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ABSTRACT

Communication overheads are one of the fundamental chal-
lenges in a multiprocessor system. As the number of proces-
sors on a chip increases, communication overheads and the
distribution of computation and data become increasingly
important performance factors. Explicit Dataflow Graph
Execution (EDGE) processors, in which instructions com-
municate with one another directly on a distributed sub-
strate, give the compiler control over communication over-
heads at a fine granularity. Prior work shows that compilers
can effectively reduce fine-grained communication overheads
in EDGE architectures using a spatial instruction placement
algorithm with a heuristic-based cost function. While this
algorithm is effective, the cost function must be painstak-
ingly tuned. Heuristics tuned to perform well across a va-
riety of applications leave users with little ability to tune
performance-critical applications, yet we find that the best
placement heuristics vary significantly with the application.

First, we suggest a systematic feature selection method
that reduces the feature set size based on the extent to
which features affect performance. To automatically dis-
cover placement heuristics, we then use these features as
input to a reinforcement learning technique, called Neuro-
Evolution of Augmenting Topologies (NEAT), that uses a
genetic algorithm to evolve neural networks. We show that
NEAT outperforms simulated annealing, the most commonly
used optimization technique for instruction placement. We
use NEAT to learn general heuristics that are as effective
as hand-tuned heuristics, but we find that improving over
highly hand-tuned general heuristics is difficult. We then
suggest a hierarchical approach to machine learning that
classifies segments of code with similar characteristics and
learns heuristics for these classes. This approach performs
closer to the specialized heuristics. Together, these results
suggest that learning compiler heuristics may benefit from
both improved feature selection and classification.
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1. INTRODUCTION
Achieving instruction-level parallelism requires a proces-

sor to exploit concurrency among instructions without im-
posing communication delays that negate the benefits of that
concurrency. As concurrency becomes commonplace, mini-
mizing communication delays will become increasingly im-
portant, especially for fine-grained parallelism. When plac-
ing instructions for an Explicit Dataflow Graph Execution
(EDGE) processor, the compiler must manage both concur-
rency and communication at a fine granularity. In partic-
ular, instruction placement for the TRIPS system [21], an
EDGE processor that uses static placement, is a very com-
plex task. Unlike approaches for FPGA place-and-route and
VLIW instruction placement, instruction issue times are un-
known at compile time in TRIPS. This uncertainty, along
with unknown memory latencies, makes it more difficult for
the compiler to reason about the relative quality of different
placements.

In addition, the search space of possible placements scales
exponentially with the number of machine instructions in
the program. As a result, the search space for instruction
placement is larger than that of many other compiler opti-
mizations. For example, the search space for function in-
lining scales exponentially with the number of call sites in
the program. The instruction placement problem is a good
target for machine learning because the solution space is
large and the compiler must make its decisions with only
estimates of runtime behavior.

In this study we pay careful attention to feature selec-
tion for reinforcement learning. Reinforcement learning al-
gorithms perform best with fewer features because fewer fea-
tures yield a smaller search space. Unlike prior work that
uses correlation or covariance techniques, such as principal
components analysis [1, 2], we propose a method that takes
into account each feature’s effect on performance. We mea-
sure execution time on TRIPS hardware using placements



derived from cost models that systematically vary the coef-
ficient of each feature. We then filter out those features that
are poor predictors of performance using a dimensionality
reduction technique called lasso regression [27]. Finally, we
use traditional correlation techniques to eliminate redundant
features. We use these techniques to select features that af-
fect performance, and we use those features as input to a
machine learning algorithm.

We use machine learning to evolve a cost function that
finds good placements. We select Neuro-Evolution of Aug-
menting Topologies (NEAT) [23] because it is effective, pop-
ular, and publicly available. We use a standard learning
methodology, as follows. We train our instruction place-
ment cost function on a set of representative benchmarks
using measurements on the TRIPS hardware, and then eval-
uate the learned heuristic on new benchmarks, not included
in training. Our results show that the hand-tuned heuristics
described in prior work are actually very good general solu-
tions; the heuristics learned on a training set of benchmarks
were unable to significantly improve upon them when tested
on novel benchmarks.

When training and testing on individual benchmarks, how-
ever, we find significant room for improvement. We propose
using an hierarchical algorithm, that rather than discovering
a single general solution, allows the compiler to choose from
among a variety of heuristics based on characteristics of the
code being compiled. We suggest a clustering technique that
uses clustering to find segments of code that require simi-
lar heuristics to perform well, and then use classification to
differentiate those segments of code. We suspect that a sim-
ilar hierarchical approach could be beneficial for other com-
piler heuristics such as function inlining, classic instruction
scheduling, or register allocation, where the best heuristic
may vary with characteristics of the method or other code
segment being compiled.

2. BACKGROUND
This section provides background information describing

instruction placement for the TRIPS system [21], the spatial
path scheduling algorithm [6], and the machine learning al-
gorithm, NEAT [23], that we use to optimize the heuristics
for that algorithm.

2.1 Instruction placement for TRIPS
An Explicit Dataflow Graph Execution (EDGE) ISA breaks

a program into a sequence of multi-instruction blocks that
commit atomically. The atomic blocks commit in a sequen-
tial fashion. The register file is used only to communicate
information between blocks, with register reads and writes
occurring only at the beginning and the end of a block.
Within each block, instructions execute in dataflow fash-
ion. Instructions explicitly encode their location and the
locations of their target instructions on a distributed sub-
strate. The processor dynamically issues instructions once
all of their source operands have arrived. After performing
its computation, an instruction sends its result directly to
its consuming instructions.

The TRIPS system is a fully functional instantiation of
an EDGE ISA that includes a 4 × 4 array of functional
units, four distributed register banks, and four distributed,
address-interleaved data cache banks, as shown in Figure 1.
Each execution tile has an integer unit, a floating-point unit,
and reservation stations for instructions. Each register tile
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Figure 1: TRIPS microarchitecture.
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Figure 2: TRIPS compiler flow.

includes 32 registers, for a total of 128 registers. There is a
fixed, one-cycle latency to communicate a value between any
two neighboring tiles. The operand network uses dimension-
ordered Y-X routing.

