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A growing number of security applications are being developed and deployed to explicitly re-
duce risk from adversaries’ actions. However, there are many challenges when attempting to
evaluatesuch systems, both in the lab and in the real world. Traditional evaluations used by
computer scientists, such as runtime analysis and optimality proofs, may be largely irrelevant.
The primary contribution of this paper is to provide a preliminary framework which can guide
the evaluation of such systems and to apply the framework to the evaluation of ARMOR (a sys-
tem deployed at LAX since August 2007). This framework helpsto determine what evaluations
could, and should, be run in order to measure a system’s overall utility. A secondary contribu-
tion of this paper is to help familiarize our community with some of the difficulties inherent in
evaluating deployed applications, focusing on those in security domains.

1 Introduction

Computer scientists possess many tools that are par-
ticularly applicable to security-related problems, in-
cluding game-theoretic reasoning, efficient algorith-
mic design, and machine learning. However, there
are many challenges when attempting toevaluate a
security system in a lab setting or after it has been
deployed. Traditional evaluations used by computer
scientists — such as runtime analysis and optimality
proofs — often do not consider the relevance of mod-
eling assumptions or account for how a system is ac-
tually used by humans. If there is an error “between
the keyboard and the chair,” it still needs to be ad-
dressed, even if such problems are beyond the scope
of some computer programs. An additional complica-
tion is that no security system is able to provide 100%
protection. Instead, systems must be evaluated on ba-
sis of risk reduction, often through indirect measures
such as increasing adversary cost and uncertainty, or
reducing the effectiveness of an adversaries’ attack.
Despite these challenges, evaluation remains a critical
element of the development and deployment of any
security system.

An important challenge in security evaluation is
that performance necessarily depends on an adversar-

ial human’s behavior and decisions. Controlled labo-
ratory studies can be a valuable component of an eval-
uation, but the population of test subjects is necessar-
ily different that that of actual attackers. Evaluating
a system once it is deployed only increases the ex-
perimenter’s burden. First, while a system could be
alternatively enabled and disabled on different days to
measure its efficacy, this is at best impractical and at
worst unethical. Second, data related to the configura-
tion and performance of the system may be classified
or sensitive, and not available to researches. Third,
a key component of many security systems isdeter-
rence: an effective system will not only identify and
prevent successful attacks, but will also dissuade po-
tential attackers. Unfortunately, it is generally impos-
sible to directly measure the deterrence effect.1

This paper introduces a general framework for eval-
uating deployed systems and then presents a case
study of one such security system. While computer
scientists traditionally prioritize precise, repeatable
studies, this is not always possible in the security
community; computer scientists are used to quantita-
tive evaluations in controlled studies, whereas security

1To measure deterrence, one needs to know how many attacks
did not occur due to security, a generally unmeasurable counter-
factual.
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specialists are more accepting of qualitative metrics
on deployed systems. For instance, Lazaric[1999]
summarized a multi-year airport security initiative by
the FAA where the highest ranked evaluation method-
ology (of seven) relied on averagingqualitative expert
evaluations.

The primary advantage of quantitative evaluations,
rather than qualitative, is that they can be integrated
into a cost-benefit analysis. A particular security mea-
sure may be effective but prohibitively expensive —
consider two extremes in the domain of airport se-
curity. Hand searching every passenger who enters
an airport and disallowing all luggage would likely
increase the security of plane flights, but the costs
from extra security personnel, increased time in the
airport, and lost revenue makes such a draconian pol-
icy infeasible. On the other hand, removing all airport
screenings and restrictions would reduce costs and de-
lays, but also significantly increase security risks. By
carefully weighing costs and benefits, including non-
monetary effects like privacy loss, security experts
and policy makers can better decide which measures
are appropriate in a particular context.

Our ultimate goal is to provide a framework for
comprehensive evaluation of deployed systems along
multiple attributes, in absolute or relative terms, to
facilitate cost-benefit analysis. We examine existing
evaluations of the ARMOR system[Pitaet al., 2008]
as a case study. Several different kinds of evaluation
of this system support the claim that it significantly
improves over the previous best practices of uniform
randomization or hand-constructed schedules and is
cost effective.

The primary contribution of this paper is to provide
a framework to evaluate such deployed systems and
apply it to ARMOR. This framework helps to deter-
mine what to measure, how to measure it, and how
such metrics can determine the system’s overall util-
ity. A secondary contribution of this paper is to help
familiarize our community with some of the difficul-
ties inherent in evaluating deployed applications, par-
ticularly for security domains.

2 Case Study: ARMOR

The Los Angeles World Airports (LAWA) police at
the Los Angeles International Airport (LAX) oper-
ate security for the fifth busiest airport in the United
States (and largest destination), serving 70–80 million
passengers per year. LAX is considered a primary ter-

Figure 1: A LAX checkpoint scheduled by ARMOR

Figure 2: A K9 patrol

rorist target on the West Coast and multiple individu-
als have been arrested for plotting or attempting to at-
tack LAX [Stevenset al., 2009]. Police have designed
multiple rings of protection for LAX, including ve-
hicular checkpoints, police patrols of roads and inside
terminals (some with bomb-sniffing canine units, also
known as K9 units), passenger screening, and baggage
screening.

