
In The AAMAS workshop on Multi-agent Sequential Decision-Making in Uncertain Domains (MSDM-09),
Budapest, Hungary, May 2009.

Exploiting Coordination Locales in Distributed POMDPs
via Social Model Shaping

Jun-young Kwak∗, Pradeep Varakantham+, Matthew Taylor∗, Janusz Marecki++, Paul
Scerri+, Milind Tambe∗

∗University of Southern California, Los Angeles, CA 90089, {junyounk, taylorm, tambe}@usc.edu
+Carnegie Mellon University, Pittsburgh, PA 15213, {pradeepv, pscerri}@cs.cmu.edu

++IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, marecki@us.ibm.com

ABSTRACT

While distributed POMDPs provide an expressive framework for

modeling multiagent collaboration problems, NEXP-Complete com-

plexity hinders their scalability and application in real-world do-

mains. This paper introduces a subclass of distributed POMDPs,

and TREMOR, a novel algorithm to solve such distributed POMDPs.

Two major novelties in TREMOR are (i) use of social model shap-

ing to coordinate agents, (ii) harnessing efficient single agent-POMDP

solvers. Experimental results demonstrate that TREMOR may pro-

vide solutions orders of magnitude faster than existing algorithms

while achieving comparable, or even superior, solution quality.

1. INTRODUCTION
The excitement of Distributed Partially Observable Markov De-

cision Problems (DEC-POMDPs) flows from their ability to tackle

real-world multi-agent collaborative planning, under transition and

observation uncertainty [2, 3, 9, 17]. Given the NEXP-Complete

complexity of DEC-POMDPs [3], however, the emerging consen-

sus is to pursue approximate solutions [12, 17] and sacrifice ex-

pressivity by identifying useful subclasses of DEC-POMDPs (e.g.,

transition-independent DEC-MDPs [2, 15], and event-driven DEC-

MDPs [1, 4, 10]). Such algorithms, through finding non-optimal

joint policies or exploiting the structure of a subclass, are able to

significantly reduce planning time.

In this continuing quest for efficiency, our research identifies a

subclass of distributed POMDPs that allows for significant speedups

in computing joint policies. We thus provide two key contributions.

The first is a new subclass: Distributed POMDPs with Coordina-

tion Locales (DPCL). DPCL is motivated by the many domains,

including those found in distributed POMDP literature, where mul-

tiple collaborative agents must perform multiple tasks. The agents

can usually act independently, but they interact in certain coordi-

nation locales, identified as a set of states and times where agents

could potentially need to coordinate, such as to avoid interfering

with each other’s task performance or to facilitate other agents’ task

performance. For example, in disaster rescue [8], multiple robots

may act to save multiple injured civilians. While often acting in-

dependently, the robots should avoid colliding with other robots

in a building’s narrow corridors, and could clear up debris along

the hallway to assist other robots. DPCL’s expressivity allows it to

model domains not captured in previous work: it does not require

transition independence [2], nor does it require that agents’ task

allocation and coordination relationships be known in advance [1,

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

10], but does account for local observational uncertainty.

Our second contribution is a novel approach to solving DPCLs:

TREMOR (Team’s REshaping of MOdels for Rapid execution), an

efficient algorithm for finding joint policies in DPCLs. TREMOR’s

primary novelty is that: (i) it plans for individual agents using

single-agent POMDP solvers, thus harnessing the most efficient

POMDP solution approaches; (ii) it then manages inter-agent coor-

dination via social model shaping — changing the transition func-

tions and reward functions of coordinating agents. While TREMOR

is an approximate approach and it will not apply to the most gen-

eral DEC-POMDPs, it does open a new line of attack on a large

subclass of problems. We show that even in the presence of sig-

nificant agent interactions, TREMOR can run orders of magnitude

faster than state-of-the-art algorithms such as MBDP [17] and pro-

vides higher solution quality.

2. MOTIVATING DOMAINS
Our work is motivated by cooperative multiagent domains where

agents must be assigned to different tasks. There are positive and

negative interactions when agents perform these tasks [16, 20].

Since tasks are initially unassigned, agent interactions are initially

unknown, but are limited to certain regions of the state space. Ex-

amples include disaster response [13] where fire-engines must be

assigned to fight fires and ambulances to save civilians, wilderness

search and rescue [5], and space exploration [6].

This paper focuses on urban disaster response where multiple

robots must save civilians trapped in a building following a disaster.

We use two types of robots, each of which must deal with sensing

and action uncertainty. Rescue robots provide medical attention to

victims. Cleaner robots remove potentially dangerous debris from

building corridors, lobbies, and walkways. Saving victims provides

a high reward, where the amount of reward depends on the victim’s

health status; cleaning up debris yields a lower reward (see Figure

1).

We model this as a discrete grid, where grid squares may be

“safe” or “unsafe.” Each agent begins with a health value of 3,

which is reduced by 1 if it enters an unsafe square. An agent is

disabled if its health falls to zero. Collisions may occur in narrow

hallways if two robots try to pass through simultaneously, resulting

in minor damage (cost) and causing one of the robots (chosen at

random) to move back to its previous state. If a rescue robot at-

tempts to traverse a “debris grid,” it will get delayed by one time

unit with high probability. A cleaner robot will instantly remove

debris from a grid it is in and receive a small positive reward. 1

1More details of the experimental domain and all DPCLs are shown
in Appendix A & B.