The TRIPS compiler merges basic blocks in C and FOR-
TRAN programs to form single-entry, multiple exit, pred-
icated TRIPS blocks, similar to hyperblocks [15]. These
blocks are the atomic execution unit and are subject to the
following constraints imposed by the ISA. A block contains
up to 128 instructions, including up to 32 loads/stores, and
a single branch decision. The block header contains up to
32 register read and 32 register write instructions. Prior
work describes the techniques that the compiler uses to form
blocks that meet these constraints [22]. The compiler back-
end uses an iterative approach that combines block forma-
tion, loop unrolling, loop peeling, tail duplication, and scalar
optimizations to form high quality blocks [14]. The instruc-
tion scheduler then places individual instructions onto the
execution substrate. Figure 2 shows a program at various
stages of compilation.

2.2 Spatial Path Scheduling
Prior work [6] describes a Spatial Path Scheduling (SPS)

algorithm for EDGE architectures that uses a placement cost

to determine in what order to greedily place instructions,
as well as where to place each instruction. This heuristic
function is a good candidate for machine learning because it
is solely responsible for the final placement, making it easy
to focus optimization efforts.

The SPS algorithm greedily chooses to place the most crit-
ical instruction at each step in its best location. The best
location and the most critical instruction are both deter-



mined by a single number, the placement cost. The sched-
uler uses the following max of mins approach: for each in-
struction, record the location at which the placement cost
is minimum. Among all of the instructions under considera-
tion, the one with the largest minimum placement cost is the
most critical, so place that instruction next, at its minimum
cost location. Repeat this process until all instructions have
been placed.

The SPS heuristic function calculates the placement cost
based on features of the instruction, the location under con-
sideration, and the data flow graph in which the instruction
resides. We include these features, along with many others,
in a feature selection step prior to machine learning. Prior
work shows that the SPS hand-tuned heuristic provides re-
sults within 5% of those found via simulated annealing [6].
Although this result might suggest that this heuristic is close
to an upper bound, NEAT generates heuristics that outper-
form simulated annealing for single benchmarks.

2.3 NEAT
There are many possible techniques to decide how to place

instructions in an EDGE ISA. In this paper, we use Neuro-

Evolution of Augmenting Topologies (NEAT), a general opti-
mization method with many empirical successes on problems
in the field of artificial intelligence [23, 26, 29].

NEAT is a genetic algorithm that uses biologically-inspired
operators to stochastically improve a fitness metric over time.
To begin, there is a fixed-size population of organisms, each
of which can be used to perform some task. Each organism
performs the task one or more times, and a cost function
calculates fitnesses, which NEAT uses to evolve the popula-
tion and create the next generation. Successive generations
evolve, seeking to improve the fitness of the best organisms
in the population.

Organisms in different genetic algorithms can be repre-
sented in many ways. NEAT is a neuroevolutionary method [8,
31] that uses a neural network to specify each organism. Un-
like many other neuroevolution methods, NEAT learns the
topology of the neural network in addition to the network’s
weights. The neural network can be thought of as a func-
tion approximator: input and output nodes correspond to
functional inputs and outputs. The number of hidden nodes
affects the complexity of the function that can be learned.
Modifying the topology of the network through a pair of
mutation operators, shown in Figure 3, allows NEAT to in-
crementally develop increasingly complex organisms to ap-
proximate increasingly complex functions. The goal of this
complexification is to first find simple organisms that can
perform well, and then only add complexity to the networks,
and therefore add more parameters to tune, if increased com-
plexity adds to the organisms’ fitnesses.

When creating a new population at the end of a gener-
ation, NEAT probabilistically copies some of the best or-
ganisms from the previous generation to the new generation
unchanged. NEAT also applies four genetic operators to
organisms, based on their relative fitnesses. Mutation and
crossover are similar to standard genetic algorithm opera-
tions, which stochastically modify the weights of an organ-
ism, or combine the weights from two different organisms.
Two special mutation operators, add hidden node and add

link, introduce new structure incrementally, and the struc-
tural mutations that improve organisms’ fitnesses are more
likely to survive evolution, as shown in Figure 3.

Inputs

Nodes
Hidden

Outputs

����������������������������

Mutation

Add Node

Inputs

Nodes
Hidden

Outputs

������������������������������

Mutation

Add Link

Figure 3: Examples of NEAT’s mutation operators
for adding structure to neural networks.

In this work, we use a variant of the NEAT algorithm,
called FS-NEAT [29], that assists with feature selection.
When placing instructions for an EDGE ISA, there are many
possible features that could determine a placement cost. FS-
NEAT assists in feature selection by incrementally adding
links from possible inputs into the neural network over time,
using the standard add link mutation. This procedure al-
lows evolution to determine the features that most improve
organisms’ fitnesses, while features that are less useful will
not, on average, be added as inputs to the neural networks.

NEAT is an appropriate choice for a variety of reasons.
First, NEAT is a popular, publicly available package with
nine different implementations that is supported by an ac-
tive users group with approximately 350 members. Second,
NEAT is a well understood, domain-independent method
that has been successfully applied to a variety of tasks.
Third, the process of complexification has been empirically
shown [23] to reduce training times and thus make large opti-
mization problems tractable. Fourth, relatively little param-
eter tuning is necessary for successful learning in practice,
which is critical for discovering good heuristics quickly.

The next section describes the statistical feature selection
techniques that we used. These techniques are independent
of NEAT and are used to reduce the number of features
provided as inputs to NEAT, and thus the complexity of the
space that NEAT must search. In addition, we describe how
we use FS-NEAT in our final experiments to ensure that only
those features that are useful for a particular benchmark are
actually used in the final neural networks.

