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Abstract 
Ontologies are an increasingly important tool in knowledge 
representation, as they allow large amounts of data to be 
related in a logical fashion. Current research is concentrated 
on automatically constructing ontologies, merging 
ontologies with different structures, and optimal 
mechanisms for ontology building; in this work we consider 
the related, but distinct, problem of how to automatically 
determine where to place new knowledge into an existing 
ontology. Rather than relying on human knowledge 
engineers to carefully classify knowledge, it is becoming 
increasingly important for machine learning techniques to 
automate such a task. Automation is particularly important 
as the rate of ontology building via automatic knowledge 
acquisition techniques increases. This paper compares three 
well-established machine learning techniques and shows 
that they can be applied successfully to this knowledge 
placement task. Our methods are fully implemented and 
tested in the Cyc knowledge base system.1 

Introduction 

Ontologies are an increasingly important tool in knowledge 
representation, as they allow large amounts of data to be 
related in a logical fashion. Current research has 
concentrated on automatically constructing ontologies or 
large bodies of formally represented knowledge (Fortuna et 
al., 2005), merging ontologies with different structures 
(Masters and Güngördü 2003), and optimal mechanisms 
for ontology building (Witbrock et al., 2003). In this work 
we consider the related, but distinct, problem of how to 
automatically determine where to place new knowledge 
into an existing ontology. 
 As formally represented knowledge bases grow larger 
and cover a greater range of domains, problems of internal 
consistency and redundancy become significant (Lenat, 
1998). As an example, the commonly heard statements 
“Count Dracula was a vampire” and “vampires do not 
exist” are contradictory, unless one is aware of the implicit 
context shift. One statement is being made in a factual, 
real-world sense, while the other occurs in a specific, 
fictional context. These different contexts, which we refer 
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to as reasoning contexts, have differing background 
axioms that apply to assertions made in those contexts. An 
ontology that has no mechanism for specifying the context 
of the statements being made must either include 
contextual information with each assertion, which rapidly 
becomes unwieldy, or be forgiving of inconsistency. 
 We demonstrate automatic placement of knowledge into 
the Cyc system, an ontology-based system designed to 
capture a significant fraction of human common sense—the 
kind of background knowledge that human learning agents 
can be assumed to have when presented with a task.2 The 
Cyc knowledge base is a suitable target for two primary 
reasons: it is large, both in number of assertions and in the 
range of domains it contains; and it already contains a 
concept of reasoning contexts, called microtheories, 
suitable for classifying knowledge into. 
 The Cyc knowledge base (KB) is made up of assertions, 
formally represented facts of varying levels of complexity 
(Matuszek et al., 2006), which are asserted into a hierarchy 
of distinct reasoning contexts called microtheories (or 
Mts). Microtheories serve several purposes. The primary 
purpose is to allow each assertion to be correctly 
contextualized along several dimensions, such as temporal 
qualification or domain of discussion. From an engineering 
perspective, making assertions in microtheories allows the 
background assumptions that apply to a particular domain 
to be stated only once, and makes it far easier to construct 
a logically consistent knowledge base. 
 Microtheories in Cyc are arranged hierarchically. Very 
high-level microtheories capture information about broad 
distinctions such as physical, temporal, and fictional 
reasoning, and are then subdivided into progressively more 
specific contexts. An assertion placed into a microtheory 
must be true in the upward closure of that microtheory 
(i.e., that microtheory and more general microtheories that 
subsume it). Cyc currently contains about 4.6 million 
assertions in 23,627 microtheories, which have an average 
of approximately three microtheories directly below them 
in the hierarchy. 
 

                                                 
2 Once common-sense knowledge is available in a format that can be 
programmatically understood and reasoned over, learning tasks that rely 
on that background knowledge, such as reading from a textbook, become 
more feasible (Lenat, 1995). 



