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Abstract. In this paper we survey the basics of reinforcement learning, gener-

alization and abstraction. We start with an introduction to the fundamentals of

reinforcement learning and motivate the necessity for generalization and abstrac-

tion. Next we summarize the most important techniques available to achieve both

generalization and abstraction in reinforcement learning. We discuss basic func-

tion approximation techniques and delve into hierarchical, relational and transfer

learning. All concepts and techniques are illustrated with examples.

1 Introduction

In this chapter we provide an introduction to the concepts of generalization and abstrac-

tion in reinforcement learning (RL). Abstraction is a technique to reduce the complexity

of a problem by filtering out irrelevant properties while preserving all the important ones

necessary to still be able solve a given problem. Generalization is a technique to apply

knowledge previously acquired to unseen circumstances or extend that knowledge be-

yond the scope of the original problem. Humans show great capability in abstracting

and generalizing knowledge in everyday life. RL needs abstraction and generalization

as well to deal successfully with contemporary technological challenges, given the huge

state and action spaces that characterize real world problems. Recently, abstraction and

generalization have received significant attention in the machine learning research com-

munity, resulting in a variety of techniques.

We start by introducing the preliminaries of RL itself in Section 2. We will discuss

Markov decision processes, policy and value iteration and model-free solution tech-

niques. In Section 3 we define both abstraction and generalization, capturing common

features of both found in different definitions in literature, and then describe different

operators in a concrete domain, the video-game Wargus. Section 5 gives a concise in-

troduction to function approximation, one of the most commonly used types of methods

in RL for generalization and abstraction. Sections 6-8 go into greater detail discussing

three classes of techniques used for abstraction and generalization in RL: hierarchi-

cal, relational, and transfer learning. In addition to outlining the ideas behind each of

these classes of techniques, we present results to assist the reader in understanding how

these ideas may be applied in practice, and provide multiple references for additional

exposition. Finally, Section 9 concludes.



The goals of this survey are to provide an introduction to, and framework for, dis-

cussing abstraction and generalization in RL domains. The article does not provide dis-

cussions at an advanced level but merely tries to combine the basics into one coherent

structure, such that newcomers to the field easily understand the elementary concepts

of abstraction and generalization in RL and have pointers available to more elaborate

and detailed expositions in the literature.

2 Reinforcement Learning

This section introduces basic reinforcement learning concepts and notation.

2.1 Markov decision processes

Most RL research is framed as using a Markov decision processes (MDP) [29]. MDPs

are sequential decision making problems for fully observable worlds. They are de-

fined by a tuple (s0, t, S,A, T,R). Starting in an initial state s0 (or set of states) at

each discrete time-step t = 0, 1, 2, . . . an adaptive agent observes an environment

state st contained in a set of states S = {s1, s2, . . . , sn}, and executes an action

a from a finite set of admissible actions A = {a1, a2, . . . , am}. The agent receives

an immediate reward R : S → R, that assigns a value or reward for being in that

state, and moves to a new state s′, depending on a probabilistic transition function

T : S × A × S → [0, 1]. The probability of reaching state s′ after executing ac-

tion a in state s is denoted as T (s, a, s′). For all actions a, and all states s and s′,

0 ≤ T (s, a, s′) ≤ 1 and
∑

s′∈S
T (s, a, s′) = 1. An MDP respects the Markov prop-

erty: the future dynamics, transitions and rewards fully depend on the current state:

T (st+1|st, at, st−1, at−1, . . . ) = T (st+1|st, at) and R(st+1|st, st−1, . . . ) = R(st+1).
The transition function T and reward function R together are often referred to as the

model of the environment. The learning task in an MDP is to find a policy π : S → A

for selecting actions with maximal expected (discounted) reward. The quality of a pol-

icy is indicated by a value function V π . The value V π(s) specifies the total amount of

reward which an agent may expect to accumulate over the future, starting from state s

and then following the policy π. Informally, the value function indicates the long-term

desirability of states or state-action pairs after taking into account the states that may

follow, and the rewards available in those states. In a discounted infinite horizon MDP,

the expected cumulative reward (i.e., the value function) is denoted as:

V π(s) = E

[

∞
∑

t=0

γtR(St)|s0 = s

]

(1)

A discount factor γ ∈ [0, 1〉 may be introduced to ensure that the rewards returned

are bounded (finite) values. The variable γ determines the relevance of future rewards

in the update. Setting γ to 0 results in a myopic update (i.e., only the immediate reward

is optimized), whereas values closer to 1 will increase the contribution of future rewards

in the update.