3. FEATURE SELECTION
Feature selection is important for reinforcement learning

problems because an unnecessarily large feature set increases
the size of the search space, making it more difficult for the
learning algorithm to find a near optimal solution. While
various studies have used machine learning and other artifi-
cial intelligence techniques to improve compiled code [7, 11,
12, 28] and compiler heuristics [3, 4, 5, 25], few thoroughly
address the problem of feature selection. Most studies use
established features supplied by experts, without systemat-
ically reducing the feature set [3, 4, 25]. Others use correla-
tion or covariance techniques such as principal components
analysis that primarily find relationships among features,
and eliminate redundant features [1, 2]. Instead, we chose
a systematic feature selection technique that selects from a
large set of features based on the extent to which each fea-
ture affects performance when used in the heuristic function



being optimized. We combine this statistical feature selec-
tion technique with a feature selection technique based on
machine learning that leverages the NEAT infrastructure.

3.1 Statistical feature selection techniques
We began by forming a thorough list of features that might

affect the performance of the final schedule. We asked the
TRIPS compiler and hardware teams for suggestions, and
established a list of 64 unique features. We implemented
functions to collect each of the 64 features whenever an in-
struction’s placement cost is calculated. To systematically
remove features, we used correlation analysis and lasso re-
gression [27]. Correlation resembles principal components
analysis (PCA), which has been used in prior work [1, 10]
to reduce the size of the feature space. Lasso regression is
a linear regression technique that removes features by re-
stricting the values of the coefficients, and has not to our
knowledge been used for feature selection in compiler work.
Lasso regression may be more effective than correlation be-
cause it directly incorporates the effect of each feature on
performance. It requires more time, however, as it requires
a large sampling of performance results. In addition, the
sampling of results must be representative of the data sets
that will be seen in practice.

Correlation. Features that are highly correlated are
likely to represent redundant information, so it may be pos-
sible to retain only one among a group of highly correlated
features and eliminate the others without losing much infor-
mation. We computed a correlation coefficient for each pair
of features, and ranked the pairs. While some correlations
were obvious (the latency of an instruction is highly corre-
lated with that instruction being an integer divide), others
were less obvious. For example, the number of stores in
a block is highly correlated with the concurrency in that
block. This correlation occurs because blocks with many
stores often stride through an array, performing indepen-
dent operations on each element, which often corresponds
to a high degree of concurrency. Correlation was useful for
eliminating redundant features, but we needed lasso regres-
sion to determine which features most affected performance
when used to calculate placement cost.

Lasso regression is a shrinkage method that attempts
to minimize the sum of the squared errors, subject to an
upper bound on the sum of the absolute values of the coef-
ficients [27]. This constraint forces the coefficients of some
variables to be set to zero, filtering out less helpful vari-
ables. We applied lasso regression to a data set generated
in the following manner. We used a linear combination of
all of the features to determine the placement cost in the
instruction scheduler, and we systematically varied the co-
efficients to sample the space of possible linear placement
cost heuristics. We measured performance across a set of
ten benchmarks for each of these heuristics. This produced
a data set where each data point consisted of 64 coefficient
values, one for each feature, and a single speedup represent-
ing the geometric mean of the speedup across the benchmark
set when compiled using a linear combination of the feature
values with those coefficients.

Next, we applied lasso regression to this data set to filter
out features with little effect on performance. Lasso regres-
sion orders the feature set based on the order in which the
coefficient for each feature is set to zero. Those features
whose coefficients are set to zero first have the smallest im-

Features for instruction placement
Group Feature Baseline? Final?

1 Tile number No No
2 Local inputs No Yes
3 Criticality Yes Yes
2 Remote inputs No No
4 Link utilization Yes Yes
5 Remote siblings No Yes
6 Loop-carried dependence Yes Yes
7 Critical path length Yes Yes
8 Is load No Yes
9 Is store No Yes
10 Tile utilization Yes Yes
11 Latency sum No Yes
11 Instructions on tile No No
5 Local siblings No No
11 Issue cycle sum No No
12 Max resource usage No Yes

Table 1: Instruction features ordered by their rank
according to lasso regression. Features in the same
Group in Column 1 are highly correlated, and thus
we use only the first feature from each group. Col-
umn 3 indicates whether the feature is in the hand-
tuned heuristic, and Column 4 indicates whether the
feature is in the final set of features.

pact on performance, while those that are never set to zero
impact performance the most.

We selected the final feature set using the rankings gen-
erated via lasso regression. We pruned this list further by
finding groups of features that were highly correlated and
removing all but the top-ranked feature from each group.
Table 1 shows the top ranked features using lasso regres-
sion. Column 1 groups the features such that features with
the same group number are highly correlated (correlation co-

efficient > 0.9). Only the highest ranked feature from each
group was chosen. Column 3 (Baseline?) indicates whether
or not the feature was used in the initial hand-tuned heuris-
tic function. Column 4 (Final?) indicates whether or not
the feature was part of the final feature set chosen after lasso
regression.

We eliminated two of the features used in the original
hand-tuned heuristic during feature selection: the fullness
of the block and the concurrency within the block. We also
added three features that were not included in the hand-
tuned heuristic: the number of local (same tile) input in-
structions, the number of remote sibling instructions, and
the maximum resource usage (in cycles) among all physical
resources including both functional units and network links.
Using these features, NEAT learned heuristics that produced
code that performed 4% better than heuristics learned with
the features used by the hand-tuned heuristic.

One weakness of using lasso regression for feature selection
is that because lasso is a dimensionality reduction technique
for linear regression problems, it is unable to model more
complex heuristic functions. Nonlinear approaches are pos-
sible, but substantially increase the size of the search space.
We believe this limitation may explain the top ranked fea-
ture, a number representing which tile was being considered
(Tile number in Table 1): the tile number appears most
important in a linear heuristic function. It significantly in-



fluences performance because the top left corner of the ALU
array is closest to both the instruction caches and the reg-
ister banks, and is thus far more desirable than the bottom
right for many instructions. In practice, however, we ob-
served that none of the neural networks made use of this
simple feature as they evolved more complex heuristics. We
therefore eliminated the tile number from the final feature
set.