 
 
 
 
 
 
 
 
 

 

 

Figure 1: The Cyc Knowledge Base Mt (Microtheory) 
Hierarchy. A small number of very broad reasoning 
contexts contain high-level, abstract knowlege, and 
fan out into progressively more specific contexts.   

Description of Task 
Historically, all assertions have been added to Cyc by 
ontologists, human knowledge engineers who are familiar 
with the Mt structure and able to determine the appropriate 
Mt placement (domain and level of generality) of that an 
assertion. This is not ideal for several reasons. It is time-
consuming; choosing the right microtheory can easily take 
several minutes for a trained ontologist who is familiar 
with the Cyc ontology and experienced in how best to 
organize knowledge for maximum utility. A technique able 
to autonomously place knowledge into the KB therefore 
has the potential to save an amount of time proportional to 
the amount of knowledge being added. 
 More importantly, with more automated ontology-
building techniques such as automated fact gathering from 
the World Wide Web (Etzioni et al., 2004; Matuszek et al., 
2005; Shah et al., 2006), an important goal is to add 
knowledge into contextualized knowledge bases quickly 
and with little or no human interaction. It will become 
infeasible to rely on trained ontologists to label all asserted 
knowledge once knowledge systems begin generating their 
own knowledge. The goal of this research, therefore, is to 
create a classifier that is capable of placing novel 
knowledge into a hierarchical ontology with both high 
precision and recall. 
 Having this automatic classification tool will improve 
efficient ontology building in multiple ways. When the tool 
is performing well, it helps make knowledge engineering 
feasible for less sophisticated users. Automatic 
classification would also be beneficial for technologies that 
gather facts automatically or generate novel knowledge by 
analysis of existing knowledge, such as finding implication 
rules via ILP (Cabral et al., 2005). In this paper we 
describe three possible techniques for developing such a 
tool. These solutions use common statistical machine 
learning techniques: Naïve Bayes (with and without 
shrinkage) and Support Vector Machines (SVMs). 
Experiments empirically demonstrate that automatically 
determining the placement of facts within a microtheory 
hierarchy is feasible and able to achieve precision and 
recall rates of 98%. 

Related Work 

While classification in knowledge representation is a long-
standing area of research, most work has concentrated on 
the placement of concepts into a hierarchy or ontology 
(Schmolze and Lipkis 1983), rather than the placement of 
entire axioms into a knowledge base. In this way, 
classification of knowledge into a hierarchical ontology is 
more similar to the classification of text documents into a 
hierarchy of classes. Using statistical rather than semantic 
methods in classification of documents is an approach with 
much significant previous work (Joachims, 1998; Koller 
and Sahami, 1997; McCallum et al., 1998). Text 
classification tasks that involve categories arranged into a 
semantic hierarchy in particular are relevant to this task. 
 In one previous approach (McCallum et al., 1998), a 
generative Bayesian model was used to predict the 
classification of text documents into a hierarchy. In this 
model, shrinkage is used to improve the performance of 
the model on smaller classes by utilizing the structure of 
the classes. The probability of placing a document in a 
given class is based not only on the statistics for that 
particular node in the class tree, but also on other nodes 
above it in the tree, thus “shrinking” the maximum 
likelihood estimate of a node towards that of its ancestors. 
 Another approach to hierarchical text categorization is 
the so-called “Pachinko machine” (Koller and Sahami, 
1997). In this type of algorithm, decisions are made 
starting at the root of the hierarchy, working down to the 
leaves. For example, when classifying a cat into a 
biological taxonomy, a “Pachinko Machine” classifier 
could first consider “Is ‘Cat’ a plant, an animal, or 
neither?” Deciding it is an animal, it could then consider 
“Is ‘Cat’ a vertebrate, an invertebrate, or neither?” It 
continues in this fashion until it classifies ‘Cat’ into a class 
with no sub-nodes in the hierarchy. 