Figure 1: This figure shows a 4 × 4 domain (with 1089 joint

states). Two rescue robots plan to reach two victims. The rescue

robots may collide in narrow corridors; a cleaner robot can

remove debris to assist the rescue robots. Safeness of a grid

cell (not shown in figure) is only known with a certain degree of

certainty.

Each agent has eight actions: move in the four cardinal directions

and observe in each of the four cardinal directions. A movement ac-

tion may succeed or fail, and observational uncertainty may lead to

inaccurate information about movement success or safety of a lo-

cation. Every action has a small cost and a rescue robot receives a

high reward for being co-located with a victim, ending its involve-

ment in the task. When modeling this domain as a DEC-POMDP,

the goal of the planner is to obtain a reward-maximizing joint pol-

icy, where each policy assigns a rescue robot to a victim, and which

debris (if any) each cleaner robot will clean.

3. THE DPCL MODEL
In a DPCL, a team of N agents is required to perform a set of

M tasks, one agent per task but potentially many tasks per agent,

in the presence of transitional and observational uncertainty. Like

DEC-POMDPs, DPCL too is a tuple 〈S, A, P, R, Ω, O, b〉 where

S, A, and Ω and the sets of joint states, actions and observations;

P : S × A × S → [0, 1], R : S × A × S → ℜ, and O :
S × A × Ω → [0, 1] are the joint transition, reward, and observa-

tion functions respectively and b = ∆S is a starting belief region.

However, DPCL specializes from DEC-POMDPs in that it assumes

S := Sg×S1× . . .×SN where Sn is a set of local states of agent

n for 1 ≤ n ≤ N and Sg = (E×St) is a set of global states where

E = {e1, . . . , eH} is the set of decision epochs and St is a set of

task states st that keep track of the execution of tasks. Precisely,

st = (st,m)1≤m≤M where st,m ∈ {Done, NotDone} is the status

of execution of task m.

Finding optimal joint policies to DEC-POMDPs is NEXP-Complete

because the functions P , R and O are defined jointly, even if agent

interactions are limited — DPCL is designed specifically to over-

come this limitation. Let Pn : (Sg × Sn) × An × (Sg × Sn) →
[0, 1], Rn : (Sg × Sn) × An × (Sg × Sn) → ℜ and On :
(Sg × Sn) × An × Ωn → [0, 1] denote agent local transition, re-

ward and observation functions respectively. DPCL restricts DEC-

POMDPs in that it assumes that agent observations are fully in-

dependent, i.e., O((sg, s1, . . . , sN), (a1, . . . aN), (ω1, . . . ωN)) =
Q

1≤n≤N On((sg, sn), an, ωn) and that agent transitions and re-

wards are partially independent. Precisely, DPCL identifies sit-

uations where agent coordination is necessary, so that, with the

exception of these situations, P and R naturally decompose into

{Pn}1≤n≤N and {Rn}1≤n≤N . These situations, referred to as co-

ordination locales (CLs), are assumed in DPCL to be either same-

or future-time. 2

3.1 Same-time coordination locales (STCLs)
STCLs identify situations where state or reward resulting from

the simultaneous execution of actions by a subset of agents cannot

be described by the local transition and reward functions of these

agents. Formally, a STCL for a group of agents (nk)K
k=1 is a tuple

cls = 〈(sg, sn1
, . . . , snK

), (an1
, . . . , anK

)〉 where sg is the cur-

rent global state and (ank
)K
k=1 are the actions that agents (nk)K

k=1

execute in their current local states (snk
)K
k=1. For cls to qualify

as a STCL, there must exist joint states s = (sg, s1, . . . sN), s′ =
(s′g, s′1, . . . s

′
N) ∈ S and a joint action a = (an)N

n=1 ∈ A where

(snk
)K
k=1 and (ank

)K
k=1 are specified in cls, such that the joint tran-

sition or reward function is non-decomposable, i.e., P (s, a, s′) 6=
Q

1≤n≤N Pn((sg, sn), an, (s′g, s′n)) or R(s, a, s′) 6=
P

1≤n≤N Rn((sg, sn), an, (s′g, s′n)). The set of all STCLs is de-

noted as CLs.

3.2 Future-time coordination locales (FTCLs)
FTCLs identify situations an action impacts actions in the fu-

ture. Informally, because agents modify the current global state

sg = (e, st) as they execute their tasks, they can have a future

impact on agents’ transitions and rewards since both Pn and Rn

depend on sg . Formally, a FTCL for a group of agents {nk}
K
k=1

is a tuple 〈m, (snk
)K
k=1, (ank

)K
k=1〉 where m is a task number and

(ank
)K
k=1 are the actions that agents (nk)K

k=1 execute in their cur-

rent local states (snk
)K
k=1. For clf to qualify as a FTCL, the actual

rewards or transitions of agents (nk)K
k=1 caused by the simulta-

neous execution of actions (ank
)K
k=1 from states states (snk

)K
k=1

must be different for st,m = Done and NotDone for some global

state sg = (e, st) ∈ Sg . Precisely, there must exist: (i) starting

joint states s = (sg, s1, . . . sN), s = (sg, s1, . . . sN) ∈ S where

(snk
)K
k=1 are specified in clf and sg = (e, st) differs from sg =

(e, st) only on st,m 6= st,m; (ii) a joint action a = (an)N
n=1 ∈ A

where (ank
)K
k=1 are specified in clf and (iii) ending joint states

s′ = (s′g, s′1, . . . s
′
N), s′ = (s′g, s′1, . . . s

′
N) ∈ S where s′g =

(e′, s′t) differs from s′g = (e′, s′t) only on s′t,m 6= s′t,m such that

either P (s, a, s′) 6= P (s, a, s′) or R(s, a, s′) 6= R(s, a, s′). The

set of all FTCLs is denoted as CLf .