This technique may also be limited by the sample set. The
sample set we used consisted of 4,000 data points. While this
data set size may seem small for a 64-dimensional space, it
is important to note that the goal during feature selection
is not to find a single optimum point, but to discover which
features can affect performance, making a smaller sample
set size more appropriate.

3.2 FS-NEAT
In addition to the statistical feature selection techniques

described in Section 3.1, we use a variation of NEAT called
FS-NEAT [29] to further reduce the size of the search space.
FS-NEAT, or Feature Selection NEAT, takes advantage of
the fact that NEAT can evolve the topology of a neural
network by not connecting all of the input features directly
to the output node. We do not use this technique to decide
which features to exclude from the feature set, but instead
use it to create simpler networks that use only those features
that are necessary for each training run. We found that
all of the features selected via the techniques described in
Section 3.1 were useful for some subset of the benchmarks,
but that few individual benchmarks actually required all of
the features.

Using FS-NEAT, the initial population consists of organ-
isms with only two of the input features connected to the
output. To ensure that the initial population fairly repre-
sented each feature, we derived the population size, psize

from the feature set size, fsize, as follows: psize =
`

fsize+1
2

´

×
4. We added one to fsize because NEAT always includes
one additional feature, called the bias, that serves as an ad-
justment to a node’s output function. This value for psize

allowed us to initialize the population to include all possible
combinations of two features, with all possible combinations
of negative and positive weights.

To keep training time reasonable, we had to constrain
the population size, limiting the initial feature set size. We
wanted to ensure that it would not take more than a day
to train a single benchmark, and found that we needed to
keep the population size below 300 organisms to fit this con-
straint. Thus, we selected fsize such that fsize was maxi-
mized while fulfilling the following constraint: psize< 300,
where psize=

`

fsize+1
2

´

∗ 4, as described above. Using this
constraint, we arrived at a final feature set size of 11 fea-
tures.

4. NEAT
We use the results of feature selection as input to NEAT

and apply NEAT to the TRIPS Spatial Path Scheduler.

4.1 Framing the problem
We built a wrapper around the scheduler that manages

each NEAT generation. The wrapper compiles each bench-
mark in the training set with each neural network in the
population during each generation. It thus performs a total
of b ∗ o ∗ g compilations where b is the number of bench-
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Figure 4: An example neural network including the
inputs (features), the output (placement cost), two
hidden nodes, and weights for the edges between
each pair of nodes.

marks in the training set, o is the number of organisms in
the population, and g is the number of generations.

Each neural network determines the placement cost for an
instruction at a given location. For each instruction within
a block, ij , the scheduler computes the placement cost for
ij at each available location, and selects the minimum cost
location for ij . Then, the scheduler chooses the instruction
whose minimum cost is largest, and places that instruction
at its minimum cost location, because it is the most critical
instruction.

A single compilation uses a single neural network, and that
network produces all of the scheduler’s placement costs. Fig-
ure 4 shows an example neural network. The scheduler com-
putes values for the input features based on the placements
so far, the dataflow graph for the block, the instruction, and
the location under consideration.

After scheduling each benchmark using a given organism,
the wrapper determines the fitness of that organism. We
equate performance with fitness: we run each benchmark
on the TRIPS hardware, compute the geometric mean of
their speedups over the baseline hand-tuned spatial path
scheduler, and use this relative speedup as the organism’s
fitness. Training across multiple benchmarks allows us to
find a more general solution. If the benchmark set consists of
only one benchmark then NEAT will produce a specialized
heuristic for that benchmark. We also allow the user to
specify the name of a specific TRIPS block, such that NEAT
learns a specialized solution for that block. (All other blocks
are scheduled with the hand-tuned heuristic.)

4.2 Training on Individual Benchmarks
We used NEAT to find specialized heuristics for individ-

ual benchmarks. Training NEAT to do well on an individual
benchmark leads to overfitting: such solutions may not per-
form well on other benchmarks. The resulting performance,
however, was typically the best performance observed for
each benchmark, outperforming placements produced via ei-
ther hard-coded heuristics or simulated annealing.

Although the results from training on an individual bench-
mark may not be useful as general solutions, this technique
is useful for optimizing a performance critical program or



library. The result of a single training run may be useful as
the program evolves as well. Since NEAT finds a heuristic
that works well for that benchmark, the resulting cost func-
tion can be used without additional training after relatively
minor source code changes.

4.3 General solutions
We also trained NEAT across a large set of benchmarks

to find a general solution. Unlike Stephenson et al.’s Meta
Optimization work [25], we found that machine learning
was unable to find solutions that improved significantly over
hand-tuned solutions in the general case. One explanation
could be a baseline better optimized for the general case;
prior work showed that the baseline came within 5% of so-
lutions found via simulated annealing [6]. Another explana-
tion might be the potential for improvement – Stephenson
et al. focused on hyperblock formation, which may be an
optimization that has greater impact on performance than
instruction placement has.

Although we were unable to find general solutions that
significantly outperformed the hand-tuned solution, the dif-
ference between the performance of the general solution and
the performance of the specialized solutions is pronounced.
Thus, we investigated a hierarchical approach to the gen-
eral solution to reclaim some of the performance lost when
moving from specialized to general solutions.

4.4 Clustering and classification
Classification is a supervised learning technique that uses

training data to create a function that classifies new data. In
a general classification problem, the training data contains
a list of data instances, with a feature vector and a class
(i.e., a label). The job of the classifier is to predict the
class for new data instances. Classification is typically a
supervised learning problem, requiring a correct set of class
labels for training. We used clustering to find class labels for
the critical blocks in the benchmark set, and we used those
as training data for classification.

We chose classes at a block granularity – each block of
instructions was assigned a class label. It would be possi-
ble to classify at other granularities as well. For instance,
a benchmark, method, or instruction could be assigned a
class label. We chose the block because it represented a rea-
sonable tradeoff in terms of ease of analysis, as the size of
the code is strictly limited, and degree of useful information,
as the block includes global information that could not be
found in a single instruction. Other granularities may make
sense for different problems, however.