There are not enough resources (police and K9
units) to monitor every event at the airport due to
the large physical area and the number of passen-
gers served. ARMOR addresses two specific secu-
rity problems by increasing the unpredictability of
security schedules and weighting defensive strategy
based on targets’ importance. First, there are many
roads that are entry points to LAX. When and where
should vehicle checkpoints (Figure 1) be set up on
these roads? Pertinent information includes typical
traffic patterns on inbound roads, the areas each road
accesses within LAX, and areas of LAX which may
have more or less importance as terrorist targets. Sec-
ond, how and when should the K9 units (Figure 2) pa-
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trol the eight terminals at LAX? Here it is important
to consider the time-dependant passenger volumes per
terminal, as well as the attractiveness of different ter-
minals. In both cases a predictable pattern can be ex-
ploited by an observant attacker.

To address the two security problems above, we use
game theory to model and analyze the two domains.
The police and attackers play a Bayesian Stackelberg
game[Conitzer and Sandholm, 2006], with the po-
lice first committing to a (randomized) security policy.
Multiple attacher types are modeled. Each attacker
type observes this policy and then selects the optimal
attack strategy (depending on the defense strategy).
Solving this game for a Strong Stackelberg Equilib-
rium finds an optimal randomized policy for the po-
lice, which is sampled as necessary to give specific
schedules. ARMOR (Assistant for Randomized Mon-
itoring Over Routes) is the software tool that assists
police with randomized scheduling using this game-
theoretic analysis[Pita et al., 2008]. The software
uses an optimized algorithm for solving Bayesian
Stackelberg games called DOBSS[Paruchuriet al.,
2008].

The randomized schedules account for three key
factors: (1) attackers are able to observe the security
policy using surveillance, (2) attackers change their
behavior in response to the security policy, and (3) the
risk/consequence of an attack varies depending on the
target. The end result is a randomized police sched-
ule that is unpredictable, but weighted towards high-
valued targets. ARMOR has been in use at LAX since
August 2007, marking an important transition from
theoretical to practical application. The system has
received very positive feedback and is considered an
important element of security at the airport.

3 Current ARMOR Evaluations

The ARMOR system has undergone multiple evalua-
tions before and after deployment. We summarize the
current evaluations below, both from existing publica-
tions and novel to this article, grouped by category. It
is not difficult to argue that ARMOR is a significant
improvement over previous practices: it saves time for
human schedulers, it is inexpensive to implement, and
humans are known to have difficulty randomizing ef-
fectively [Wagenaar, 1972]. However, our goal is to
take steps towards a more comprehensive understand-
ing of ARMOR that provides as much insight as pos-
sible into the value of the system.

3.1 Mathematical

The first category of analyses are mathematical eval-
uations that use our game-theoretic model to evalu-
ate ARMOR’s security policies against other baseline
policies. In particular, if we assume attackers act op-
timally and have the utilities specified in the model,
we can predict how they will react to any schedule
and therefore compare the expected utility of these
schedules. ARMOR uses a game theoretic optimal
schedule. Comparing against benchmark uniform ran-
dom and hand-crafted schedules show that ARMOR’s
schedule is substantially better than these benchmarks
across a variety of different settings. For example,
Figure 3(d) shows the expected reward for the police
using ARMOR’s schedule (calculated using DOBSS)
compared with a uniform random benchmark strat-
egy in the canines domain. ARMOR is able to make
such effective use of resources that using three canines
scheduled with DOBSS yields higher utility than us-
ing six canines with uniform random scheduling!

Sensitivity analysis is another important class of
evaluations that can be performed using only the
mathematical models. In this type of evaluation, im-
portant parameters of the model are varied to test how
sensitive the output of the model is to the input. One
important input to our models is the distribution of dif-
ferent types of attackers. For example, some attackers
may be highly organized and motivated, while others
are amateurish and more likely to surrender. Different
types of attackers can be modeled as having different
payoff matrices. Changing the percentages of each
attacker can help show the system’s sensitivity to as-
sumptions regarding the composition of likely attack-
ers, and (indirectly) the system’s dependence on pre-
cise utility elicitation. In Figure 3(a)–3(c), there are
two adversary types with different reward matrices.
Figure 3(a) demonstrates that DOBSS has a higher ex-
pected utility than that of a uniform random strategy
on a single checkpoint, regardless of the percentage of
“type one” and “type two” adversaries. Figures 3(b)
and (c) shows that DOBSS again dominates uniform
random for two and three checkpoints, respectively.

