressive” and “conservative,” where the former explore more
of the value settings and the latter are more cautious (see the text).

4.2 Exploring Different Graph Topologies

Figure 4 shows the results when the topology of the agent network is changed. We
investigate five topologies, including scale-free (i.e., the degree distribution asymptot-
ically follows a power law) and random (where roughly 1

3 or 2
3 of the number of links

in a fully connected graph are randomly added to the network). Algorithms with k = 2
often converge to a higher final reward (Maheswaran et al., 2004), due to their ability
to make joint decisions. Additionally, joint decisions allow the agents to explore more
combinations of values, enabling them to choose from more and potentially better op-
tions. In fact in our experiments, all k = 2 algorithms explored more entries in the
reward matrix than their corresponding k = 1 algorithms, for all network topologies.
That k = 2 is does not dominate other approaches is a particularly surprising result
precisely because previous DCOP work showed that k = 2 algorithms reached higher
final rewards; due to the on-line nature of D-CEE problems, k = 1 may sometimes be
superior.

BE-Rebid and BE-Rebid-2 dominate other algorithms over all graph topologies,
with the exception of full graphs, where the SE-Optimistic variants are not statistically
different from the BE-Rebid variants. Also, note the precipitous drop in performance
of the SE-Optimistic methods in scale-free and random graphs. As investigated else-
where (Jain et al., 2009), agents in such graphs can have a high variance in their degree
of network connectivity. Agents with many neighbors have a very large potential gain
(due to the optimistic nature of the algorithm), causing them to move in the majority of
rounds, to the detriment of other agents in the neighborhood.

4.3 k=1 vs. k=2 Analysis

Given prior results in DCOP work (Maheswaran et al., 2004; Pearce & Tambe, 2007),
we expected that MGM-Omniscient-2 would always outperform MGM-Omniscient,
which held true. However, k = 2 did not always outperform k = 1 on sparse graphs
(i.e., scale-free, chain and random graphs with few constraints) even though k = 2
algorithms did learn more of the reward function.

The “aggressive exploration” of BE-Rebid-2 and SE-Optimistic-2 under-performs
their k = 1 counterparts on many graphs due to how bids for pairs of agents are formed.



In particular, in k = 1 algorithms, the agent with the most to gain in a neighbor-
hood will always be allowed to move. However, in k = 2 algorithms, sometimes an
agent with a relatively high reward will pair with an agent with relatively low reward.
While relatively high reward agents will only agree to move if it could improve the
total reward, such an agent would not move in a k = 1 algorithm. We found that BE-
Rebid-2 agents are not only more likely to change their values in general, but they
are much more likely to leave a high-valued position by pairing with a neighbor, rel-
ative to BE-Rebid on chain graphs (see Figure 5). The x-axis in Figure 5 shows the
instantaneous reward of the agent’s assignment and the y-axis shows the percentage
of times the agent changed its assignment when getting the corresponding reward.
This figure demonstrates how agents with high reward can be coerced into moving
out of their beneficial location by a low-valued neighbor in k = 2, whereas in k = 1
such high valued agents will not move (as shown by the fact that no agents with a
mean reward of 130 move in BE-Rebid). This effect is more pronounced in sparse
graphs as the variance in agents’ rewards is higher. We ran four sets of 30 trials of
40 agents for 100 rounds. BE-Rebid and BE-Rebid-2 agents in chain graphs found
that the standard deviation of the average value per constraint was 14.2 and 15.5, re-
spectively, while in the full graph it was 2.33 and 2.47, respectively. A higher vari-
ance leads to an increased probability that an agent with a very low reward will be
able to “convince” a relatively high-valued neighbor to pair with it and change values.

Fig. 5. This histogram shows how often a
BE-Rebid agent moves vs. a BE-Rebid-2
agent, per the agent’s normalized reward
(total reward on its constraints divided by
the number of constraints), where each
bar averages five x-axis values. 30 inde-
pendent trials were run on a chain topol-
ogy with 40 agents for 100 rounds each.

4.4 Secondary Analysis

In this section we compare the run time,
memory, and communication requirements
of our D-CEE algorithms. By instrument-
ing our simulator, we found that all k = 2
algorithms require more CPU time than
their corresponding k = 1 algorithms.
As expected, the more constraints there
are, the more computation the algorithms
require. Lastly, we found that SE-Mean
and SE-Optimistic were faster than BE-
Rebid, BE-Rebid was faster than MGM-
Omniscient, and BE-Stay was the slow-
est (due to its recursive calculation), even
though the two BE algorithms made use
of pre-computed histograms based on the
Normal distribution. This is not surprising,
as the SE algorithms need only compute
a multiply to determine their bid, whereas
the BE algorithms must calculate multiple
integrals and probabilities.