4.4.1 Clustering

We intentionally selected relatively small benchmarks con-
taining few critical blocks that significantly contribute to
performance. Thus, the best neural network for a given
benchmark should create a good placement for the few crit-
ical blocks within that benchmark. By attributing the per-
formance of an entire benchmark to the quality of the place-
ment of a few critical blocks, it was possible to perform
classification based on qualities of individual blocks. The
hypotheses underlying this assumption are that a different
type of scheduling algorithm may be necessary for blocks
with different characteristics, and that the critical blocks
within a given benchmark are likely to share some of those
characteristics.

One option to find class labels for blocks is to apply a
clustering technique to features of the blocks. Such a clus-
tering technique groups the blocks into clusters that min-
imize some distance metric among features. The problem
with this approach is that the appropriate distance metric
is unclear. We want a distance metric that will group the
blocks into groups that require similar neural networks (and
similar scheduling algorithms) to perform well. It is not im-
mediately clear which block features would best differentiate
blocks, or what the correct distance metric would be to allow
a clustering technique to form the correct groups.

To ensure that the distance metric would be representative
of how well those blocks would perform if the instructions
within them were placed using the same neural network,
we chose to use the performance of benchmarks as the dis-
tance metric. We used the best n organisms trained on each
benchmark to perform placement on every other benchmark
for a total of n ∗ b ∗ b data points, where b is the number of
benchmarks in the training set. We created a table with n∗b

columns and b rows, where each data point represents the
speedup of some benchmark using one of the n best neural
networks trained to do well on some other benchmark.

Using the data in this table, we created a similarity graph

in which the nodes represent benchmarks and the edges be-
tween nodes represent the similarity between the two bench-
marks connected by that edge. We experimented with sev-
eral different similarity metrics and chose the one that cre-
ated the most accurate classifier using cross-validation. To
calculate the similarity between two benchmarks, we first
calculate the geometric mean of the speedup on each bench-
mark across all neural networks tested. Thus, for each bench-
mark, we find a mean speedup across all neural networks,
meanSpeedupb.

To compute the similarity between two benchmarks, b1

and b2, we find the difference between the speedup of a
benchmark compiled using each organism and the average
speedup for that benchmark. Thus, for each organism o and

benchmark b, we compute the value D(o,b) =
Speedup(o,b)

meanSpeedupb
.

For each pair of benchmarks, we subtract these two numbers
and sum across all organisms. Thus, the difference between
benchmarks b1 and b2 is

DIFF (b1,b2) =
X

o∈0..b×n

|D(o,b1) − D(o,b2)| (1)

If two benchmarks are always affected in the same way
by the same organisms, the difference between them will
be small when using this metric. If the difference between
them is large, the benchmarks’ performance varies in dif-
ferent ways with different organisms. We therefore use the
inverse of DIFF (b1,b2) as the similarity function.

We use the graph clustering tool Graclus [9] to read the
similarity graph and generate a list of clusters. Graclus as-
signs a cluster number to each benchmark such that the
similarity among blocks in the same cluster is maximized.
The cluster for each benchmark provides the “correct” class
for each critical block within that benchmark, which pro-
vides training data for the classifier. We chose benchmarks
with few critical blocks, and associated all of the critical
blocks in a benchmark with the class of that benchmark
in the training data. We found that training NEAT to do
well on individual blocks created overly specialized solutions
that obfuscated useful global information. Training each of



Feature Description
Outputs # branches + # stores + # writes
Loads # loads
Writes # writes
Branches # branches
Fanout # fanout instructions
Loop size # blocks in the loop
Stores # stores
Critical path length critical path length through block
Concurrency # instructions/critical path length
Fullness # instructions in block/128
Predication # explicitly predicated instructions
Loop True if block is in a loop
Contains LCDs True if block contains loop-carried

dependences
Contains call True if block contains a call
Predecessors # incoming control flow graph edges
Successors # outgoing control flow graph edges

Table 2: Feature set for block classification

Classifier Cross-Validation Accuracy (%)
Classifier 3 classes 4 classes 5 classes 6 classes

J48 75.0 72.4 54.6 62.7
JRip 77.0 71.9 57.7 63.2
SMO 74.5 63.3 41.8 60.2
MLP 77.0 67.34 57.1 65.8

Table 3: Cross validation accuracy of the training
data with different classifiers

the critical blocks individually does not produce results that
perform as well as training all of the critical blocks to work
well together.

4.4.2 Block features and classification

After finding the class associated with each block, we ex-
tracted features of blocks for the classifier to use to predict
their class. We chose not to use the same feature set that we
use to place instructions because the features used to clas-
sify blocks must be representative of the entire block, rather
than a single instruction at a given location.

We emphasize the importance of feature selection for rein-
forcement learning because decreasing the size of the search
space allows reinforcement learning algorithms to find better
solutions more efficiently. Classification algorithms, on the
other hand, are better able to handle large feature sets. The
complexity of these algorithms is independent of the number
of features. Thus, we do not perform the same exhaustive
feature selection for the block features that we do for the
instruction placement features. Instead, we allow the classi-
fication software to handle feature selection. Table 2 shows
the initial feature set we chose in order of their importance
as measured by the Weka software, a collection of supervised
learning algorithms for data mining tasks that contains tools
for data pre-processing, classification, regression, and visu-
alization [30].

The Weka tool requires the user to select among classifiers.
The accuracy of each classifier varies based on the distribu-
tion and correlation between features and classes in the data
set. With more classes, we expect a higher speedup for the

training data in each cluster because the clusters are smaller,
and finding a general solution for the training data in that
cluster is thus easier. However, too many classes leads to
overfitting and reduces the accuracy on novel benchmarks.