The value for a given policy π, expressed by Equation 1, can iteratively be com-

puted by the Bellman Equation [3]. One typically starts with an arbitrarily chosen value



function, and at each iteration for each state s ∈ S, the value function is updated based

on the immediate reward and the current estimate of V π:

V π

t+1(s) = R(s) + γ
∑

s′∈S

T (s, π(s), s′)V π

n (s′) (2)

The process of updating state value functions based on current estimates of succes-

sor state values is referred to as bootstrapping. The depth of successor states considered

in the update can be varied, i.e., one can perform a shallow bootstrap where one only

looks at immediate successor states or a deep bootstrap where successors of successors

are also considered. The value functions of successor states are used to update the value

function of the current state. This is called a backup operation. Different algorithms use

different backup strategies, e.g., sample backups (sample a single successor state) or

full backups (sample all successor states).

The solution to an MDP is the optimal policy, i.e., the policy that receives the max-

imum reward. The optimal policy π∗(s) is defined such that V π
∗

(s) ≥ V π(s) for all

s ∈ S and all policies π. The optimal value function, often abbreviated as V ∗following

Bellman optimality criterion:

V ∗(s) = R(s) + γ max
α∈A

[

∑

s′∈S

T (s, a, s′)V ∗(s′)

]

(3)

Solving Equation 3 can be done in an iterative manner, similar to the computation

of the value function for a given policy such as expressed in Equation 2. The Bellman

optimality criterion is turned into an update rule:

V π

t+1(s) = R(s) + γ max
α∈A

[

∑

s′∈S

T (s, a, s′)V π

n (s′)

]

(4)

The optimal action can then be selected as follows:

π∗(s) = arg max
a



R(s) + γ
∑

s
′
∈S

T (s, a, s′)V ∗(s′)



 (5)

Besides learning state-values, one can also define state-action value functions, also

called action-value functions, or Q-functions. Q-functions map state-action pairs to val-

ues, Q : S × A → R. They reflect the long term desirability of performing action a

in state s, and then performing policy π thereafter. Learning Q-functions is particularly

useful when T is unknown. The Q-function is defined as follows:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′) (6)

The optimal policy π∗ selects the action which maximizes the optimal action value

function Q∗(s, a) for each state s ∈ S:

π∗(s) = arg max
a

Q∗(s, a) (7)



Algorithm 1: Policy Iteration

REQUIRE initialize V (s) and π(s) arbitrarily;1

POLICY EVALUATION;2

repeat3

∆ = 0;4

foreach s ∈ S do5

v = V (s);6

V (s) = R(s, π(s)) + γ
P

s′∈S
T (s, π(s), s′)V (s′);7

∆ = max(∆, |v − V (s)|);8

end9

until ∆ < σ ;10

POLICY IMPROVEMENT;11

policy-stable = true;12

foreach s ∈ S do13

b = π(s);14

π(s) = arg maxa

ˆ

R(s, a) + γ
P

s′∈S
T (s, a, s′)V (s′)

˜

;15

if b 6= π(s) then policy-stable = false16

end17

if policy-stable then stop else go to POLICY EVALUATION18

2.2 Solution techniques

When an environment’s model (i.e., transition function T and reward function R) is

known, the optimal policy can be computed using a dynamic programming approach,

such as in policy iteration and value iteration. Policy iteration [18] consists of two steps,

a policy evaluation and policy improvement step. It starts with an arbitrary policy and

value functions. It then updates the value functions under the given policy (the evalu-

ation step), and uses the new value functions to improve its policy (the improvement

step). Each policy is guaranteed to be a strict improvement over the previous one. The

algorithm requires an infinite number of iterations to converge, but in practice the algo-

rithm can be stopped when value functions only change by a small amount. A complete

description is given in Algorithm 1.

The drawback of policy iteration is that it requires a complete evaluation of the

current policy before improvements are made. Another possibility is to make improve-

ments after a single sweep (a single backup of a state). This particular case is called

value iteration [3]. Value iteration (or greedy iteration) starts with an arbitrary action-

value function and for each state it iterates over all actions (unlike policy iteration which

only evaluates the action as indicated by the policy) and updates the action-value func-

tion. The value iteration backup is identical to the policy evaluation backup except that

it requires the maximum to be taken over all actions. Similar to policy iteration, the al-

gorithm can be stopped when the change in policy is within a certain bound. Algorithm

2 gives a complete description of value iteration.