Example: Consider a rescue robot from the domain in Section

2, entering a narrow corridor. If another robot were to attempt to

enter the same narrow corridor simultaneously, one of them would

transition back to starting state and the robots would damage each

other (STCL). If the narrow corridor had debris and a cleaner robot

completed the task of removing this debris, the rescue robot would

traverse the corridor faster (FTCL).

4. SOLVING DPCLS WITH TREMOR
We are interested in providing scalable solutions to problems

represented using the DPCL model. To this end, we provide TREMOR,

an approximate algorithm that optimizes expected joint reward while

exploiting coordination regions between agents. TREMOR accounts

for the coordination locales, using a two stage algorithm: (1) A

branch and bound technique to efficiently search through the space

of possible task assignments. (2) Evaluating task assignments (for

step (1) above) in the presence of uncertainty (transitional and ob-

servational) and coordination locales.

2If agent interactions are limited, |CLs| + |CLf | ≪ |dom(P)|
and DPCLs are easier to specify than equivalent DEC-POMDPs.

Figure 2: This diagram depicts the branch and bound search.

4.1 Branch and Bound Search
Multiagent planning problems often have a large number of pos-

sible task assignments, precluding exhaustive evaluation. TREMOR

incorporates a Breadth-first Branch and Bound search algorithm

to exploit task decomposition among a team, significantly prun-

ing the search space. In order to aid the search, we compute up-

per bounds on the expected value of joint policy using a heuris-

tic that solves the decision problems of agents as MDPs (ignoring

the observational uncertainty). Search begins with computation of

upper-bounds for all task assignments and evaluation of the task as-

signment with highest upper-bound using TREMOR. Any assign-

ment with an upper-bound lower than a complete evaluation calcu-

lated by TREMOR is pruned. Task assignments 3 with the highest

heuristic evaluations are repeatedly evaluated until all remaining

allocations are evaluated or pruned (see Figure 2).

4.2 Task Assignment Evaluation
At this point of algorithmic execution, agents have been assigned

their tasks and an optimal joint policy consistent with this assign-

ment has to be found. Since the problem is still NEXP-Complete,

TREMOR’s approach in evaluating the current task assignment is

to search for a locally optimal joint policy (see Algorithm 1). To

that end, TREMOR initially finds the optimal joint policy assum-

ing that agents are not interacting, i.e., by solving individual agent

POMDPs (lines 1–3). Note that we can employ state of the art

POMDP solvers to solve a POMDP in SOLVEPOMDP() (line 3).

We then try to improve the joint policy (lines 5–41) until no agent

policies can be changed.

At each iteration, we re-compute policies πi for all agents which

are part of the sets In, where 1 ≤ n ≤ N . This set includes agents

whose local transition, Pi, and reward functions, Ri, have been

changed due to interactions with agent n. TREMOR considers

interactions due to STCLs (lines 6–21) and FTCLs (lines 22–38)

separately.

3Note that TREMOR allows the number of agents and tasks to be
unequal, as well as allowing an agent to be assigned to multiple
tasks.

Upon verifying that a STCL c, 〈(st, sn1
, . . . , snK

), (an1
, . . . , anK

)〉,
involves agent n (line 8), the algorithm computes the difference

R+ − R− in the expected utility, EU(πn) for agent n’s policy,

given that the transition, Pn and reward functions, Rn of agent n
are updated for state action pairs in c. TREMOR then computes the

probability, ĉ, that c will occur given the current joint policy, π, and

uses ĉ to determine the shaping reward R∆. Depending on whether

c is beneficial to agent n or not, the algorithm behaves differently.

If the shaping reward is positive (beneficial to agent n; lines 15–

17), agents are encouraged to follow policies that induce c. The

agent is influenced by adding a fraction R∆/K of the shaping re-

ward to local reward functionRi of each agent. To ensure a coher-

ent dynamic model for the agents after interaction, local transition

models of agents are then redefined by using the global transition

function P (for local state-action pairs resulting in c); such redef-

inition could potentially take into account the probability of co-

ordination locales (although not used in our implementation). To

calculate the old transition functions of each agent, Pi, we first

“extract” the old probability of transitioning from one agent state

to another given its action and a status of task, st. Let e, e′ ∈ E be

the starting and ending decision epochs for that transition, ai ∈ Ai

be the agent’s action, si, s
′
i ∈ Si be the starting and ending local

agent states, st, s
′
t ∈ St be the starting and ending task states. The

local transition probability of agent i assuming a STCL c does not

occur, Pi,¬c(((e, st), si), ai, ((e
′, s′t), s

′
i)), is given as a domain

input. We derive the local transition probability of agent i assum-

ing c occurs, Pi,c(((e, st), si), ai, ((e
′, s′t), s

′
i)), from a given joint

transition function, and update Pi using ĉ and derived probabilities.