Further sensitivity analysis can be applied to mea-
sure how the optimal strategy computed by DOBSS
changes as payoffs are modified. Since the payoff
functions are determined through preference elicita-
tion sessions with experts, these payoffs are estimates
of true utilities. Game-theoretic models can be quite
sensitive to payoff noise, and arbitrary changes in the
payoffs can lead to arbitrary changes in the optimal
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Figure 3: Comparisons of ARMOR’s schedules with a uniform random baseline schedule. Figures a–c show
the utility of schedules for 1–3 vehicle checkpoints varying the relative probability of two different attacker
types. The x-axes show the probability of the two attacker types (where0 corresponds to 0% attack type 2, and
100% attack type 1) and y-axes show the expected utility of ARMOR (using the DOBBS solver) and a uniform
random defense strategy. Figure d shows that DOBSS can outperform the baseline, even using many fewer K9
units. The x-axis shows the results from seven different days, and the y-axis shows the expected utility for the
different scheduling methods.

schedule. However, there is some evidence that AR-
MOR is robust to certain types of variations. In one
experiment, we multiplied all of the defender’s nega-
tive payoffs for successful attacks by a factor of four,
essentially increasing the impact of a successful at-
tack. We found that in the one and three checkpoint
case, the strategies were unchanged. In the two check-
point case the actions were slightly different, but the
overall strategy and utility were unchanged.

As with any game theoretic analysis, the assump-
tions regarding the opponent’s behavior may dramat-
ically change the outputs and evaluated performance.
Figure 4 examines an assumption typically made by
Stackelberg solvers. Specifically, such solvers assume
that if an adversary is given a set of actions with equiv-
alent payoffs, the attacker will select the action that
maximizes the defender’s payoff (the Strong Stackel-
berg Equilibrium, or SSE). We compare this poten-

tially optimistic behavior with two other reasonable
choices: the attacker selects randomly from the set of
actions with the maximum (equivalent) attacker util-
ity, and the attacker selects the action that minimizes
the defender utility from the set of equivalent actions
with the maximum attacker utility. The similarity in
payoffs of these three ways for attackers to break ties
show that this assumption is not critical for ARMOR’s
success.

Additionally, note that Figure 4 has a roughly linear
trend. Resource graphs that have a “knee,” or loca-
tion where the marginal utility improvement sharply
decreases, suggest a natural resource allocation. In
the case of a linear utility curve, adding an extra re-
source will return the same marginal expected utility.
One benefit of such an analysis is that in budget meet-
ings, security experts can show the expected impact to
safety as the budget changes.
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Figure 4: This graph shows game theoretic evalua-
tions of the K9 scheduling program for different num-
bers of resources, each averaged over 161 trials (error
bars show standard errors). First, the SSE assumption
is reasonable, as two different defender action selec-
tion mechanisms yield little change to the defender
payoff. Second, note that the defender utility of addi-
tional resources appears approximately linear.

Lastly we also note that significant work has gone
into speeding up the Bayesian Stackelberg solver.
While detailed timing analysis often features promi-
nently in computer science papers, for the purposes
of evaluating ARMOR it is sufficient that the system
runs “quickly enough” to meet the needs of the LAWA
police on the size of problem instances they face on a
daily basis. Other speedup techniques may be neces-
sary in much larger domains, such as when scheduling
over hundreds of thousands of different targets[Kiek-
intveld et al., 2009].

3.2 Human Behavioral Experiments

ARMOR’s game-theoretic model uses strong assump-
tions about the attacker’s rationality to predict how
they will behave and optimize accordingly. Humans
often do not always conform to the predictions of
strict equilibrium models (though some other mod-
els offer better predictions of behavior[Erev et al.,
2002]). In addition, ARMOR assumes that an attacker
can perfectly observe the security policy, which may
not be possible in reality.

We have run controlled laboratory experiments
with human subjects to address both of these con-
cerns[Pita et al., 2009]. In these experiments, sub-
jects play a “pirates and treasure” game designed to
simulate an adversary planning an attack on an LAX

Figure 5: Screenshot of the “pirates and treasure”
game

terminal, shown in Figure 5. Subjects are given infor-
mation about the payoffs for different actions and the
pirates’ strategy for defending their gold (analogous
to the security policy for defending airport terminals).
Subjects receive payments based on their performance
in the game.

These experiments have provided additional sup-
port for quality of ARMOR’s schedules against hu-
man opponents. First, they suggest that the assump-
tions imposed by the game-theoretic model are rea-
sonable. Second, we have tested many conditions,
varying both the payoff structure and the observa-
tion ability, ranging from no observation of the de-
fense strategy to perfect observation. The results show
that ARMOR’s schedules achieve higher payoffs than
the uniform random benchmark across all of the ex-
perimental conditions tested, often by a large mar-
gin.2 These results demonstrate that ARMOR sched-
ules outperform competing methods when humans are
trying to defeat the defender.