There exist several model-based learning methods, such as Dyna-Q [38, 51] and R-

Max [6], but we will not go into much detail here because we are most interested in

domains where the model is assumed to be both unknown and too complex to easily



Algorithm 2: Value Iteration

REQUIRE initialize V (s) arbitrarily;1

repeat2

∆ = 0;3

foreach s ∈ S do4

v = V (s);5

foreach a ∈ A(s) do6

Q(s, a) = R(s, a) + γ
P

s′∈S
T (s, a, s′)V (s′)7

end8

V (s) = maxa Q(s, a);9

∆ = max(∆, |v − V (s)|);10

end11

until ∆ < σ ;12

learn. When the model of the environment is unknown, as it usually is, we can use

RL as a viable alternative. RL does not depend on a model but rather collects samples

from the environment to estimate the environment’s model. Therefore, the crucial dis-

tinction between model-free and model-based methods is that the first samples future

states whereas the second does a full sweep of successor states. Through exploration

the reinforcement learner gathers data (i.e., rewards and future states) and uses this

to learn a policy. An important issue that occurs is the exploration and exploitation

dilemma, i.e., when to cease exploration and to start exploiting acquired knowledge.

Various exploration and exploitation strategies exist, such as ǫ-greedy and Boltzmann

exploration. For a thorough overview, we refer interested readers elsewhere [52, 39].

Temporal difference learning methods such as Q-learning [50] and SARSA [33] are

model-free solution methods. The algorithms are described in detail in [39]. The update

rule for one of the most popular algorithms, one-step Q-learning is:

Q(a, s) → (1 − α)Q(a, s) + α

[

R(s, a) + γ max
a′

Q(a′, s′)

]

(8)

where α is the step-size parameter, and γ the discount-rate. This algorithm is proven to

converge to an optimal policy in the limit (under reasonable conditions). Unfortunately,

for many complex, real-world problems, solving the MDP is impractical and complexity

must be reduced in order to keep learning tractable.

In the following sections we will discuss several ways to reduce the search space, so

that learning with RL is still possible in more challenging domains (i.e., domains with

large or infinite state spaces).

3 Abstraction and Generalization

In order to make RL feasible in complex domains, abstraction or generalization opera-

tors are often applied to make the problem tractable. We describe these operators in the

current section and then give concrete examples in the following section.



Abstraction and generalization are important concepts in artificial intelligence (AI).

Some claim that the ability to abstract and generalize is the essence of human intelli-

gence [7] and that finding good representations is the primary challenge in designing

intelligent systems. However, systems that learn and discover useful representations

automatically are scarce. Instead, this problem is often tackled by the human designer.

A consistent definition of abstraction in the AI literature is not available: typically

the definitions are tailored to specific subfields of AI, e.g, planning and problem solving

[17], theorem proving [16], knowledge representation (e.g., spatial and temporal rea-

soning), machine learning, and computer vision [53]. The general principle underlying

all these definitions is that an abstraction operation maps a representation of a problem

onto a new representation so as to simplify reasoning while preserving useful proper-

ties. One only considers what is relevant and ignores many less important details for

solving a particular task. Readers interested in a survey of state abstraction techniques

in MDPs, as well an initial attempt to unify them, are referred elsewhere [24].

In problem solving and theorem proving, abstraction may be associated with a trans-

formation of the problem representation that allows a theorem to be proved (or a prob-

lem to be solved) more easily with reduced computational complexity. This form of

abstraction first abstracts a goal, proves or solves the abstracted goal, and then uses the

structure of this abstracted proof to help construct the proof of the original goal. This

method relies on the assumption that the structure of the abstracted proof is similar to

the structure of the original goal. Another form of abstraction, as used in knowledge

representation, machine learning, and computer vision, focuses more on the conceptu-

alization of a domain, i.e., finding appropriate concepts or features of a domain. In this

paper we will adopt the following definition for abstraction:

Definition 1 (Abstraction). An abstraction operation changes the representation of an

object by hiding or removing less critical details while preserving desirable properties.

By definition, this implies loss of information.

This definition is rather general and covers several different abstraction operations.

In this paper we will adopt Zucker’s taxonomy [53] to further categorize the different

abstraction types. These abstraction operations are defined and explained with the help

of a concrete example in the next section.

For generalization we employ the following definition:

Definition 2 (Generalization). A generalization operation defines similarities between

objects. This operation does not affect the object’s representation. By definition, this

implies no loss of information.

For example, we may hypothesize that all rectangles are similar in some way. A

strict definition of generalization states that all rectangles are a subset of its generalized

hypothesis (e.g., all rectangles have 4 sides), but typically in machine learning, hypoth-

esis are approximated and allow errors. For example, when stating that all rectangles

have equal length sides, it is possible that some rectangles are outside of the hypothesis

space (namely, all non square rectangles). Therefore, a weaker definition of generaliza-

tion states that we have good evidence that all rectangles behave in a similar way. The

generalization power measures the quality of the hypothesis on future examples.



We will next describe abstraction and generalization opportunities for RL in a con-

crete example, namely for learning a policy for a virtual agent in the computer game of

Wargus.

4 An Illustrative Example

Fig. 1. A complex learning task

10000

00010

...............