Formally:

Pi,c(((e, st), si), ai, ((e
′, s′t), s

′
i))←

X

n

∀s′nk
∈S,k 6=i

o

P ((sn1
, . . . , snK

), (an1
, . . . , anK

), (s′n1
, . . . , s′ni

, . . . , s′nK
)),

Pi ← ĉ× Pi,c(((e, st), si), ai, ((e
′, s′t), s

′
i))

+(1− ĉ)× Pi,¬c(((e, st), si), ai, ((e
′, s′t), s

′
i))

In contrast, if the shaping reward is negative (not beneficial to

agent n; lines 18–21) agents in coordination locale c are discour-

aged from policies that induce c, except for agent n which is given

no incentive to modify its behavior. As c will not occur in this

interaction, there is no need to redefine the agent local transition

functions in terms of the joint transition function P . To update the

reward and transition functions in an STCL, consider the follow-

ing example from our domain. A STCL occurs when two robots, i
and j, bump into each other in a narrow corridor. We are initially

given the transition probability of an individual robot i’s traveling

through the corridor alone (as input). When two robots’ policies

create an STCL (agents i and j bump into each other in the narrow

corridor), we first check if the STCL is beneficial or not. If it is

non-beneficial, we provide a negative reward to one of the robots

(robot j) to encourage it to avoid the narrow corridor; the robots’

transition functions are not modified since this STCL will not occur.

Although this would not happen in our example domain, a benefi-

cial STCL would need a positive shaping reward. We then update

the transition function Pi of robot i, using the transition probabili-

ties Pi when bumping occurs and when it does not occur, using the

updating formula above.

TREMOR then considers all FTCLs:

c ∈ CLf , 〈m, (snk
)K
k=1, (ank

)K
k=1〉, involving agent n (lines 22–

38). To that end, it computes probabilities, P
e,s

+
t,m

π , that a task

is completed by a decision epoch, e, when the joint policy π is

executed. These probabilities are used to determine the sum of ex-

pected utilities for the current policies of the agents, R+ and R−,

when agent n completes task m and when task m was never com-

pleted respectively. As in STCLs, TREMOR computes the shaping

reward R∆ = (R+ − R−) · P
e,s

+
t,m

π . When the shaping reward

is positive (coordination locale c is beneficial, lines 29–32), agents

participating in coordination locale c will have their transition func-

tions, Pi, modified using heuristics to reflect that in each decision

epoch e ∈ E, task m can be moved to Done state from NotDone,

with probability P
e,s

+
t,m

π .

For FTCLs, a heuristic similar to that used for STCLs is applied,

updating the local transition functions of each agent. First we “ex-

tract” the old probability of transitioning given its action and a sta-

tus of specific task m that will be done by another agent j from Pi.

Let st ∈ St be the starting task state where task m (that some other

agent j executes) is not yet completed, i.e., st,m = NotDone
and s′+t , s′−t ∈ St be two possible ending task states that dif-

fer on the status of execution of task m, i.e., s′+t,m = Done and

s′−t,m = NotDone. According to the old function Pi, agent i “be-

lieved” with a certain probability that task m will be completed

by agent j in decision epoch e. Initially, Pi(((e, st,m), si), ai,
((e′, s′+t,m), s′i))) and Pi(((e, st,m), si), ai, ((e

′, s′−t,m), s′i))) are given

as a domain input, and used for updating Pi. Now, agent j is shap-

ing the transition function of agent i and it makes agent i “believe”

that task m will be completed decision in epoch e with a different

probability. Agent j’s commitment to the completion of its task m
has changed, i.e., task m will now be completed in decision epoch

e with probability P
e,s

+
t,m

π – agent i’s new transition function Pi

should then be updated with this new information. For a given task

m, we typically have the explicit task status pair, (st,m, s′t,m). We

calculate P
e,s

+
t,m

π for each (st,m, s′t,m) separately and keep updat-

ing Pi iteratively for all tasks. Formally:

Pi ← P
e,s

+
t,m

π × Pi(((e, st,m), si), ai, ((e
′, s′+t,m), s′i)))

+(1− P
e,s

+
t,m

π)× Pi(((e, st,m), si), ai, ((e
′, s′−t,m), s′i)))

We could further generalize this updating step by summing over

all current and future task states, however, that would increase the

complexity of transition function shaping.

In contrast, if the shaping reward is not beneficial (lines 33–36)

agents will have their transition functions Pi modified to reflect

that st,m cannot change from NotDone to Done in any decision

epoch. At last, whenever agent n can execute task m, the current

shaping reward R∆ is added to its local reward function Rn, to

either encourage (if R∆ > 0) or discourage (if R∆ < 0) agent n
from executing task m. The algorithm terminates the task assign-

ment evaluation if the current joint policy cannot be improved, i.e.,

all the sets In for 1 ≤ n ≤ N are empty or the number of model

refinements is greater than maximum number of iterations.

5. EMPIRICAL RESULTS
This section demonstrates that TREMOR can successfully solve

DPCL problems orders of magnitude faster than required by exist-

ing locally optimal algorithms, while still discovering policies of

comparable value. To that end, we evaluate TREMOR’s perfor-

mance on a set of disaster rescue tasks (described in Section 2) by

comparing its planning time and solution value with three existing

planning approaches.