3.3 Operational Record

A potentially useful test of ARMOR would be to com-
pare the risk level at the airport with and without the
system in place. This is problematic for several rea-
sons that we discuss in more depth later on, including
the sensitivity of the relevant data and the impossibil-
ity of controlling for many important variables. How-
ever, there is some public information that can be of

2New defense strategies developed in this work show even bet-
ter performance against some (suboptimal) human adversaries by
explicitly exploiting the attacker’s weaknesses.
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use in evaluating the performance of the system, in-
cluding arrest records. There have been many success
stories, prompting significant media coverage. For ex-
ample, in the month of January this year, the following
seven stops discovered one or more firearms, resulting
in five arrests:

1. January 3, 2009: Loaded 9/mm pistol discovered

2. January 3, 2009: Loaded 9/mm handgun discov-
ered (no arrest)

3. January 9, 2009: 16 handguns, 4 rifles, 1 pistol,
and 1 assault rifle discovered — some loaded

4. January 10, 2009: 2 unloaded shotguns discov-
ered (no arrest)

5. January 12, 2009: Loaded 22/cal rifle discovered

6. January 17, 2009: Loaded 9mm pistol discov-
ered

7. January 22, 2009: Unloaded 9/mm pistol discov-
ered (no arrest)

This data, while not conclusive, is encouraging. It ap-
pears that potential attackers are being caught at a high
rate at ARMOR-scheduled checkpoints.

3.4 Qualitative Expert Evaluations

Security procedures at LAX are subject to numerous
internal and external security reviews (not all of which
are public). The available qualitative reviews indi-
cate ARMOR is both effective and highly visible. Di-
rector James Butts of the LAWA police reported that
ARMOR “makes travelers safer,” and Erroll Southers,
Assistant Chief of LAWA police, told a Congressional
hearing that “LAX is safer today than it was eighteen
months ago,” due in part to ARMOR. A recent ex-
ternal study by Israeli transportation security experts
concluded that ARMOR was a key component of the
LAX defensive setup.

ARMOR was designed as a mixed initiative sys-
tem that allows police to override the recommended
policies. In practice, users have not chosen to modify
the recommended schedules, suggesting that users are
confident in the outputs. While such studies are not
very useful for directly quantifying ARMOR’s bene-
fit, it would be very hard to deploy the system with-
out the support of such experts. Furthermore, if there
were an “obvious” problem with the system, such ex-
perts would likely identify it quickly.

We have also compared ARMOR-enabled schedul-
ing with previous LAWA practices[Cruz, 2009].
First, all checkpoints previously remained in place
for an entire day, whereas checkpoints are now are
moved throughout the day according to ARMOR’s
schedule (adding to the adversary’s uncertainty). Sec-
ond, before ARMOR only a single checkpoint was
manned on any given day; multiple checkpoints are
now used (due to an increased security budget). Third,
a fixed sequence of checkpoints was defined (i.e.,
checkpoints 2, 3, 1, etc.), to create a static mapping
from date to checkpoint. This sequence was not opti-
mized according to the importance of different targets
and the sequence would repeat (allowing the attacker
to anticipate which checkpoint would be manned on
any given day).

Expert opinions have said that an important benefit
of the system is its transparency and visibility which
contribute to deterrence. ARMOR assumes that ad-
versaries are intelligent and have the ability to observe
the security policy: knowing about the system does
not reduce its effectiveness. The deployment of AR-
MOR has been quite visible: ARMOR has been cov-
ered on local TV stations (including FOX and NBC),
in newspapers (including the LA Times and the Inter-
national Herald Tribune), and in a national magazine
(Newsweek).

4 Dimensions of Comparison

Evaluating deployed security systems poses many
challenges and there is currently no “gold standard”
that can be applied in all cases. Our general approach
is based on cost-benefit analysis, with the goal of max-
imizing the utility of the deployed system. A key
challenge in applying this methodology to security
domains is that many costs and benefits are difficult,
or even impossible, to measure directly. For this rea-
son, it is important to carefully consider which metrics
of costs and benefits are desirable, and what sources
of data are available to estimate these metrics. We
thus categorize representative tests in terms of the as-
sumptions they make, relative accuracy, and the cost
of running the test. We first discuss three general di-
mensions of evaluation (Section 4.1) and then a fourth
security-specific dimension (Section 4.2). Each type
of test has inherent limitations and it is important to
draw on as many different categories as possible to
provide a compelling validation of a deployed system.
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4.1 Test Categories

Possible evaluations cover a broad spectrum of eval-
uation methods. At one end, mathematical analy-
sis is relatively convenient, but requires strong and
sometimes questionable assumptions[Lazarick, 1999;
Bier, 2007]. At the other, situated tests using the ac-
tual personnel and equipment are very realistic, but
also very costly and may not be able to directly mea-
sure desired variables. Along this spectrum, we group
tests according to their type, their accuracy, and cost:

Test Types:

– Mathematical: Formal reasoning using a precise
model

– Computational simulation: Computational simu-
lations of varying degrees of abstraction/realism