01000

00100

sandrockforeststructureagent

w

Fig. 2. A naive state representation, where

rows represent the observations of states (in

this case, a pixel) and the columns represent

the features used to describe the world

One example application that can benefit from reinforcement learning is computer

games. Figure 1 is a screen shot of the computer game Wargus. In this figure we see an

agent that is surrounded by bushes and buildings. This agent’s responsibility (a peasant

in the game) is a typical resource gathering task: it must travel to the goldmine (situated

in the top right corner) and gather gold. We will tackle this learning task within the RL

framework. The action space will contain the actions for moving in all directions. We

assume that the transition function is unknown due to the complex and dynamic nature

of the game environment. We define the agent’s reward signal to be as follows: a small

negative reward for each step and a positive (or zero) reward when completing the task.

The difficult part is finding an appropriate state representation for this task. The state

complexity in our world can be expressed by mn, where n represents the number of

grid cells and m the number of objects in the world. The state complexity is thus expo-

nential in the dimension of the world and polynomial in the number of objects. A naive

state representation (see Figure 2) for our example application would be to consider the

smallest particle of this world (in this case a pixel in this 2-dimensional computer game

world with dimension 500 × 500) to be a single grid cell, and then assuming that each



grid cell can be part of any of five different objects (which is already a simplification).

For example, in Figure 2 the first row indicates that the first pixel is part of a forest

object. When using this representation, learning a policy that directs the agent to the

goldmine would be infeasible, due to the large state space, requiring the value function

to contain 250005 distinct values. For any complex computer game, when modeling the

world described as above, none of the standard RL approaches will converge to a decent

policy in a reasonable amount of time. Rather than devising new update rules for RL,

a more promising approach is to find more compact task representations (i.e., make the

problem space simpler) and generalize over similar states. In other words, we need to

apply appropriate abstractions and generalizations. We will next describe five different

abstraction operations as defined by Zucker [53] that can scale down the problem com-

plexity. We will apply these five techniques consecutively to our challenging problem

to reduce complexity.

4.1 Domain Reduction

Domain Reduction is an abstraction operation that reduces part of the domain (i.e.,

content or instances) by grouping content together. Content refers to the observations

of states (i.e., the row vectors in our world matrix). Before we evaluated each single

pixel, so that our world matrix contained 25000 state observations (one for each grid

cell in our world). The matrix in Figure 2 is a reformulation of the image in Figure 1:

it applies a different notation for the same object without losing any information. We

can reduce the content, i.e., reduce the number of state observations by making sets of

grid cells indistinguishable. In our example we can choose to group neighboring pixels

together to form a larger prototype grid cell. As a result, the world is divided in larger

grid cells, as illustrated in Figure 3. An observation in our world matrix now covers

several pixels, and therefore attribute values are real-valued percentages (averages over

the covered pixels) rather than booleans (see Figure 4). The number of pixels grouped

together to form a grid cell can be increased, but a coarser view of the world necessitates

information loss. The tradeoff between information loss and the quality of the learned

policy can be tuned, depending on task requirements.

4.2 Domain Hiding

Domain hiding is an abstraction operation that hides part of the domain, focusing on

relevant content or objects in the domain. This is one of the most common form of

abstraction. As mentioned before, content refers to the state observations (row vectors

in our matrix). Rather than reducing the number of state observations (by grouping

them), domain hiding simply ignores less relevant state observations. For example, in

our task we want the agent to learn a policy that directs it to the gold mine. Therefore,

we are not necessarily interested in some parts of the world, and we hide these state

observations. We take the world that was the result of domain reduction as our input

and apply domain hiding. The result is shown in Figure 5. In our matrix representation,

a domain hiding operation can be performed by deleting observations, whereas domain

reduction averages observations together.



Fig. 3. Domain reduction
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Fig. 4. State representation of world after

domain reduction

Fig. 5. Domain hiding
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Fig. 6. State representation of world after

domain hiding

4.3 Co-Domain Hiding

Co-domain hiding is an abstraction operation that hides part of the co-domain (i.e.,

description) of an object by selectively paying attention to subsets of useful features in a

given task. With the co-domain, we refer to the features of our world. In the state matrix,

this is represented by the column vectors. Co-domain hiding ignores columns that are

not relevant for the task. For example, in Figure 7, the sand feature is removed from the

description since it is believed this feature does not contribute to an improvement for

the agent’s policy. Notice that the sand in Figure 7 and the sand column in Figure 8’s

matrix have been removed.



Fig. 7. Co-domain hiding
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Fig. 8. State representation of world after

co-domain hiding

4.4 Co-Domain Reduction

Co-domain reduction is an abstraction operation that reduces part of the co-domain (i.e.,

description) by making sets of attribute values indistinguishable. This implies reducing

the range of values an attribute may take. In Figure 8 we see attribute values ranging

from 0 to 1. We can apply abstractions by reducing the range of attribute values.