Algorithm 1 TREMOR-EvalTaskAssignment(Agents, Tasks)

1: for agent n = 1, . . . , N do
2: POMDPn ← CONSTRUCTPOMDP (n, Tasks[n])
3: πn ← SOLVEPOMDP(POMDPn)
4:
5: repeat
6: for agent n = 1, . . . , N do
7: In ← ∅
8: for c = 〈(sg , sn1

, ..., snK
)(an1

, ..., anK
)〉 ∈ CLs such that

n ∈ {nk}1≤k≤K do

9: R− ← EU(πn)
10: R+ ← EU(πn when Pn and Rn are redefined

in terms of joint functions P and R for arguments
((sg , sn), an, (s′g , s′n)) for all (s′g , s′n) ∈ Sg × Sn)

11: ĉ← Pπ((sg , sn1
, ..., snK

)(an1
, ..., anK

))

12: R∆ ← (R+ −R−) · ĉ
13: if R∆ > 0 then
14: In ← In ∪ {nk}1≤k≤K

15: for agent i ∈ {nk}1≤k≤K and (s′g , s′i) ∈ Sg × Si do

16: Ri((sg, si), ai, (s
′
g , s′i))

+
←− R∆/K

17: Pi ← Pi redefined in terms of P for arguments
((sg, si), an, (s′g, s′i)) for all (s′g , s′i) ∈ Sg × Si

18: else if R∆ < 0 then
19: In ← In ∪ ({nk}1≤k≤K \ {n})
20: for agent i ∈ {nk}1≤k≤K \{n} and (s′g, s′i) ∈ Sg×Si

do

21: Ri((sg, si), ai, (s
′
g , s′i))

+
←− R∆/(K − 1)

22: for c = 〈(m, (sn1
, ..., snK

)(an1
, ..., anK

))〉 ∈ CLf such
that m ∈ Tasks[n] do

23: for all e ∈ E do

24: P
e,s

+
t,m

π ←
P

((e,st),s1,...sN)∈S
:st,m=Done;a∈A

Pπ(s, a)

25: R+ ←
PK

k=1 EU(πnk
given that task m will be completed

in epoch e ∈ E with probability P
e,s

+
t,m

π)

26: R− ←
PK

k=1 EU(πnk
if task m not completed)

27: ĉ←
P

sg∈Sg
Pπ((sg , sn1

, ..., snK
)(an1

, ..., anK
))

28: R∆ ← (R+ −R−) · ĉ
29: if R∆ > 0 then
30: In ← In ∪ {nk}1≤k≤K ∪ {n}
31: for agent i ∈ {nk}1≤k≤K and e ∈ E do
32: Modify Pi knowing that in each epoch e ∈ E, st,m

can change from NotDone to Done with probability

P
e,s

+
t,m

π)
33: else if R∆ < 0 then
34: In ← In ∪ {nk}1≤k≤K ∪ {n}
35: for agent i ∈ {nk}1≤k≤K do
36: Modify Pi knowing that in each epoch e ∈ E, st,m

cannot change from NotDone to Done
37: for all ((sg , sn), an, (s′g , s′n)) ∈ (Sg×Sk)×An× (Sg×

Sk) : st differs from s′t on st,m 6= s′t,m do

38: Rn((st, sn), an, (s′t, s
′
n)

+
←− R∆

39: for all i ∈ In do
40: πi ← SOLVEPOMDP(POMDPi)
41: until ∪1≤n≤N In = ∅ or maximum iterations

5.1 Experimental Setup
TREMOR employs EVA [18, 19] as the single agent POMDP

solver. We compare against JESP (Joint Equilibrium-based Search

for Policies) [12] and MBDP (Memory-Bounded Dynamic Pro-

gramming for DEC-POMDPs) [17], two of the leading approxi-

mate algorithms for solving DEC-POMDPs. Lastly, we consider

a planner that ignores interactions between agents, i.e. TREMOR

without any coordination locales (call independent POMDPs). All

planners are given a maximum wall-clock time of 4 hours.

TREMOR and EVA’s parameters were set as follows: maximum

iterations of TREMOR= 50, and ǫ = 5.0. MBDP experiments used

the parameters suggested by the authors: type of algorithm = ap-

proximate, max. number of trees = 3, max. number of observations

for the improved MBDP algorithm = 2, depth of recursion = 2,

and backup type = Improved Memory-Bounded Dynamic Program-

ming. JESP has no tunable parameters.

Experiments were run on quad-core Intel 3.2GHz processors with

8GB of RAM. Each approach was run 20 times on each DPCL and

we report the average wall-clock time. For computing expected

value of a joint policy, we averaged over 500 runs.

5.2 State Space
This set of experiments show that TREMOR can handle large

state spaces, unlike existing algorithms. Every experiment has a

time horizon of 10, one cleaner robot, and two rescue robots. The

state space changes from 81 to 6561 joint states (2 × 2 to 4 × 10
grids). Figure 3a shows scaling of TREMOR’s runtime with respect

to the size of state space. The x-axis shows the number of joint

states in the problem and the y-axis shows log (plan time in sec).

MBDP is only able to solve tasks of up to 361 joint states within

the time limit and requires 1.5–2.9 orders of magnitude more time

than TREMOR. Independent POMDPs plan faster than TREMOR

as they disregard all inter-agent interactions.

Figure 3b displays the average reward accrued by polices on the

y-axis over the same set of tasks as in 3a. TREMOR outperforms

MBDP, even though MBDP is an algorithm that plans on the joint

models and we expected it to account for interactions better. In ad-

dition, TREMOR also achieved the statistically significant result

of outperforming independent POMDPs with respect to average

reward, although using up to 1.6 orders of magnitude more time

(p < 1.5× 10−9).

TREMOR’s runtime does not increase monotonically with the

size of the state or horizon as shown in Figure 3. It depends on

(i) the time it takes to resolve interactions for each resolution itera-

tion (lines 6–40 in Algorithm 1), (ii) the maximum number of such

iterations, both of which change depending on the details of each

DPCL.