– Controlled laboratory studies: Testing systems
with human subjects can account for human de-
cision making, which may be suboptimal or irra-
tional

– Natural experiments: Observe the behavior the
the deployed system by gathering data without
intervention

– Situated studies: Testing a deployed system pro-
vides the most realistic data, but at high cost

– Qualitative expert studies: Domain experts can
examine a system and give a holistic evaluation

Accuracy: Different categories of evaluation offer
different tradeoffs in the realism of their assumptions,
as well as the precision and repeatability of the results.
A mathematical model is typically precise, but depen-
dent on modeling assumptions. On the other hand,
real-world tests make fewer assumptions and simpli-
fications, but it may not be possible to draw strong
conclusions from a small number of trials and repeata-
bility is often low.

Cost: Test vary dramatically in cost. In addition
to monetary costs, situated tests require the time of
domain experts and personnel. A special concern for
security domains is that simulated attacks where secu-
rity personnel are not informed before the event may
be quite dangerous to participants.

4.2 Quantitative Metrics

We now shift our attention to the variety of different
metrics that different tests can measure. The funda-

mental goal of a security system is to maximize util-
ity, which can be decomposed into minimizing de-
ployment cost, attack frequency, and expected dam-
age of attacks. Theseprimary metrics are not directly
measurable in all types of tests, so we must often fall
back onsecondary metrics that are correlated with one
or more primary metrics (and therefore, overall util-
ity). Here we describe a representative set of such
secondary metrics, commenting on their benefits and
detriments.

– Attacks Prevented: How many attacks in
progress are interdicted?Pro: This metric di-
rectly measures the benefit of reduced attack
damage/frequency.Con: The total number of
attempted attacks may be unobservable (for in-
stance, it is not known how many weapons have
been smuggled past ARMOR checkpoints) and
quite rare.

– Attacks Deterred: How many planned attacks
are abandoned due to security measures?Pro:
Attack deterrence may be a primary benefit of se-
curity [Jacobsonet al., 2005; Bier, 2007]. Con:
Deterrence is generally impossible to measure
directly.

– Planning Cost: How much time and cost is nec-
essary to plan an attack?Pro: Increased planning
costs provides deterrence and opportunities to
detect terrorist activities before an attack.Con:
This cost is difficult to measure directly, and mo-
tivated attackers may have significant planning
resources.3

– Attacking Resources Required: Can a single
attacker with simple equipment cause significant
damage? Or is sophisticated equipment and/or
multiple attackers required?Pro: Like increas-
ing planning cost, increased resources require
larger attacker efforts, improving the chance of
detection or infiltration. Con: Attackers may
have sufficient resources, regardless.

– Attack Damage: What is the expected con-
sequence of a successful attack?Pro: Possi-
ble consequences are relatively easy to estimate,
as they are less dependent on human decisions.
Con: Determining which attacks are most likely
is still difficult, and there may be high variance.

3For instance, seehttp://www.globalsecurity.
org/security/profiles/dhiren_barot.htm
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Multiple assumptions must hold about the attack-
ers’ behavior and preferences for the reasoning to
be correct[Erevet al., 2002].

– Implementation Cost: What are the imple-
mentation and maintenance costs for a particu-
lar measure, including detrimental effects such
as inconvenience to passengers, lower cargo
throughput, etc.?Pro: Such a measurement can
help decide which security measurements to im-
plement.Con: All effects, positive and negative,
must be quantified.

– Expert Evaluation: Are domain experts satis-
fied with the system? Pro: Security experts,
who spend their career addressing such issues,
have well informed opinions about what works
and what does not.Con: Expert evaluations
may identify security flaws but generally are not
quantitative nor consistent across different ex-
perts.

5 Evaluation Options

The previous sections introduced a classification sys-
tem for different types of tests and metrics that be use-
ful to measure. We now list and discuss possible eval-
uations that can be conducted in a security domain, in
the context of the above discussion. The evaluation
options are situated within the proposed framework
and categorized according to the type of test, relative
accuracy, cost, and which metric(s) can be measured.
The decision of which test(s) to run requires weighing
each of these factors.

1. Game Theoretic Analysis: Given assumptions
about the attacker (e.g., the payoff matrix is
known), game theoretic tools can be used to de-
termine the attacker’s expected payoff. Addition-
ally, deterrence can be measured by including a
“stay home” action, returning neutral reward.4

(a) Attacker Resources vs. Damage:A game
theoretic analysis can evaluate how attacker
observation, equipment, and attack vec-
tors can change the expected attacker pay-
off. Only defensive measures known by
the researcher can be considered, but such

4Some attackers may be set on attacking at any cost and may
be modeled with a “stay home” action returning a large negative
reward.

an analysis will provide an estimate of at-
tack difficulty, an indirect measure of de-
terrence.