This can be achieved by applying some threshold function (injective mapping). For

example, if a certain cell is covered with an object by more than 50 percent, in our new

world representation this cell is now covered completely with this object, whereas ob-

jects that cover less than 50 percent are abstracted away from the matrix representation

(see Figure 10). Effectively, we transform real numbers (i.e., percentages of objects in

a grid cell) to boolean values, just as we saw in Figure 2, but now the boolean values do

not correspond to pixels, but to composite grid cells.

4.5 Domain Aggregation

Domain Aggregation is an abstraction operation that aggregates (combines) parts of the

domain (i.e., content). Content (or objects) are grouped together and form a new object

with its own unique properties and parameters. In our example, we can choose to group

objects together that obstruct the agent such as forests, structures or rocks. We group

these objects together to form a complete new object, namely an obstacle (see Figure

11).

4.6 Generalization

A generalization operation is different from an abstraction operation in that it does not

change an object’s representation and, therefore, does not lose any information. Instead

it claims generalities between objects, leaving the original objects untouched. In our

example we can make a generalized hypothesis that forests and rocks are equivalent



Fig. 9. Co-domain reduction
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Fig. 10. State representation of world after

co-domain reduction

Fig. 11. Domain Aggregation

10

00

......

01

10

obstacleagent

w

Fig. 12. State representation of world after

domain aggregation

in that they obstruct the agent from moving there. This is illustrated in Figure 13: our

generalized hypothesis claims that the light-grey parts of the world are equivalent (i.e.,

trees and rocks combined), and similarly for the dark-grey parts of the world (i.e., grass

and sand combined). The effect is (roughly) similar to the effect of an aggregation

operation in Figure 11. However, it is possible that at some point our generalization

that forests and rock are equivalent proves to be faulty. Say, the agent has learned to

chop trees down so it can move through forest locations. In the case of generalization,

we can simply remove or reformulate our hypothesis and return to the original world,

whereas with abstraction the original information is lost and we can not turn back to the

original world. In our example (see Figure 14), it is unclear whether an obstacle used

to be part of a forest or rock. We threw away that information during our abstraction

process. Therefore, we claim that generalization is more flexible and less conclusive

than abstraction.



Fig. 13. Generalization Fig. 14. Difference between abstraction and

generalization: with an abstraction opera-

tion, information is lost.

5 Function Approximation

The previous section introduced many different generalization and abstraction opera-

tors. In this section, we discuss a commonly used approach, where information gathered

by an agent is used to tune a mathematical function that represents the agent’s gathered

knowledge.

In tasks with small and discrete state spaces, the functions V , Q, and π can be repre-

sented in a table, such as discussed in the previous section. However, as the state space

grows using a table becomes impractical (or impossible if the state space is continu-

ous). In such situations, some sort of function approximator is necessary, which allow

the agent to use data to estimate previously unobserved (s, a) pairs.

How to best choose which function approximator to use, or how to set its parame-

ters, is currently an open question. Although some work in RL [11, 24, 25] has taken a

more systematic approaches to state abstractions (also called structural abstractions),

the majority of current research relies on humans to help bias a learning agent by care-

fully selecting a function approximator with parameters appropriate for a given task. In

the remainder of this section we discuss three popular function approximators: Cere-

bellar Model Arithmetic Computers (CMACs), neural networks, and instance-based

approximation.

The first two methods, CMACs and neural networks, may be considered both ap-

proximation and generalization operators. Rather than saving the data gathered in the

world, the agent tunes its function approximator and discards data, losing some infor-

mation (abstraction), but it is then able to calculate the value of the function for val-

ues that have not been experienced (generalization). Many methods for instance-based

approximation also discard data, but some do not; while all instance-based function

approximators are generalizers, not all are abstractors.



Cerebellar Model Arithmetic Computers CMACs [1] take arbitrary groups of con-

tinuous state variables and lay infinite, axis-parallel tilings over them (see Figure 15(a)).

This allows discretization of continuous state space into tiles while maintaining the ca-

pability to generalize via multiple overlapping tilings. Increasing the tile widths allows

better generalization; increasing the number of tilings allows more accurate representa-

tions of smaller details. The number of tiles and the width of the tilings are generally

handcoded: this sets the center, ci, of each tile and dictates which state values will ac-

tivate which tiles. The function approximation is trained by changing how much each

tile contributes to the output of the function approximator. Thus, the output from the

CMAC is the computed sum:

f(x) =
∑

i

wifi(x) (9)

but only tiles which are activated by the current state features contribute to the sum:

fi(x) =

{

1, if tile i is activated
0, otherwise

Weights in a CMAC are typically initialized to zero and are changed over time via

learning.