JESP was unable to solve any task within the time limit and thus

is not shown. For illustrative purposes, we ran JESP on a 81 joint

state problem with T=2 (reduced from T=10). It finished execut-

ing in 228 seconds, yielding a reward of 12.47, while TREMOR

required only 1 second and received a reward of 11.13.

5.3 Time Horizon
The second set of experiments consider an increasing time hori-

zon from T=2–23, shown in Figures 3c and 3d. These experiments

show increased episode lengths lead to higher planning times, but

that TREMOR can generate deep joint-policy trees. We considered

problems with two rescue robots, one cleaning robot and 361 joint

states.

MBDP is able to solve tasks up through T=14, but takes at least

2.6 orders of magnitude more time than TREMOR, while its final

policies’ rewards are dominated by TREMOR’s policies. TREMOR

requires at most 1.1 orders of magnitude more time than indepen-

dent POMDPs, but produces policies that accrue significantly more

reward.

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Number of tasks

Number of Tasks: Running Time

Maximum time limit
TREMOR

Independent POMDPs -30

-20

-10

 0

 10

 20

 30

 1 2 3 4 5 6 7 8

R
e
w

a
rd

Number of tasks

Number of Tasks: Reward

TREMOR
Independent POMDPs

Figure 4: Agents and Tasks Scale-Up

5.4 Number of Agents and Tasks
The third set of experiments keep the state space and time hori-

zon constant (1089 joint states and T=10) and show that TREMOR

scales well with the number of agents. In fact, TREMOR’s im-

provement over independent POMDPs increases with the number

of agents. Figure 4a and 4b show the running time and reward ac-

crued on tasks with one cleaning robot and 1–8 rescue robots (the

number of victims and rescue robots are equal).

As shown in Figure 4b, TREMOR and the Independent POMDPs’

rewards diverge as the number of agents (and tasks) are increased

due to increasing numbers of CLs. Increased number of interac-

tions leads to a higher runtime for TREMOR, but also higher re-

wards. In contrast, the runtime of independent POMDPs do not

increase as dramatically, but rewards suffer as they are increasingly

penalized for their lack of coordination. MBDP fails to solve any

case with two or more tasks within the time limit. 4 TREMOR re-

quires between 0.35 and 1.73 orders of magnitude more time than

independent POMDPs, but produces policies that accrue signifi-

cantly more reward.

5.5 Number of CLs
The last set of experiments show how TREMOR performs when

the number of CLs changes: more CLs imply more inter-agent in-

teractions, increasing TREMOR’s overhead and reducing its bene-

fit relative to MBDP. All experiments have 361 joint states, T=10,

two rescue robots, and one cleaning robot; these settings were cho-

sen explicitly so that MBDP could complete the task within the

cutoff time. Figure 5a and 5b show the running time and reward

with various number of CLs. The performance of TREMOR de-

pends on the number of CLs and maximum number of resolution

interactions. As we discussed in the previous section, TREMOR is

well-suited for domains which require limited coordination. These

results demonstrate that the running time increases and reward de-

creases when more coordination is required. It should be noted that

TREMOR can trade off time and quality by tuning the maximum

number of model refinement iterations.

MBDP is able to discover a joint policy superior to TREMOR

for very large numbers of CLs. For the problem with the number of

CLs = 1368, MBDP received a higher reward than TREMOR and

independent POMDPs, although it continues to require more time.

We have shown TREMOR’s superior scalability with respect to

state space, time horizon, number of agents and tasks, and num-

ber of coordination locales. Furthermore, TREMOR provided so-

lutions of comparable, or even superior, quality to those found by

existing DEC-POMDP solvers.

4We did not try MBDP with one task because there are no interest-
ing same-time coordination locales.

 1

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Number of joint states

State Space: Running Time

Maximum time limit
MBDP

TREMOR
Independent POMDPs

-25

-20

-15

-10

-5

 0

 5

 10

 0 1000 2000 3000 4000 5000 6000 7000

R
e
w

a
rd

Number of joint states

State Space: Reward

TREMOR
MBDP

Independent POMDPs

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Time horizon

Time Horizon: Running Time

Maximum time limit
MBDP

TREMOR
Independent POMDPs

-15

-10

-5

 0

 5

 10

 0 5 10 15 20 25

R
e
w

a
rd

Time horizon

Time Horizon: Reward

TREMOR
MBDP

Independent POMDPs

Figure 3: Comparison with MBDP and Independent POMDPs: State Space and Time Horizon Scale-Up.

 0.1

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Number of CLs

Number of CLs: Running Time

Maximum time limit
MBDP

TREMOR w/ 100 iter.
TREMOR w/ 20 iter.
TREMOR w/ 5 iter.

Independent POMDPs

-15

-10

-5

 0

 5

 10

 15

 0 200 400 600 800 1000 1200

R
e
w

a
rd

Number of CLs

Number of CLs: Reward

TREMOR w/ 100 iter.
TREMOR w/ 20 iter.

TREMOR w/ 5 iter.
MBDP

Independent POMDPs

Figure 5: CLs Scale-Up

6. RELATED WORK AND CONCLUSIONS
As mentioned earlier, others have done significant work to iden-

tify classes of DEC-POMDPs that may be solved efficiently. For

example, Becker et al. [2] assume an individually observable do-

main where agents are transition independent. ND-POMDPs build

on transition-independence and add network structure interactions [9].