(b) Defense Dollars vs. Successful Attack:A
game theoretic analysis can measure how
attacker success varies as security mea-
sures are added (e.g., implementing a new
baggage screening process), or increasing
the strength of an existing measure (e.g.,
adding checkpoints). Such an analysis may
help ensure that resources are not over-
committed and provide organizations with
quantitative data to assist with budgeting.

2. Simulated Attacks: A simulator with more or
less detail can be constructed to model a spe-
cific security scenario. Such modeling may be
more realistic than a game theoretic analysis be-
cause structure layout, simulated guard capabil-
ities, and agent-level policies5 may be incorpo-
rated.

3. Human Studies: Human psychological studies
can help to better simulate attackers in the real
world. Evaluations on an abstract version of the
game may test base assumptions, or a detailed
rendition of the target in a virtual reality set-
ting with physiological stress factors could test
situated behavior. Human subjects may allow
researchers to better simulate the actions of at-
tackers, who may not be fully rational. Human
tests suffer from the fact that participants are not
drawn from the same population as the actual at-
tackers.

4. Foiled Attacks: The number of attacks disrupted
by a security system can provide a sanity check
(i.e., it disrupts a non-zero number of attacks). If
the metric is correlated with an estimated number
of attacks, it may help estimate of the attacker
percentage captured. Enabling and disabling the
security system and observing how the number
of foiled attacks changes would be more accu-
rate, but this methodology is likely unethical in
many real world settings.

5. Red Team: Tests in which a “Red Team” of
qualified security personnel attempt to probe se-

5One exciting direction, as yet unexplored, is to incorporate
machine learning into such policies. Such an extension would
allow attackers to potentially discover flaws in the system,in ad-
dition to modeling known attacker behaviors.
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curity defenses provides realistic information in
life-like situations using the true defenses (in-
cluding those that are not visible). However,
such a test is very difficult to conduct as some
security must be alerted (so that the team is not
endangered) while remaining realistic, the tests
are often not repeatable, and a single test is likely
unrepresentative.

6. Expert Evaluation: Security experts — internal
or external — may holistically evaluate a target’s
defenses, including both visible and non-visible,
and provide a high-level security assessment.

7. Deterrence Measurement: Different methods
for directly estimating deterrence can be used,
such as estimating how likely an attacker is to
know about a security precaution and how that
knowledge will affect the likelihood of attack. A
more quantitative approach would allow attack-
ers to choose between different actions that at-
tack the defended target and actions that attack a
different target.6

8. Cost Study: A cost estimate for an entire lo-
cation may examine multiple security measures
and different levels of staffing, as well as measur-
ing each resource’s total cost. Some intangible
factors may be very difficult to determine, such
as quantifying a decrease in civil liberties.

6 ARMOR Evaluation, Revisited

This section first re-examines the current evaluations
presented in Section 3 to summarize the state of the
system’s evaluation and then discusses what addi-
tional experiments could/should be performed based
on the framework presented above.

Existing evaluations of the deployed ARMOR sys-
tem fall into the Mathematical, Controlled Labora-
tory, Natural Experiments, and Qualitative categories.
These represent a fairly broad range of types of eval-
uations, showing that ARMOR works well in theory,
and that security experts agree it is beneficial. The

6Although this may seem myopic, institution-level security
measures are designed to protect a single target; if ARMOR
causes attackers to be deterred and attack elsewhere, the secu-
rity measure has successfully defended LAX. If a measure was
designed to cause attackers tonever attack (or fail at any attack,
anywhere), our definition of deterrence would have to be signifi-
cantly modified.

controlled laboratory experiments, qualitative evalu-
ations, and (sparse) data from natural experiments
are particularly interesting in that they go beyond the
framework of the game-theoretic model to test it’s
key assumptions. In many ways, this level of evalua-
tion goes beyond what is typical of applications, even
those deployed in real-world settings. Overall, we find
strong evidence to support the use of ARMOR over
previous methods (notably, hand-crafted or uniform
random schedules).

Nevertheless, our framework also suggests new di-
rections that could fill in gaps in the existing evalua-
tion of ARMOR. This is particularly important as we
move forward and wish to evaluate ARMOR against
more sophisticated alternatives than the hand-crafted
and uniform random baselines. In cases where the
comparison is less clear-cut, we may need additional
metrics to make a compelling argument for one ap-
proach or another. Based on our analysis above, we
suggest several possible directions for future evalua-
tions of ARMOR and similar systems:

1. None of the current evaluations effectively mea-
sure the cost of deploying ARMOR. New anal-
ysis should estimate the cost of deploying AR-
MOR at a new location, both in monetary terms
and in side effects. For example, does using AR-
MOR result in increased congestion or wait times
for travelers? It would also be useful to quantify
the time required to create hand-crafted sched-
ules instead of using ARMOR.