Artificial Neural Networks The neural network function approximator similarly al-

lows a learner to approximate the action-value function, given a set of continuous, real

valued, state variables. Although neural networks have been shown to be difficult to

train in certain situations on relatively simple RL problems [5, 30], they have had no-

table successes on some RL tasks [9, 46]. Each input to the neural network is set to the

value of a state variable and each output corresponds to an action. Activations of the

output nodes correspond to Q-values (see Figure 15(b) for a diagram).

When used to approximate an action-value function, neural networks often use non-

recurrent feedforward networks. Each node in the input layer is given the value of a dif-

ferent state variable and each output node corresponds is the the calculated Q-value for

a different action. The number of inputs and outputs are thus determined by the task’s

specification, but the number of hidden nodes is specified by the agent’s designer. Note

that by accepting multiple inputs the neural network can determine its output by con-

sidering multiple state variables in conjunction (as opposed to a CMAC consisting of a

separate 1-dimensional tiling for each state variable). Nodes often have either sigmoid

or linear transfer functions. Weights for connections in the network are typically initial-

ized to random values near zero. The networks are often trained using backpropagation,

where the error signal to modify weights is generated by the learning algorithm, as with

the other function approximators.

Instance-based approximation CMACs and neural networks aim to represent a com-

plex function with a relatively small set of parameters that can be changed over time. In

contrast, instance-based approximation stores instances experienced by the agent (i.e.,

〈s, a, r, s′〉) to predict the underlying structure of the environment. Specifically, this ap-

proximation method can be used by model-learning methods (c.f., [19, 20]), which learn
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Fig. 15. CMAC’s value, shown in (a), is computed by summing the weights, wi, from multiple

activated tiles (outlined above with thicker lines). State variables are used to determine which tile

is activated in each of the different tilings. The diagram in (b) shows an artificial feedforward

13-20-3 network, suggesting how Q-values for three actions can be calculated from 13 state

variables.

to approximate T and R by observing the agent’s experience when interacting with an

environment.

Consider the case where an agent is acting in a discrete environment with a small

state space. The agent could record every instance that it experienced in a table. If the

transition function were deterministic, as soon as the agent observed every possible

(s, a) pair, it could calculate the optimal policy. If the transition function were instead

stochastic, the agent would need to take multiple samples for every (s, a) pair. Given a

sufficient number of samples, as determined by the variance in the resulting r and s′,

the agent could again directly calculate the optimal policy via dynamic programming.

When used to approximate T and R for tasks with continuous state spaces, using in-

stances for function approximation becomes significantly more difficult. In a stochastic

task the agent is unlikely to ever visit the same state twice, with the possible exception

of a start state, and thus approximation is critical. Furthermore, since one can never

gather “enough” samples for every (s, a) pair, such methods generally need to deter-

mine which instances are necessary to store so that the memory requirements are not

unbounded. Creating efficient instance-based function approximators, and their associ-

ated learning algorithms, are topics of ongoing research in RL.

Now that the basic concepts of abstraction, and generalization have been introduced

in the context of RL, the next section describes our own contribution in the field of

abstraction and generalization in RL through action abstraction via hierarchical RL

techniques. Later sections will then discuss work on generalization using relational re-

inforcement learning and transfer learning.



6 Hierarchical Reinforcement Learning

There exist many extensions to standard RL that make use of the abstraction and gener-

alization operators mentioned in Section 4. One such method is hierarchical reinforce-

ment learning (HRL), which essentially aggregates actions. HRL is an intuitive and

promising approach to scale up RL to more complex problems. In HRL, a complex task

is decomposed into a set of simpler subtasks that can be solved independently. Each

subtask in the hierarchy is modeled as a single MDP and allows appropriate state, ac-

tion and reward abstractions to augment learning compared to a flat representation of

the problem. Additionally, learning in a hierarchical setting can facilitate generaliza-

tion: knowledge learned in a subtask can be transferred to other subtasks. HRL relies

on the theory of Semi-Markov decision processes (SMDPs) [40]. SMDPs differ from

MDPs in that actions in SMDPs can last multiple time steps. Therefore, in SMDPs ac-

tions can either be primitive actions (taking exactly 1 time-step) or temporally extended

actions. While the idea of applying HRL in complex domains such as computer games

is appealing, with the exception of [2], there are few studies that examining this issue.