Though DPCL assumes individual observability, it differs due to

transition dependence (captured using coordination locales), thus

focusing on a broad new class of multiagent applications. Task-

based ED-DEC-MDPs [1, 4, 10] leverage pre-specified task alloca-

tion and dependencies to reduce the search space. This is another

key differentiating factor in DPCL, where task allocations and de-

pendencies are not part of the model.

Others have also examined how to combine role allocation with

distributed POMDP solvers [13], exploiting problem structure to

speed up policy search. Oliehoek et al. [14] also exploit problem

structure — factored DEC-POMDPs — but assume observation-

dependence. TREMOR differs from these and other DEC-POMDP

algorithms in its fundamental approach by employing single-agent

POMDPs and exploiting social model shaping to manage inter-

agent interactions. In this sense, TREMOR shares some similarity

with other MDP-related work [7] where subsystems can plan sepa-

rately, but can iteratively re-plan if the subsystems interact unfavor-

ably. However, the use of POMDPs and social model shaping sets

our work apart. Lastly, shaping rewards have been previously used

in multi-agent contexts (c.f., Matarić [11]), but are typically present

to assist agents via human-specified rewards. In TREMOR, shap-

ing rewards are used to allow coordination between agents without

explicit multi-agent planning and are determined autonomously.

This paper has introduced TREMOR, a fundamentally different

approach to solve distributed POMDPs. TREMOR is an approx-

imate algorithm and it does not apply to general DEC-POMDPs.

However, it is extremely efficient for solving DPCLs, an important

subclass of distributed POMDPs. This subclass includes a range of

real-world domains where positive or negative agent interactions

occur in a relatively small part of the overall state space. By iter-

atively discovering interactions and using shaping of models to in-

fluence efficient individual POMDPs, TREMOR enables a team of

agents to act effectively and cohesively in environments with action

and observation uncertainty. The main insight behind TREMOR is

using social reward and transition shaping allows a DEC-POMDP

to be approximated by a set of single-agent POMDPs. TREMOR

can thus also exploit advances in single-agent POMDP solvers.

Extensive experimental results show how TREMOR provides dra-

matic speedups over previous distributed POMDP approaches with-

out sacrificing expected reward.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments and sug-

gestions, and Alan Carlin for providing us with the source code for

MBDP. This work was supported in part by US. Army SBIR con-

tract number W15P7T-09-C-S601, DARPA SBIR contract number

W31P4Q-06-0286, and Perceptronics Solutions, Inc.

8. REFERENCES

[1] R. Becker, S. Zilberstein, and V. Lesser. Decentralized

Markov Decision Processes with Event-Driven Interactions.

In AAMAS, 2004.

[2] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.

Solving Transition Independent Decentralized Markov

Decision Processes. JAIR, 22, 2004.

[3] D. S. Bernstein, S. Zilberstein, and N. Immerman. The

complexity of decentralized control of markov decision

processes. In UAI, 2000.

[4] A. Beynier and A. Mouaddib. A polynomial algorithm for

Decentralized Markov Decision Processes with temporal

constraints. In AAMAS, 2005.

[5] J. Cooper and M. Goodrich. Towards combining UAV and

sensor operator roles in UAV-enabled visual search. In HRI,

2008.

[6] D. Goldberg, V. Cicirello, and M. B. Dias. A distributed

layerd architecture for mobile robot coordination:

Application to space exploration. In NASA Workshop on

Planning and Scheduling for Space, 2002.

[7] C. Guestrin and G. Gordon. Distributed planning in

hierarchical factored MDPs. In UAI, 2002.

[8] H. Kitano and S. Tadokoro. RoboCup Rescue: A Grand

Challenge for Multiagent and Intelligent Systems. AI

Magazine, March 2001.

[9] J. Marecki, T. Gupta, P. Varakantham, M. Tambe, and

M. Yokoo. Not all agents are equal: Scaling up distributed

pomdps for agent networks. In AAMAS, 2008.

[10] J. Marecki and M. Tambe. On opportunistic techniques for

solving decentralized MDPs with temporal constraints. In

AAMAS, 2007.

[11] M. J. Matarić. Reinforcement learning in the multi-robot

domain. Autonomous Robots, 4, 1997.

[12] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella.

Taming decentralized POMDPs: Towards efficient policy

computation for multiagent settings. In IJCAI, 2003.

[13] R. Nair and M. Tambe. Hybrid BDI-POMDP framework for

multiagent teaming. JAIR, 23, 2005.

[14] F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis.

Exploiting locality of interaction in factored DEC-POMDPs.

In AAMAS, 2008.

[15] M. Petrik and S. Zilberstein. Anytime coordination using

separable bilinear programs. In AAAI, 2007.

[16] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe.

Allocating tasks in extreme teams. In AAMAS, 2005.

[17] S. Seuken and S. Zilberstein. Improved memory-bounded

dynamic programming for decentralized POMDPs. In UAI,

2007.

[18] P. Varakantham, R. Maheswaran, and M. Tambe. Exploiting

belief bounds: Practical POMDPs for personal assistant

agents. In AAMAS, 2005.

[19] P. Varakantham, R. T. Maheswaran, T. Gupta, and M. Tambe.

Towards efficient computation of error bounded solutions in

POMDPs: Expected Value Approximation and Dynamic

Disjunctive Beliefs. In IJCAI, 2007.