It has been shown that, when using a single feature set 
for every node in the hierarchy, a Bayesian pachinko 
classifier would never perform better (or worse) than a flat 
classifier that considers each node as an independent 
category (Mitchell 1998). However, this proof does not 
address the situation in which different features are utilized 
at each node; thus a Pachinko machine could potentially 
outperform a flat classifier if features were effectively 
selected at different nodes. Such feature selection is, 
however, potentially difficult to do well. As an example, is 
the presence of the term Mammal useful for classifying 
terms into the microtheory BiologyMt? Given knowledge of 
the domain, it clearly is. However, most of the facts 
asserted in BiologyMt do not mention Mammal, so some 
statistical feature selection techniques may exclude it. 
Finding an efficient feature selection algorithm for this 
context is the topic of current research. 
 The problem of placing assertions within an ontology is 
significantly different from text classification in two main 
ways. First, Cyc’s Mt structure is as deep as 50 levels in 
some domains. Typically, corpora used in text 
classification experiments are substantially shallower. 
McCallum et al.’s implementation (1998) is only able to 
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handle class trees of depth two; even the largest hierarchies 
used in text classification, such as the Yahoo! taxonomy 
(Liu et al., 2005), are less than 10 levels deep. 
 Second, and more important, the formula within any 
individual assertion contains relatively little data. For 
instance, an assertion using a binary predicate, such as (isa 
Cat Mammal), contains only three terms, instead of having 
an entire document’s worth of information. Relatively little 
previous research has been done on classifying such sparse 
data in hierarchical contexts. 

Approach 

In this section we detail the two machine learning methods 
we use to learn appropriate placement for assertions in an 
ontology, and describe the data set we use for both training 
and testing. 

Bayesian Model 
The first formulation of a generative model to place 
assertions into Cyc’s microtheory hierarchy is based on an 
earlier Naïve Bayes implementation (McCallum et al. 
1998), with two main differences. First, instead of allowing 
placement only in leaves, we also allow assertions to be 
placed in intermediate microtheories. Second, the Cyc 
microtheory ontology is a directed graph, rather than a tree; 
this requires that we break cycles in Cyc. To accomplish 
this, our algorithm keeps track of which Mts have already 
been processed and does not process the same microtheory 
more than once. 
 The sketch of our algorithm is as follows: Let there be N 
assertions in the knowledge base. Each assertion is 
composed of some number of atomic terms, and we denote 
the kth term in assertion i as t(ai,k). Every Mt in the 
ontology, where Mt j is denoted mj, is an eligible location 
for every assertion. Our goal is to find the probability that 
the ith assertion belongs in a particular Mt, j. 
 To calculate such a probability, we assume that there is 
some unknown model, θ, which accurately describes the 
structure of the KB. Our goal is to calculate P(mj | ai ; θ) 
for all assertions and all Mts. We initially assume that all 
Mts have a prior probability equal to the number of 
assertions in that Mt. We then use the number of times a 
particular term occurs in each Mt to determine the 
probability that t(aj,k) occurs in each Mt. After using 

algebraic simplifications, we can show that the probability 
of the ith assertion residing in the jth Mt is: 
 
As an additional improvement, we also implement the 
shrinkage procedure utilized by McCallum et al. To 
accomplish this, the algorithm utilizes an iterated 
expectation-maximization (EM) procedure. Full details are 
presented in the original paper (McCallum et al. 1998). 

Support Vector Machines 
Support Vector Machines (SVMs) (Vapnik, 1995) are a 
well-understood method of performing supervised, 
discriminative machine learning, used for binary 
classification tasks. An SVM implementation finds a 
hyperplane in the feature space that will separate a pair of 
classes by the widest margin. SVMs are known to perform 
well in cases where the proportion of positive and negative 
examples is highly unbalanced, such as with the leaves of 
Cyc’s ontology. For a given Mt, the positive examples are 
those assertions that are asserted in that microtheory. The 
negative examples are all other assertions in the knowledge 
base. SVMs also have a proven track record of dealing 
with highly sparse data (Joachims 1999), a particularly 
important feature when each assertion contains only a 
handful of terms. 