The memory requirements for k = 1 and k = 2 algorithms were not statistically
significantly different and memory usage increases with the number of neighbors. k = 2



agents have a significant communication overhead, relative to k = 1 algorithms. k = 2
agents must send multiple messages per round, doubling the number of messages rel-
ative to k = 1, which need only send assignments and gains once per round. These
results suggest that if D-CEE algorithms are embedded within mobile agents with lim-
ited computation, CPU usage may become critical, and the tradeoff in performance
between k = 1 vs. k = 2 and SE vs. BE must be carefully weighted. We have assumed
that movement cost dominates mobile sensor network domain because it requires the
most wall clock time. However, since the network must carry messages, k = 1 is more
appealing because reducing the coordination overhead leaves more bandwidth for the
data.

Section 4 has empirically shown that all D-CEE methods can improve the total
on-line reward for different graph topologies, different numbers of agents, and for dif-
ferent experiment lengths. The highest performing algorithms, reaching a cumulative
gain of nearly 60% of optimal, are BE-Rebid and BE-Rebid-2. BE-Rebid performs best
on sparse graphs, while BE-Rebid-2’s performance is superior on dense graphs. Ad-
ditionally, for full and chain graphs, SE-Optimistic also performs quite well, while it
underperforms SE-Mean on scale-free and random graphs, and both SE methods have
lower computational and communication overhead compared to the BE methods. Thus
if agents have limited processing capabilities or low communication overhead is critical,
one of the SE variants may be preferred to BE-Rebid or BE-Rebid-2.

5 D-CEE Algorithm Extensions

This section extends our D-CEE algorithms by showing that BE-Rebid can be extended
to unknown experiment times, that our algorithms are robust to topology changes (e.g.,
agents unexpectedly fail), and that appropriate algorithms can be automatically selected
per problem instance.

5.1 Extending to an Unknown Time Horizon

To extend BE-Rebid to unknown experiment lengths, we consider the case when a prob-
ability distribution, P (t), is provided, defined as the probability that the length of the
experiment is t rounds (i.e., the episode ends on round t). The probability that an exper-
iment will reach round t, Preach, is given by 1 - {P(experiment ends on round1) + . . .
+ P(experiment ends on roundt−1)}:

Preach(t) = 1−
t−1∑
1

P (i)

By Bayes Rule, the probability of reaching round t′ given that round t has already been
reached:

Preach(t′|t) =
Preach(t′ ∩ t)
Preach(t)

=
Preach(t′)
Preach(t)

Thus, the expected number of remaining rounds, given that we have reached round t is:



Tremain(t) =

 ∞X
i=t

iP (episode is length i|have reached t)
ff
− t

=

 ∞X
i=t

iP (i|have reached t)
ff
− t

=

 ∞X
i=t

i
P (i)

Preach(t)

ff
− t

To incorporate these changes into BE-rebid, the value of backtrack is updated to:

Vback(Rb, t) = RbTremain(t)

The value of explore (Equation 1) has three terms, as described in Section 3.1. With an
unknown experiment length, the equation is updated to include four terms:

Vexplore(Rb, t) = max
0≤te≤∞

Preach(t+ te|t)
{
teµ(n)

+ Tremain(t+ te)
[ ∫
x>Rb

xQ(x, n, te)∂x+RbF (Rb, n)te

]}
An agent again commits to explore for te rounds. The first term describes the probability
that the agent will reach round t + te, given it has reached round t. The second term
is the utility of exploring for te rounds. Third and fourth terms are the utilities for
backtracking in case of successful or unsuccessful exploration. In both the cases, the
number of rounds for which the agent may exploit its discovered utility is given by
Tremain(t+ te).

We compare this algorithm’s performance with the BE-Rebid approach (see Fig-
ure 6a). The probability distribution used for the length of the experiment is a normal
distribution with µ = 20 and σ = 5. We compare BE-Rebid-T, which uses the above
equations and probability distribution, with BE-Rebid which is told that the experiment
will last for 100 rounds. We ran experiments on chain, random, and fully connected
graphs, all with 10 agents, for 20 rounds, 30 trials each. In every case, the algorithms
which were provided a probability distribution outperformed the algorithms provided
an explicit (but incorrect) experiment length. The difference is statistically significant
for all cases except full graphs — thus it may be beneficial to use BE-Rebid-T for
unknown experiment lengths.

5.2 Dynamic Changes in Graph Topology
The algorithms presented are robust to agent failures and topology changes. The agents
calculate their gains with the current set of neighbors on every round and act accord-
ingly. Even if the algorithm has converged, it will begin optimizing again if needed, as
can be seen in Figure 6b. The y-axis in the figure shows the global instantaneous reward
and the x-axis shows the round. The graph shows an instance with 20 agents on a chain
graph. Two random agents were killed after every 25 rounds, and the graph shows that
agents resume their optimization (with varying degrees of success, depending on the
algorithm employed). Only four algorithms have been showed for clarity.
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Fig. 6. Graph a (left) shows the improvement due to using the unknown time horizon equations
(BE-Rebid-T). Graph b (right) shows how agents can recover after a failure of 2 agents after every
25 rounds.