2. Any additional data we can gather about the ef-
fects of ARMOR on risk at LAX would be in-
credibly valuable for evaluation. Hard numbers
are quite difficult to obtain due to security con-
cerns, but efforts to find alternatives should con-
tinue. One that is frequently suggested is using
security experts to “Red Team” the airport and
plan or simulate attacks against it. While this
would undoubtedly provide useful information,
it is very costly and would require the approval
of the airport authorities. Truly live red team op-
erations are generally not conducted due to the
risks they create for security personnel.

3. It would be useful to correlate the number of sus-
pected attackers stopped at checkpoints with the
number of suspected attackers stopped by other
security methods over time. If the number of
people detained at checkpoints increases after
ARMOR was deployed and the number of people
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Evaluation Summary
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Game Theory Mathematic High Low X X X

Attacker Resources/Payoff Mathematic High Low X X X X

Defense Dollars / Damage Mathematic High Low X X X

Simulated Attacks Simulation High Low X X

Human Studies Human Med Med X X

Foiled Attacks Natural Low Low X

Red Team Situated Low High X X

Expert Evaluation Qualitative Low Med X X X X X X

Deterrence Measurement Math. / Qual. Low Low X X X

Cost Study Math. / Qual. Med Low X X X

Table 1: This table summarizes our proposed evaluation methods by suggesting where each falls along the three
general dimensions and which of the seven security-specificmetrics are measured.

detained by other methods stayed the same (or
fell), it is likely that ARMOR is more successful
than the previous checkpoint strategy. Currently,
such arrest statistics are considered sensitive and
are not available to researchers.

4. Another approach for testing the assumptions
of our game-theoretic model and the quality of
the payoffs elicited from the security experts is
to build more detailed computer simulations of
airport operations and potential attack scenar-
ios. These simulations themselves also make as-
sumptions, but it would potentially improve reli-
ability to model and understand the domain us-
ing two very different modeling frameworks at
different levels of abstraction.

5. A weakness of the current evaluation is the lack
of an effective measure of deterrence. This is
an inherently difficult aspect to capture, as the
important variables cannot be observed in prac-
tice. One possibility is to explore deterrence
more carefully in the game-theoretic model. For
example, attackers could be given the option of
attacking other targets in addition to LAX. Com-
bined with sensitivity analysis and behavioral ex-
periments, this could be a way to better under-
stand the effects of deterrence.

7 Related Work

Security is a complex research area, spanning many
disciplines, and policy evaluation is a persistent chal-
lenge. Many security applications are evaluated pri-
marily on the basis of theoretical results; situated eval-
uations and even laboratory experiments with human
subjects are relatively rare. In addition, existing gen-
eral methodologies for risk and security evaluation
often rely heavily on expert opinions and qualitative
evaluations.

Lazarick[1999] is a representative example which
relies heavily on expert opinions. In the study,
seven tools/approaches used to evaluate airport secu-
rity were compared as part of a competitive bidding
process. At the end of the multi-year security initia-
tive, the highest ranked evaluation methodology relied
on averaging qualitative expert evaluations.

A second example of a high-level methodology for
per-facility and regional risk assessment, such as de-
scribed by Baker[2005]. The methodology relies
heavily on expert opinions and evaluations from lo-
cal technical staff/experts, similar to Lazarick[1999].
The three key questions in the methodology are: (1)
Based on the vulnerabilities identified, what is the
likelihood that the system will fail? (2) What are
the consequences of such failure (e.g., cost or lives)?
(3) Are these consequences acceptable? Such an ap-
proach enumerates all vulnerabilities and threats in an
attempt to determine what should (or must) be im-
proved. There is no quantitative framework for evalu-
ating risk.
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Many in the risk analysis community have recently
argued for game theory as a paradigm for security
evaluation, with the major advantage that it explic-
itly models the adaptive behavior of an intelligent ad-
versary. Cox[2008] provides a detailed discussion of
the common “Risk = Threat× Vulnerability× Con-
sequence” model, including analysis of an example
use of the model. There are several arguments raised
as weaknesses of the approach, including (1) the val-
ues are fundamentally subjective (2) rankings of risk
are often used, but are insufficient (3) there are math-
ematical difficulties with the equation, including de-
pendencies between the multiplied terms, and (4) the
model does not account for adaptive, intelligent at-
tackers. One of the main recommendations of the pa-
per is to adopt more intelligent models of attacker be-
havior, instead of more simple, static, risk estimates.

Bier et al. [2009] provide a high-level discussion
of game-theoretic analysis in security applications and
their limitations. The main argument is that theadap-
tive nature of the terrorist threat leads to many prob-
lems with static models — such models may overstate
the protective value of a policy by not anticipating
an attacker’s options to circumvent the policy. They
explicitly propose using quantitative risk analysis to
provide probability/consequence numbers for game-
theoretic analysis.