Using SVMs for multi-class classification has also been 
studied (Crammer and Singer, 2001; Tsochantaridis et al., 
2004), although in less detail. One common approach is 
building a “one-vs-rest” binary classifier for each node in 
the hierarchy (Crammer and Singer, 2001). One 
implementation of this is SVM-multiclass3, a freely 
available multi-class SVM implementation based on 
(Tsochantaridis et al., 2004) that handles sparse 
classification. This approach uses a flat hierarchical 
classification, discarding any information contained in the 
hierarchical structure. Utilizing hierarchical information in 
SVM classification is a current topic of research and 
recently developed methods may improve performance by 
utilizing the ontology inherent structure. 

Data Set 
In order to make our experiments tractable, we have 
chosen one particular sub-area of the Cyc microtheory 
hierarchy—specifically, the sub-tree rooted under the 
CyclistsMt microtheory. The CyclistsMt microtheory 
contains information about Cyc itself and the people who 
work there, colloquially known as ‘Cyclists’. It is 
reasonably well-populated with a good cross-section of 
available terms and predicates, making it a good target for 
our experiments. This microtheory contains 252 sub-
microtheories, containing a total of 145,706 assertions. The 
average fan-out of the tree is 1.71 (in other words, the 
average microtheory in this tree has 1.71 microtheories 
directly under it in the tree).  Microtheories which contain 
only a very small number of assertions were excluded from 
initial experiments, leaving approximately 30 
microtheories into which over 32,000 assertions could be 
classified. 
 This work also excludes microtheories that contain a 
time dimension, i.e. temporal microtheories. Temporal 
microtheories are those that contain assertions that hold 
true only within a certain time constraint. For example, the 
assertion (isa RonaldReagan UnitedStatesPresident) is true 
only in the intersection of PeopleDataMt (the microtheory 

                                                 
3 http://svmlight.joachims.org/ 

);|),(()|(

);|),(()|(
);|(

||
1

||

1

||
1

θθ
θθ

θ
ri

a
k

Mts

r r

ji
a
kj

ij
mkatPmP

mkatPmP
amP

i

i

==

=

Π

Π
=
∑



||

||

predicted

predictedcorrect
p

∩=

||

||

correct

predictedcorrect
r

∩=

rp

rp
F

+
××= 2

1

Assertion Count per Microtheory (under CyclistsMt)

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Microtheory Index

A
ss

er
tio

n 
C

ou
nt

Micro-Average Evaluations

0.8

0.85

0.9

0.95

1

Precision Recall F1

Naïve Bayes Naïve Bayes w/ Shrinkage SVM

containing data about famous people) and the temporal 
microtheory: 
 
(TimeIntervalInclusiveFn 

 (HourFn 12 (DayFn 20 (MonthFn January  

  (YearFn 1981))))  

 (HourFn 11 (DayFn 20 (MonthFn January 

  (YearFn 1989))))) 

The time period from January 20, 1981 to January 20, 1989 

Since temporal microtheories are very specific to 
individual assertions, it would be difficult to assign them 
using statistical learning algorithms; PeopleDataMt and the 
temporal microtheory shown contain very similar 
knowledge, and will likely require specialized knowledge 
to place information appropriately. We believe this is an 
appropriate initial simplification, as the majority of 
knowledge we wish to place into an ontology can probably 
be pre-filtered so that it contains only general, atemporal 
knowledge. 
 

Figure 2: A logarithmic histogram of the distributi on 
of assertions in atemporal microtheories under the 
CyclistsMt sub-tree used for this experiment. 