We tried multiple classification algorithms. For each clas-
sifier, we varied the number of classes. Table 3 shows the
cross validation accuracy for the following Weka classifiers:
J48, JRip, SMO, and MLP, which implement a decision tree,
a propositional rule learner, a support vector machine, and
a multi-layer perceptron, respectively. In all cases, the ac-
curacy of the classifier degrades with the number of classes
(when tested on novel benchmarks via cross-validation), ex-
cept for the 6-class column. When using 6 clusters, Graclus
places most of the benchmarks in only one cluster and leaves
the remaining clusters almost empty. Obviously, this results
in higher classification accuracy, but finding an organism
that performs well on that large cluster is no less difficult
than finding a single general solution. Thus, we ignore the
6-class case. JRip and MLP achieve similar accuracy with
three classes but JRip is much faster and it is more accurate
for other cluster sizes. Therefore, we choose JRip with three
classes.

After training the classifier, we found organisms that cre-
ate good placements for the blocks that fall into each class.
One way to find these organisms would be to use the organ-
ism with the best average speedup across all the benchmarks
in that class. This approach would take little time, but the
results may be specialized to the particular benchmark on
which it was trained. Instead, we trained an organism only
on the blocks that the classifier places into a given class and
used the best organism from that training run to schedule
all future blocks that fall into that class. This method takes
more time because it requires an additional training run, but
may produce better results on novel benchmarks.

5. RESULTS
We tested various placements by running them on the

TRIPS system. TRIPS is a 170 million transistor ASIC
implemented in 130nm technology with a 366 MHz clock,
32 KB L1 cache, 1 MB L2 cache, and 2 GB of SDRAM
running at 200 MHz.

We selected short-running benchmarks because simulated
annealing and NEAT both require many executions of a pro-
gram. We chose benchmarks with varied characteristics, in-
cluding available parallelism and register/memory usage, to
provide a full range of placement requirements during train-
ing. We include benchmarks where the unplaced assembly
code has been generated by the compiler, as well as bench-
marks with hand-tuned assembly. Hand-tuned benchmarks
typically have larger blocks than compiler generated bench-
marks, and instruction placement usually affects their per-
formance more as a result. We selected a large number of
benchmarks to ensure that the benchmark set sizes would
still be reasonable after clustering.

The final benchmark set contained 47 benchmarks includ-
ing 17 SPEC2000 kernels (10 compiler generated, 7 hand-
tuned), 11 Lincoln Labs kernels including computations such
as corner turn, singular value decomposition, and convo-
lution (7 compiler generated, 4 hand-tuned), 9 signal pro-
cessing kernels from the GMTI radar suite (5 compiler gen-
erated, 4 hand-tuned), and 2 compiler-generated EEMBC
benchmarks (pntrch01 and rspeed01). The remaining eight
benchmarks consisted of matrix multiply, vector add, fast
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Figure 5: Training with two different feature sets:
the baseline features used in the instruction sched-
uler, and the features chosen after feature selection.

Fourier transform, a prime number generator, and memset
from the C libraries (3 compiler generated, 5 hand-tuned).

5.1 Feature selection
To test the effectiveness of the new features selected via

lasso regression as described in Section 3, we ran two NEAT
experiments that differed only in the feature set used. For
the baseline we chose the set of features used by the existing
hand-tuned algorithm. We performed the same experiment
using the set of features chosen using lasso regression and
compared the results.

Figure 5 shows the results of this experiment performed on
a set of four training benchmarks - vector add, fast Fourier
transform, matrix multiply, and complex matrix multiply.
The best results obtained via NEAT on these experiments
were 4% better with the new feature set chosen via lasso re-
gression than they were with the feature set chosen by hand.
Using the initial features on these benchmarks, NEAT was
unable to surpass the hand-tuned scheduler after 40 gener-
ations, but with the new set of features NEAT surpassed
the hand-tuned instruction scheduler after only nine gener-
ations. We performed the same experiment on another set
of four benchmarks, kernels from the ammp, parser, bzip2,
and gzip SPEC2000 benchmarks, and again observed a 4%
improvement using the new feature set. Thus, we used the
new feature set for the remaining experiments.

Using FS-NEAT in combination with training on individ-
ual benchmarks, we determined the extent to which differ-
ent benchmarks require different heuristics to produce good
placements. We found that only 20% of the 47 benchmarks
evaluated made use of all 12 of the available features. Table
4 shows the final feature set and the fraction of the best 10
organisms for each benchmark that used each feature. Col-
umn 3 shows the fraction of the best 10 general solutions
that use each feature.

5.2 Training individual benchmarks compared
to simulated annealing

We use NEAT to find a specialized heuristic for each of
the 47 benchmarks. To determine how many generations
would be sufficient for a training run, we trained a subset
containing nine of the benchmarks each for 200 generations.

Feature usefulness
Feature Specialized General
Bias 94% 100%
Critical path length 87% 100%
Is store 82% 100%
Max resource usage 81% 100%
Loop-carried dependence 80% 100%
Is load 78% 100%
Tile utilization 76% 90%
Criticality 74% 100%
Link utilization 71% 90%
Remote siblings 69% 100%
Latency sum 64% 90%
Local inputs 61% 90%

Table 4: Instruction features ordered by the pro-
portion of the best ten solutions for each individual
benchmark that use that feature (Column 2). Col-
umn 3 shows the proportion of the best 10 general
solutions that use each feature.

Technique Speedup
Hand-tuned SPS + Annealing 1.08
NEAT 1.12
NEAT + Annealing 1.14

Table 5: Geometric mean of speedups for
benchmark-specific heuristics over the hand-tuned
SPS scheduler across 46 benchmarks.

We created graphs of the performance and the complexity of
each network, with complexity measured by the number of
edges. By analyzing the best networks from these 200 gen-
eration trials, we concluded that 100 generations were prob-
ably sufficient for the remaining runs. We then compared
results for the specialized heuristics both to the instruction
scheduler’s hand-tuned heuristic and to a simulated anneal-
ing scheduler.