5.3 Algorithmic Selection via Classification

BE-Rebid often achieves higher cumulative reward than SE-Optimistic (Sections 4.1
and 4.2), but SE-Optimistic is a substantially simpler algorithm with lower computa-
tional overhead (Section 4.4). However, performance on full graphs is often similar for
these two algorithms. In this section, we use a trained decision tree to select an appro-
priate algorithm, showing that SE-Optimistic can be selected in many situations where
it will do as well as BE-Rebid. Training data was collected from experiments with 43
different parameter settings,4 and then a C4.5 decision tree (i.e., J48) was trained using
the Weka toolkit (Witten & Frank, 2005). Training inputs were the number of agents
and the number of allowed rounds. The target output was 0 if the performance of SE-
Optimistic was better than, or statistically the same as, BE-Rebid, and 1 otherwise.

To test the effectiveness of our decision tree (which reached 92% training accuracy
on 10-fold cross validation), we allow it to select which D-CEE algorithm to run at the
beginning of an experiment, run the experiment, and compare the resulting cumulative
reward to the algorithm not selected (keeping the random seed constant). We tested on
23 different parameter settings5, and the decision tree selected SE-Optimistic 16 out of
23 times. When considering all 690 experiments (23 parameter settings, 30 trials each)
we find that the difference between BE-Rebid and SE-Optimistic is statistically signif-
icant (p < 4.7 × 10−18) while the difference between BE-Rebid and the decision tree
is not statistically significant (p > 0.16). Thus, the learned decision tree, when tested
on experiments using a different number of agents and number of rounds, was able to
use the less computationally demanding algorithm 67% of time without a statistically
significant loss in cumulative reward. This preliminary result suggests that other predic-
tions could also be successful, such as learning when BE-Rebid or BE-Rebid-2 would
yield a higher total reward.

4 Specifically, we used {10, 20, 30} agents for {10, 20, 30, . . . , 100} rounds, 40 agents for
{10, . . . , 70} rounds, and 50 agents for {10, . . . , 60} rounds, as simulating higher numbers of
agents and rounds took prohibitively long.

5 Specifically, we used {5, 15, 25} agents for experiment lengths of {5, 15, 25, 45, 75, 95}
rounds and 45 agents for experiment lengths of {5, 15, 25, 45, 75} rounds.



6 Related Work

Related work in DCOPs has been discussed in earlier sections. In addition, previous
work in distributed constraint reasoning in sensor networks (Lesser et al., 2003; Zhang
et al., 2003) uses a precursor method to the DCOP formulation and does not handle
unknown reward matrices.

Cheng et al. (2005) suggest an approach for coordinating a set of robots based on
swarm intelligence, however the objective of the work is to disperse the robots evenly
within a specified shape, and not to optimize the signal strengths across the network.
Correll et al. (2009) also look at optimizing a wireless network of mobile robots using
a distributed swarm optimization, but are concerned with changing the topology (i.e.,
neighbors) of the network rather than optimizing signal strength. Marder et al. (2007)
formulate dynamic sensor coverage as a “potential game,” which is similar to a DCOP.
However, like other DCOP work, the reward matrix is known, there is no time limit, and
only final reward is considered. Gerkey et al. (2006) address a similar problem, but use
auction mechanism and the goals of agents are significantly different (agents modify
the topology of the network and on-line reward is not emphasized).

Kok and Vlassis (2006) use a reinforcement learning (RL) approach that applies to
multi-agent tasks with coordination graphs. They model D-CEE-like problems in the
RL framework by allowing agents to have an action for each value setting, but only a
single state. Four algorithms are introduced which differ from our algorithms in three
main ways: 1) all algorithms are centralized, 2) the number of allowed variables per
agent is low but the algorithms take longer than ours to converge, primarily because
3) the algorithms do not explicitly reason about the length of the experiment. Their
algorithms are also applicable in sequential decision making problems in addition to
D-CEEs.

7 Conclusion

This paper has introduced D-CEE problems, a novel class of multi-agent problems
based on physically-motivated domains, and a set of algorithms designed to exploit
properties of such domains. In this paper, we (1) present an entire family of k = 2 al-
gorithms, (2) provide detailed experimental comparison, (3) illustrate the robustness
of these algorithms to agent failures, (4) extend the algorithms to handle unknown
time horizons, and (5) provide a decision-tree learner to allow the appropriate use of
less computationally intensive algorithms. In the Future, we plan to further explore the
tradeoff between experiment length accuracy vs. algorithmic performance (Section 5.1)
and to test our k = 2 algorithms on physical hardware, as we have done for our k = 1
algorithms (Jain et al., 2009).
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