The sub-tree rooted under CyclistsMt contains roughly 1% 
of the total number of assertions in the knowledge base and 
1.07% of the microtheories. This subset is small enough to 
make our experiments feasible while still containing more 
data than a human could readily process. Furthermore, the 
distribution of assertions across these microtheories is 
roughly exponential, as is the distribution of knowledge in 
the KB as a whole. 
 As input to our classifiers we index all terms so that 
each assertion’s formula is a list of term indices. Each 
unique atomic term, including strings and numbers, is 
transformed into a fixed numerical index. This ignores any 
structural information within an assertion (particularly 
noticeable in the case of the “not” term) and takes what 
amounts to a “bag of words” approach. Thus the formulae 
 
(isa MattTaylor GraduateStudent) 

(owns Dog MattTaylor 1) 

 
will be represented as the vectors: 
 

(25 570 400) 

(40 823 570 429) 

 
where all unmentioned terms are assumed to be absent 
from the assertions. 
 To evaluate our performance over the dataset, we 
divided the assertions randomly into 10 groups. For each 
group, the assertions in that group were used as a test set, 
and the remaining 9 groups of assertions were used as a 
training set. This standard statistical evaluation procedure, 
known as 10-fold cross-validation, works well for these 
experiments because the number of training data instances 
heavily outweighs the number of testing instances, as is the 
case in actual use of the microtheory placement suggestion 
tool. In each fold, the training set’s assertions are labeled 
with the Mt in which they appear in the KB (i.e., the 
“correct” placement), and the test set’s assertions are not 
labeled. The placement of the assertion by the SVM is then 
compared to the actual Mt in which it appears in the KB. 

Results 

Figure 3 shows the results of our experiments on the 
CyclistsMt sub-tree dataset. Precision (p), recall (r), and F1 
are standard evaluation metrics for classification tasks: 

Precision, recall, and 
F1, defined in terms 
of the classification 
selected as compared 
to the actual Mt 
placement of an 
assertion. In F1, 
precision and recall 
are weighted equally, 
as both are relevant 
in this domain. 

 
Precision and recall are based on the number of assertions 
for which an Mt was predicted and the number of 
assertions that were predicted correctly. F1 is the harmonic 
mean of recall and precision; in order to achieve a high F1 
score the classifier must achieve both high precision and 
high recall.  

 
Figure 3: Precision, recall, and F1 using Naïve Bayes, 
Naïve Bayes with shrinkage, and SVM classification. 
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The micro-average is not improved by using shrinkage, 
possibly because shrinkage allows less likely Mts (those 
with very few assertions) to have a relatively high weight.  
 Using shrinkage to take advantage of the microtheory 
hierarchy provides a significant benefit over using standard 
Naïve Bayes for the macro-average (see Figure 4); this is 
to be expected, given the extreme sparsity of the data. Each 
assertion contains only a few features and being able to use 
data from parent microtheories greatly improves the 
classifier’s ability to generalize. This is of particular 
benefit in very specific microtheories that contain few 
assertions (i.e. positive training examples). 

SVMs performed even better in our experiments. This is 
probably an indication of the same strengths that SVMs 
usually show over Naïve Bayes in text categorization 
experiments: SVMs can better deal with imbalance in 
positive and negative training examples. Because of the 
nature of the SVM algorithm, only the support vectors are 
used in determining class membership. Any positive or 
negative training examples that fall outside the margin 
created by the vectors are ignored. Naïve Bayes, on the 
other hand, includes prior probability in its calculations, 
which means the more negative training examples there 
are, the lower the score for the microtheory. Another 
strength is that Support Vector Machines do not make 
assumptions about feature independence within feature 
vectors. For example, the terms (YearFn 2006) and 
dateOfEvent are not statistically independent—when 
(YearFn 2006) occurs in an assertion, dateOfEvent is more 
likely to occur than it would otherwise be. Naïve Bayes 
makes the incorrect assumption that they are independent 
(which is precisely why it is called “naïve”). 
 While SVMs greatly outperformed Naïve Bayes with 
shrinkage, the results for the Bayesian techniques confirm 
the hypothesis that data sparsity is a major difficulty in this 
problem, which can to some degree be overcome by using 
data found higher in the hierarchy. Therefore, it should be 
possible to improve the SVM performance in future 
experiments by finding ways to reduce data sparsity. 