One common technique used to optimize placement prob-
lems is simulated annealing. An annealer takes as input a
solution to the problem that is suboptimal. It iteratively
improves this solution by randomly changing it. If the new
solution is better according to some quality metric, it will
always keep that solution. If the new solution is worse, then
it will keep that solution with some probability that varies
over time.

While simulated annealing can often find very good solu-
tions, the solutions that it finds are not general. If a source
program changes then the entire annealing process must be
run again to accommodate the changes. With NEAT, how-
ever, the end result is a heuristic that can be used to schedule
any program. Although that heuristic may not perform well
on programs that are not similar to the program on which it
was trained, those solutions are likely to do well on similar
programs or modified versions of the original program.

We implemented a simulated annealing scheduler for TRIPS
and used the instruction scheduler’s placement as the start-
ing point. Table 5 shows the geometric mean of the speedup
across 46 of the 47 benchmarks in the training suite normal-
ized to the hand-tuned scheduler’s performance on the same
benchmark. The pm benchmark from the Lincoln Labs ker-
nels was omitted because it did not work with the annealer.



Simulated annealing was able to achieve a mean speedup
of 1.08 over the hand-tuned Spatial Path Scheduler (SPS)
on this benchmark set (Hand-tuned SPS + Annealing). Us-
ing NEAT to find a good heuristic for each benchmark, the
mean speedup was 1.12. NEAT found a better solution than
simulated annealing for 33 of the 46 benchmarks. For only
5 of the remaining 13 benchmarks did simulated annealing
produce a result that was better than the NEAT result by
more than 1%.

Finally, we used the best placement produced by NEAT
as the starting point for simulated annealing (NEAT + An-
nealing). The mean speedup over the Hand-tuned SPS was
1.14 after annealing the best NEAT result. Simulated an-
nealing was able to achieve a speedup of only 1.02 over the
best NEAT placement, compared to an improvement of 1.08
over hand-tuned SPS.

5.3 General solutions
To learn a general scheduling heuristic, we trained NEAT

across the entire benchmark set to produce a single general
solution. The fitness of each organism using this approach
was the geometric mean of the speedup of each benchmark
over the hand-tuned SPS heuristic. The best organism trained
using this approach provided a speedup of 1.01 over hand-
tuned SPS. To test this general solution on new data, we
ran the best organism trained across the 47 benchmark set
on the EEMBC benchmarks, and compared the results to
the scheduler using the hand-tuned heuristic. The general
solution provided performance almost identical to the hand-
tuned solution, with a speedup of 1.005.

Although this result is significant given that it is com-
pared to a highly hand-tuned result, it is modest compared
to the results observed in Stephenson et al.’s Meta Opti-
mization work, where they observed speedups of 1.44, 1.03,
and 1.31 for block formation, register allocation, and data
prefetching, respectively, using a general heuristic trained
across sets of ten or fewer benchmarks. On novel bench-
marks, they observed speedups of 1.09, 1.02, and 1.01 for
the same three optimization problems. As discussed in Sec-
tion 4.3, various factors may account for this difference, in-
cluding the number of benchmarks used, the optimization’s
effect on performance, and the complexity of the problem
being solved.

However, the specialized solutions improve over the gen-
eral solution by 11%, using the geometric mean of the speedup
over the benchmark set. We now show results for one way
classification could be used to recover part of this speedup.

5.4 Classification
We performed three training runs for classification, one

to train each of three classes. We found that one of the
classes contained a catch-all for all blocks that did not fit into
either of the other classes, and we saw very little speedup
training on these blocks, so we opted to use hand-tuned SPS
to schedule those blocks to save training time.

The blocks that did fall into the remaining two classes
showed significantly better results. One experimental ad-
vantage to the clustering technique is that we could perform
the training runs in parallel. When training across an en-
tire set of benchmarks, one generation cannot proceed until
the entire previous generation has completed. Using clus-
tering, however, the groups are smaller and can be trained
in parallel. Thus, while it took multiple weeks to perform a

complete training run with the general solution, it required
less than a week to obtain significantly better results with
classification. Across the 17 benchmarks that contained crit-
ical blocks belonging to the first cluster, we saw a speedup
of 1.06. Among the 12 blocks containing critical blocks be-
longing to the second cluster, we saw a speedup of 1.04 after
only a day of training.

6. RELATED WORK

6.1 Machine learning
Stephenson et al. use genetic programming to learn a pri-

ority function for different compiler optimizations including
hyperblock formation, register allocation, and data prefetch-
ing [25]. They evolve expression trees that calculate the
result of the appropriate priority function. The genetic al-
gorithm evolves the expression trees by changing the oper-
ators and the weights of each expression. The population
evolves based on the fitness values (cycles) achieved using
the previous population of expression trees.

Using NEAT for instruction placement could be consid-
ered a form of meta optimization, however, the size of the
search space for the problem that we investigate may be
larger than the size of the search space for the problems in-
vestigated in Stephenson et al. While they use expression
trees to extract a human readable mathematical model, they
find that the formulas learned are too complex. NEAT al-
lows the population to begin with a minimal structure of
neural nets, with no hidden nodes. Hidden nodes are only
added if they benefit performance, which helps NEAT find
minimal networks, makes the solutions easier to understand,
and decreases training time.

Cooper et al. use a genetic algorithm to find phase order-
ings that reduce code size for embedded systems [7]. They
allow the compiler to use different phase orderings to com-
pile different modules and functions of the same program.
Their genetic algorithm finds a good phase ordering for a
given program or function, however, it does not find a good
heuristic to choose what phase ordering to use. Thus, the
results cannot be applied to new programs and do not pro-
vide insights regarding what factors determine which phase
ordering is best.

In another study, Waterman et al. use a technique called
adaptive compilation to find the phase ordering that pro-
duces the code with the best performance [28]. For each
phase ordering, an objective function counts the number of
static instructions. This method shows significant perfor-
mance improvements, but the results are not reusable. Sim-
ilar studies have explored the compilation space and also
found the best phase ordering for a given program or func-
tion rather than learning how to use the characteristics of the
program or function to choose the best phase ordering [11,
12].