We adopted a HRL method similar to Hierarchical Semi-Markov Q-learning (HSMQ)

described in [12]. HSMQ learns policies simultaneously for all non-primitive subtasks

in the hierarchy, i.e., Q(p, s, a) values are learned to denote the expected total reward

of performing task p starting in state s, executing action a, and then following the op-

timal policy thereafter. Subtasks in HSMQ include termination predicates. These parti-

tion the state space S into a set of active states and terminal states. Subtasks can only

be invoked in states in which they are active, and subtasks terminate when the state

transitions from an active to a terminal state. We added to the HSMQ algorithm de-

scribed in [12] a pseudo-reward function [12] for each subtask. The pseudo-rewards tell

how desirable each of the terminal states are for this subtask. Algorithm 3 outlines our

HSMQ-inspired algorithm. Q-values for primitive subtasks are updated with the one-

step Q-learning update rule, while the Q-values for non-primitive subtasks are updated

based on the reward R(s, a), collected during execution of the subtask and a pseudo

reward R̂.

6.1 Reactive Navigation Task

We applied our HSMQ algorithm to the game of Wargus. Inspired by the resource gath-

ering task, we created a world wherein a peasant has to learn to navigate to some loca-

tion on the map while avoiding enemy contact (in the game of Wargus, peasants have

no means for defending themselves against enemy soldiers). More precisely, our sim-

plified game consists of a fully observable world that is 32 × 32 grid cells and includes

two units: a peasant (the adaptive agent) and an enemy soldier. The adaptive agent has

to move to a certain goal location. Once the agent reaches its goal, a new goal is set at

random. The enemy soldier randomly patrols the map and will shoot at the peasant if it

is in firing range. The scenario continues for a fixed time period or until the peasant is

destroyed by the enemy soldier.

Relevant properties for our task are the locations of the peasant, soldier, and goal.

All three objects can be positioned in any of the 1024 locations. A propositional for-

mat of the state space describes each state as a feature vector with attributes for each



Algorithm 3: Modified version of the HSMQ algorithm: The update rule for non-

primitive subtasks (line 13) differs from the original implementation

Function HSMQ(state s,subtask p) returns float;1

Let Totalreward = 0;2

while (p is not terminated) do3

Choose action a = Π(s);4

if a is primitive then5

Execute a, observe one-step reward R(s, a) and result state s′;6

else if a is non-primitive subtask then7

R(s, a) := HSMQ(s, a) , which invokes subtask a and returns the total reward8

received while a executed
Totalreward = Totalreward + R(s, a);9

if a is primitive then10

Q(p, a, s)→ (1− α)Q(p, a, s) + α

»

R(s, a) + γ max
a′

Q(p, a′, s′)

–

;
11

else if a is non-primitive subtask then12

Q(p, a, s)→ (1− α)Q(p, a, s) + α
h

R(s, a) + R̂
i

;13

end14

return Totalreward;15

possible property of the environment, which amounts to 230 different states. As such,

a tabular representation of the value functions is too large to be feasible. Additionally,

such encoding prevents any opportunity for generalization for the learning algorithm,

e.g., when a policy is learned to move to a specific grid cell, the policy can not be reused

to move to another. A deictic state representation identifies objects relative to the agent.

This reduces state space complexity and facilitates generalization. This is a first step

towards a fully relational representation, such as the one covered in Section 7. We will

discuss the state features used for this task in Section 6.2.

The proposed task is complex for several reasons. First, the state space without any

abstractions is enormous. Second, the game state is also modified by an enemy unit.

(The enemy executes a random move on each timestep unless the peasant is in sight,

in which case it moves toward the peasant.) Furthermore, each new task instance is

generated randomly (i.e., random goal and enemy patrol behavior), so that the peasant

has to learn a policy that generalizes over unseen task instances.

6.2 Solving the Reactive Navigation Task

We compare two different ways to solve the reactive navigation task, namely using flat

RL and HRL. For a flat representation of our task, the deictic state representation can

be defined as the Cartesian-product of the following four features: Distance(enemy,s),

Distance(goal,s), DirectionTo(enemy,s), and DirectionTo (goal,s).

The function Distance returns a number between 1 and 8 or a string indicating that

the object is more than 8 steps away in state s, while DirectionTo returns the relative

direction to a given object in state s. Using 8 possible values for the DirectionTo

function, namely the eight compass directions, and 9 possible values for the Distance
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Fig. 16. This figure shows a screenshot of the reactive navigation task in the Wargus game. In this

example, the peasant is situated at the bottom. Its task is to move to a goal position (the dark spot

right to the center) and avoid the enemy soldier (situated in the upper left corner) that is randomly

patrolling the map.



function, the total state space is drastically reduced from 230 to only 5184 states. The

size of the action space is 8, containing actions for moving in each of the eight com-

pass directions. The scalar reward signal R(s, a) in the flat representation should reflect

the relative success of achieving the two concurrent sub-goals (i.e., moving towards the

goal while avoiding the enemy). The environment returns a +10 reward whenever the

agent is located on a goal location. In contrast, a reward of −10 is returned when the

agent is being fired at by the enemy unit, which occurs when the agent is in firing range

of the enemy (i.e., within 5 steps). Each primitive action always yields a reward of −1.