 
Figure 4: F1 micro-average and macro-average scores 
for each of the three approaches taken. Comparative 
quality of micro- and macro-averages are consistent 
relative to one another across approaches. 

Figure 4 shows the micro-average vs. macro-average F1 
score for each approach. Micro-average F1 is computed by 
averaging over each assertion in the dataset. Macro-
average F1 is computed by averaging over each 
microtheory (category) in the dataset. Thus, micro-average 
scores are biased toward the classifier’s performance on 
larger microtheories, while macro-average scores are 
relatively biased toward smaller microtheories. The 
relative performance of the different approaches is the 
same, regardless of the type of average being taken; while 
not surprising, this means that performance cannot be 
improved by simply using one algorithm for assigning 
assertions into large microtheories and another algorithm 
for small microtheories. 
 Every classifier tested had better performance on large 
microtheories than on small microtheories. This is to be 
expected, since there are more positive training examples 
for larger microtheories. It is also desirable, since new 
assertions are more likely to go in the larger microtheories. 

Future Work 

The next step in this research is to evaluate these methods 
on different datasets. By trying them on the whole Cyc 
microtheory hierarchy (rather than just a sub-tree), it will 
be possible to discover how well these approaches 
generalize. If they generalize well, they can be applied to 
any task that involves microtheory placement. It would 
also be advantageous to test them on datasets similar to 
those applications for which they will be most helpful. An 
important application of this method will be to classify 
facts gathered autonomously from the Internet or via ILP. 
Another important direction is to test more sophisticated 
classification techniques. The SVM formulation in these 
experiments was a flat classifier, but there may be some 
way to improve performance by using hierarchical 
methods, such as using a Pachinko machine approach. 
 We would also like to work to make the evaluation 
function more informative. The results above evaluate an 
assertion placement as either strictly correct or incorrect, 
depending on whether the microtheory chosen was where 
the test assertion was located in the KB. A more 
appropriate metric might give partial credit for placing an 
assertion just one level too high or too low in the 
hierarchy; such a “tree metric” would give a better 
indication of how far incorrectly labeled assertions were 
from the correct placement. It is also possible that some 
placements were acceptable, but were counted as incorrect 
because they disagreed with the microtheories originally 
assigned to them by the ontologists. Investigating this 
would involve having an ontologist examine the output of 
the classifiers by hand and deciding if the answers were 
“good enough.” Another study would involve having 
multiple ontologists label data and comparing their inter-
annotator agreement. Such a measure of the disagreement 
between trained ontologists would help define an upper 
bound on the performance of autonomous machine 
learning techniques. 



 Finally, in this work we assume that all assertions 
currently in the KB are in the correct Mt, and use that 
placement as training data. However, it is likely that some 
of the 4.6 million assertions are misplaced in the KB, as 
they were entered by many different people over a number 
of years. The classification techniques introduced in the 
paper, once sufficiently accurate, could be used to check 
the placement of existing assertions by sequentially 
excluding an assertion or group of assertions (i.e. “leave-
one-out testing”) and help produce a more consistent KB. 

Conclusion 

With precision and recall of 98%, we have shown that it is 
possible to use existing machine learning techniques to 
build a tool for automatically placing facts into reasoning 
contexts in an ontology. Specifically, SVMs overcame 
both the imbalance of positive and negative training 
examples and the extreme sparsity of the data to provide 
immediately usable results. We have argued why such a 
technique is necessary for automated ontology building via 
search and introspection. Finally, our experiments have 
indicated that careful use of the microtheory hierarchy has 
great potential to improve performance over that of a flat 
classifier, providing a clear path toward potential future 
improvements. 
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