[20] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating

hundreds of cooperative, autonomous vehicles in

warehouses. In AAAI, 2007.

Table 1: State transition function
State State1 Action Probability

Safe Safe Success Psafety × (1− PactionFailure)
Failure Psafety × PactionFailure

Unsafe Success (1− Psafety)× (1− PactionFailure)
Failure (1− Psafety)× PactionFailure

Unsafe Safe Success Psafety × (1− PactionFailure)
Failure Psafety × PactionFailure

Unsafe Success (1− Psafety)× (1− PactionFailure)
Failure (1− Psafety)× PactionFailure

Table 2: Reward function
Action Reward

Saving the victim (only rescue robots) +8.0

Cleaning debris (only cleaning robots) +1.0

Moving and observing -0.2

Collisions -4.0

Dead -10.0

APPENDIX

A. DPCL FOR TREMOR
〈S, A, P, R, Ω, O, b〉 with STCLs, FTCLs

(1) S: set of world states (row, column, health): {(0, 0, 0), (0, 1,

0), (0, 2, 0), ..., }
Row and Column: 0− n, Health value for each robot: 0−m.

(2) A: actions: A = {move north, move east, move south, move

west, observe north, observe east, observe south, observe west}

(3) P : state transition function: Transition to a state based on

how the health of the robot will be affected due to safety of destina-

tion cell (Psafety) and probability of action failure (PactionFailure).

Psafety: assigned randomly, PactionFailure: 0.2 (See Table 1).

In case of collisions between savers (same time coordination lo-

cale, STCL), the transition probabilities of states are dependent on

actions of other agents. For instance in a collision between two

agents in a narrow corridor (x, y), an agent gets to that cell and the

other agent goes back to the originating cell. If agents are starting

from different cells and colliding in (x, y), this happens with 0.5

probability for each agent.

In case of coordination due to cleaning of debris (future time

coordination locale, FTCL), the debris is cleared by the cleaner

robot and cleaning action is guaranteed to succeed all the time.

(4) R: reward function (See Table 2).

(5) O: observations. O = {Success/Failure for moving action,

Safe/Unsafe for observing action} (See Table 3).

(6) STCLs (same-time coordination locales): situations where

state or reward resulting from the simultaneous execution of ac-

Table 3: Observations
Action State Observation Probability

Moving Success Success 0.8

Failure 0.2

Failure Success 0.6

Failure 0.4

Observing Safe Safe 0.8

Unsafe 0.2

Unsafe Safe 0.6

Unsafe 0.4

tions.

cls = 〈(sg, sn1
, . . . , snK

), (an1
, . . . , anK

)〉 where sg is the

current global state and (ank
)K
k=1 are the actions that agents (nk)K

k=1

execute in their current local states (snk
)K
k=1.

(7) FTCLs (future-time coordination locales): situations an ac-

tion impacts actions in the future.

clf = 〈m, (snk
)K
k=1, (ank

)K
k=1〉 where m is a task number and

(ank
)K
k=1 are the actions that agents (nk)K

k=1 execute in their cur-

rent local states (snk
)K
k=1.

B. EXPERIMENTAL DOMAIN
(1) State Space Scale-Up: 2×2 (# of joint states: 81) – 4×10 (#

of joint states: 6561) (See Figure 6).

Figure 6: 4×10 (# of joint states: 6561), T=10: 2 rescue robots,

2 victims, 1 cleaning robot, 2 debris, & 11 narrow corridors.

One example case both CLs can happen:

Saver0: (3, 0)→ (2, 0)→ (1, 0)→ (1, 1)→ (1, 2)→ (1, 3)→
(1, 4)→ (1, 5)→ (1, 6)

Saver1: (3, 0)→ (3, 1)→ (3, 2)→ (2, 2)→ (2, 3)→ (2, 4)→
(2, 5)→ (1, 5)→ (1, 6)

Cleaner0: (1, 4)→ (1, 3)→ (1, 2)

STCL happens between savers on (1, 5) at T=7:

cls7 : 〈(sg7, s14, s25), (a1, a0)〉, where
sg7 : (NotDone0, NotDone1, 7)
s14 : (1, 4, 1)
s25 : (2, 5, 1)
a1 : move east

a0 : move north

FTCL happens between Saver0 and Cleaner0 at debris0’s

location (1, 2):

clf1 : 〈m2, (s11, s13), (a1, a3)〉, where
m2 : cleaningdebris0at(1, 2)
s11 : (1, 1, 1)
s13 : (1, 3, 1)
a1 : move east

a3 : move west

(2) Time Horizon Scale-Up: T=2 – 23 (See Figure 7).

(3) Number of Agents and Tasks Scale-Up: 1–8 rescue robots,

1–8 victims (See Figure 8).

(4) Number of Coordination Locales Scale-Up: 0 narrow cor-

ridor (# of CLs: 0) – 7 narrow corridors (# of CLs: 1368) (See

Figure 9).

Figure 7: 3×3 (# of joint states: 361), T=2–23: 2 rescue robots,

2 victims, 1 cleaning robot, 2 debris, & 3 narrow corridors.

Figure 8: 4×4 (# of joint states: 1089), T=10: 1–8 rescue robots,

1–8 victims, 1 cleaning robot, 2 debris, & 3 narrow corridors.

Figure 9: 3×3 (# of joint states: 361), T=10: 2 rescue robots, 2

victims, 1 cleaning robot, 2 debris, & 0–7 narrow corridors.