Beir [2007] performs a theoretical analysis of the
implications of a Bayesian Stackelberg security game
very similar to the one solved by ARMOR, although
most of the analysis assumes that the defender does
not know the attacker’s payoffs. The primary goal is
to examine intuitive implications of the model, such
as the need to leave targets uncovered in some cases
so as not to drive attackers towards more valuable
targets. There are no “real world” evaluation of the
model. Other work[Bier et al., 2008] considers high-
level budget allocation (e.g., to large metropolitan ar-
eas). While the study uses real data, its focus is not
model evaluation but the implications resulting from
the model.

Game theory does have much to offer in our view,
but should not be considered a panacea for security
evaluation. One difficulty is that human behavior
often does not correspond exactly to game-theoretic
predictions in controlled studies. Weibull[2004] de-
scribes many of the complex issues associated with
testing game-theoretic predictions in a laboratory set-
ting, including a discussion of the ongoing argument
regarding whether people typically play the Nash

equilibrium or not (a point discussed at length in the
literature, such as in Erev et al.[2002]). This is one
reason we believe behavioral studies with humans are
an important element for security system evaluation.

Many of the issues we describe in acquiring use-
ful real-world data for evaluation purposes are mir-
rored in other types of domains. Blundell and Costa-
Dias[2009] describe approaches for experimental de-
sign and analysis of policy proposals in microeco-
nomics, where data is limited in many of the same
ways: it is often not possible to run controlled ex-
periments and many desired data cannot be observed.
They describe several classes of statistical methods for
these cases, some of which may be valuable in the se-
curity setting (though data sensitivity and sparse ob-
servations pose significant additional challenges). In
truth, it is often hard to evaluate complex deployed
systems in general — in our field a test of the proto-
type often suffices (c.f., Scerri et al.[2008]).

Jacobson et al.[2005] describe a deployed model
for screening airline passenger baggage. The model
includes detailed information regarding estimated
costs of many aspects of the screening process, in-
cluding variables for probability of attack and cost of
a failed detection, but these are noted to be difficult
to estimate and left to other security experts to deter-
mine. One particularly interesting aspect of the ap-
proach is that they perform sensitivity analysis on the
model in order to assess the effect of different values
on the overall decisions. Unfortunately, the authors
have little to say about actually setting the input val-
ues to their model; in fact, there is no empirical data
validating their screening approach.

Kearns and Ortiz[2003] introduce algorithms for a
class of “interdependent” security games, where the
security investment of one player has a positive ex-
ternality and increases the security of other players.
They run the algorithms on data from the airline do-
main but do not directly evaluate their approach, in-
stead looking at properties of the equilibrium solution
and considering the broad insight that this solution
yields regarding the benefits of subsidizing security
in such games.

Lastly, the field of fraud detection [Kou et al.,
2004], encompassing credit card fraud, computer in-
trusion, and telecommunications fraud, is also related.
Similar to the physical security problem, data is dif-
ficult to access, researchers often do not share tech-
niques, and deterrence is difficult (or impossible) to
measure. Significant differences include:
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1. Humans can often classify (in retrospect) false
positives and false negatives, allowing re-
searchers to accurately evaluate strategies.

2. Companies have significant amounts of data re-
garding known attacks, even if they do not typi-
cally share the data outside the company. Some
datasets do exist for common comparisons (c.f.,
the 1998 DARPA Intrusion Detection Evaluation
data7).

3. The frequency of such attacks is much higher
than physical terrorist attacks, providing signif-
icant training/evaluation data.

4. Defenders can evaluate multiple strategies (e.g.,
classifiers) on real-time data, whereas physical
security may employ only, and evaluate, one
strategy at a time.

8 Conclusions

While none of the evaluation tests presented in Sec-
tion 5 can calculate a measure’s utility with abso-
lute accuracy, understanding what each testcan pro-
vide will help evaluators better understand what tests
should be run on deployed systems. The goal of such
tests will always be to provide better understanding
to the “customer,” be it researchers, users, or policy
makers. By running multiple types of tests, utility (the
primary quantity) can be approximated with increas-
ing reliability.

At a higher level, thorough cost-benefit analyses
can provide information to policy makers at the inter-
domain level. For instance, consider the following ex-
ample from Tengs and Graham[1996]:

To regulate the flammability of children’s
clothing we spend $1.5 million per year of
life saved, while some 30% of those chil-
dren live in homes without smoke alarms,
an investment that costs about $200,000 per
year of life saved.

While such a comparative cost-benefit analysis is be-
yond the scope of the current study, these statistics
show how such an analysis can be used to compare
how effective measures are across very different do-
mains, and could be used to compare different pro-
posed security measures.

7See http://www.ll.mit.edu/mission/
communications/ist/index.html for data and program
details.

In the future we plan to use this framework to
help decide which evaluation tests are most important
to determine ARMOR’s utility, as suggested in Sec-
tion 6. Additionally, we intend to continue collabo-
rating with security experts to determine if our frame-
work is sufficiently general to cover all existing types
of security tests, as well test how the framework can
guide evaluation in additional complex domains.
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