Cavazos and O’Boyle use genetic algorithms to automat-
ically tune a dynamic compiler’s internal inlining heuris-
tic [5]. Their technique shows a 17% improvement in total
runtime on the SPECjvm98 benchmark suite and a 37% im-
provement in total runtime on the DaCapo benchmark suite.
These reductions are largely due to a decrease in dynamic
compile time, as the compiler learns not to inline if doing so
will hurt total runtime. The average runtime was decreased
by 1% for SPECjvm98 and increased by 4% for DaCapo,
but the savings in dynamic compile time were significant.



Cavazos and Moss [3] use a supervised learning algorithm
to recognize when the compiler can skip scheduling a basic
block without significantly hurting performance. They im-
prove the compilation speed of JIT compilers significantly,
while retaining 90% of the run-time performance of schedul-
ing every basic block. The same authors use rule learning, a
type of classification, to choose between graph coloring and
linear scan register allocators on a per-method basis, based
on the features of the method [4]. This problem is much sim-
pler than the problem we attempt to solve, as the heuristics
used by each class are fixed, whereas we must learn both
how to classify and what heuristic to use for each class.

Moss et al. describe a method that uses reinforcement
learning to discover good heuristics for temporal scheduling
of basic blocks [19]. Their method uses supervised learning,
where the training examples are optimal schedules of small
basic blocks derived by exhaustive search. Because of the
small search space involved, constructing these examples is
not unreasonably time consuming.

Monsifrot et al. use a supervised learning approach called
boosted decision trees to choose loops to unroll [18]. By ex-
tracting the effective parameters for loop unrolling in differ-
ent processors, they re-target the compiler to multiple plat-
forms. They show modest improvements for two architec-
tures. This classifier is a binary classifier, and it uses a hand-
tuned compiler heuristic to determine the unroll factor. In
a similar study, Stephenson and Amarasinghe use a classi-
fier to determine the unroll factor for each loop where each
class represents a different unroll factor [24]. This method
predicts the best unroll factor correctly for 65% of 2,500
loops and achieves a 5% performance improvement on the
SPEC2000 benchmark suite.

To select good features, Leather et al. propose construct-
ing a grammar for features, and using learning techniques to
evaluate the features. They construct a classifier that selects
an appropriate heuristic [13].

6.2 Instruction placement
Mercaldi et al. [16] perform instruction placement for

WaveScalar, a tiled dataflow processor with a hierarchical
substrate, by using a profile-driven algorithm at the higher
levels of the hierarchy, and an algorithm that balances com-
munication and contention at the lower levels of the hier-
archy. Instruction placement for TRIPS is most similar to
placement at the lower levels of this hierarchy. Their fine-
grained placement algorithm contains two phases. The first
phase groups instructions based on a width and a depth pa-
rameter. The second phase uses a tuning parameter to de-
termine, for each group created in phase one, the probability
it will favor optimizing for communication or optimizing for
contention. We explore this same tradeoff via the features
we supply to the machine learning algorithm.

Versatile place and route (VPR) is a place and route tool
for FPGAs that uses simulated annealing to place instruc-
tions. Unlike the instruction placement problems for TRIPS
and WaveScalar, however, the latencies and resource con-
flicts are known at compile time, so the instruction place-
ment heuristic does not have to guess what the latency will
be or whether resource contention will be present. Because
these latencies and conflicts are known, VPR can use a static
cost function for simulated annealing. A static cost function
for a dynamic issue processor such as TRIPS or WaveScalar
would be too inaccurate due to unknown latencies, as Mer-

caldi et al. show while searching for a static instruction
placement performance model [17].

Lastly, Force-Directed Scheduling is an algorithm pro-
posed by Paulin and Knight for ASIC synthesis [20]. The
significant features are different in these two contexts. A
machine learning approach similar to the one presented here
may be useful in the context of ASIC synthesis, but addi-
tional features become more important in that domain that
do not receive attention here, such as area and power bud-
get.

7. CONCLUSIONS
Feature selection is important when applying a reinforce-

ment learning technique. Feature selection techniques that
only consider relationships among features such as those
based on variance and correlation may be insufficient as they
do not account for the features’ effect on performance. We
use feature selection to find the features most likely to affect
performance, in addition to removing redundant features.

Neuro-Evolution of Augmenting Topologies (NEAT) is a
publicly available reinforcement learning package with an
active user base that can be used to tune compiler heuristics
with very little modification. This paper demonstrates that
NEAT is an effective technique for finding good instruction
placements for an EDGE architecture.

NEAT successfully tuned the placement cost heuristic in
the spatial path scheduling algorithm for individual bench-
marks. NEAT achieved performance significantly better than
both hand-tuned heuristics and placements produced via
simulated annealing when using specialized heuristics. NEAT
requires significant computational time to find a good solu-
tion, but it requires almost no user intervention. Because
NEAT learns a heuristic rather than a placement, the re-
sults of a training run are reusable for future compilations
of the same program, slightly modified compilations of the
same program, or even entirely new programs.

Although NEAT produces good placements when special-
ized for individual benchmarks, finding good general solu-
tions is very difficult. Different benchmarks may require sig-
nificantly different placement heuristics. To compensate for
these differences, we propose using a hierarchical approach
that classifies units of code into groups that will perform
well with similar heuristics.

Finding heuristics that perform well on these groups of
similar units of code is faster, and produces better solutions
than general solutions that must handle all cases well. Using
statistical or machine learning approaches to find the best
groupings may reduce the complexity for the machine learn-
ing algorithm, as it will only need to find good heuristics for
a subset of similar cases. How to find the best groupings is
still an open question, however.

Finding which factors best classify groups of instructions
can also provide interesting insights for the compiler writer.
Even if finding a final heuristic via machine learning is not
found to be practical in practice, we believe that machine
learning and data mining techniques could be used during
compiler development to gain insights such as new features
that will be useful even for hand-tuned heuristics.
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