An immediate concern is that both sub-goals are often in competition. We can certainly

consider situations where different actions are optimal for the two sub-goals, although

the agent can only take one action at a time. An apparent solution to handle these two

concurrent sub-goals is applying a hierarchical representation, which we discuss next.

In the hierarchical representation, the original task is decomposed into two sim-

pler subtasks that solve a single sub-goal independently (see Figure 17). The to goal

subtask is responsible for navigation to goal locations. Its state space includes the

Distance(goal,s) and DirectionTo(goal,s) features. The from enemy sub-

task is responsible for evading the enemy unit. Its state space includes the Distance(enemy,s)

and DirectionTo(enemy,s) features. The action spaces for both subtasks include

the primitive actions for moving in all compass directions. The two subtasks are hi-

erarchically combined in a higher-level navigate task. The state space of this task is

represented by the InRange(goal,s) and InRange(enemy,s) features, and its

action space consists of the two subtasks that can be invoked as if they were primitive

actions. InRange is a function that returns true if the distance to an object is 8 or less

in state s, and false otherwise. Because these new features can be defined in terms of

existing features, we are not introducing any additional domain knowledge compared

to the flat representation. The to goal and from enemy subtasks terminate at each state

change on the root level, e.g., when the enemy (or goal) transitions from in range to

out of range and vice versa. We choose to set the pseudo-rewards for both subtasks

to +100 whenever the agent completes a subtask and 0 otherwise. The navigate task

never terminates, but the primitive subtasks always terminate after execution. The state

Fig. 17. Hierarchical decomposition of the reactive navigation task



spaces for the two subtasks are of size 72, and four for navigate. Therefore, the state

space complexity in the hierarchical representation is approximately 35 times less than

with the flat representation. Additionally, in the hierarchical setting we are able to split

the reward signal, one for each subtask, so they do not interfere. The to goal subtask

rewards solely moving to the goal (i.e., only process the +10 reward when reaching

a goal location). Similarly, the from enemy subtask only rewards evading the enemy.

Based on these two reward signals and the pseudo-rewards, the root navigate task is

responsible for choosing the most appropriate subtask. For example, suppose that the

peasant at a certain time decided to move to the goal and it took the agent 7 steps to

reach it. The reward collected while the to goal subtask was active is −7 (reward of −1
for all primitive actions) and +10 (for reaching the goal location) resulting in a +3 total

reward. Additionally, a pseudo-reward of +100 is received because to goal success-

fully terminated, resulting in a total reward of +103 that is propagated to the navigate

subtask, that is used to update its Q-values. The Q-values for the to goal subtask are

updated based on the immediate reward and estimated value of the successor state (see

equation 8).

6.3 Experimental Results

We evaluated the performance of flat RL and HRL in the reactive navigation task. The

step-size and discount-rate parameters were set to 0.2 and 0.7, respectively. These val-

ues were determined during initial experiments. We chose to use more exploration for

the to goal and from enemy subtasks compared to navigate, since more Q-values must

be learned. Therefore, we used Boltzmann action selection with a relatively high (but

decaying) temperature for the to goal and from enemy subtasks and ǫ-greedy action

selection at the top level, with ǫ set to 0.1 [39].

A “trial” (when Q-values are adapted) lasted for 30 episodes. An episode termi-

nated when the adaptive agent was destroyed or until a fixed time limit was reached.

During training, random instances of the task were generated, i.e., random initial start-

ing locations for the units, random goals and random enemy patrol behavior. After each

trial, we empirically tested the current policy on a test set consisting of five fixed task

instances that were used throughout the entire experiment. These included fixed starting

locations for all objects, fixed goals and fixed enemy patrol behavior. We measured the

performance of the policy by counting the number of goals achieved by the adaptive

agent (i.e., the number of times the agent successfully reached the goal location before

it was destroyed or time ran out) by evaluating the greedy policy. We ended the exper-

iment after 1500 training episodes (50 trials). The experiment was repeated five times

and the averaged results are shown in Figure 18.

From this figure we can conclude that while both methods improve with experience,

learning with the HRL representation outperforms learning with a flat representation.

By using (more human-provided) abstractions, HRL represented the policy more com-

pactly than the flat representation, resulting in faster learning. Furthermore, HRL is

more suited to handling concurrent and competing subtasks due to the split reward sig-

nal. We expect that even after considerable learning with flat RL, HRL will still achieve

a higher overall performance. This experiment shows that when goals have clearly con-



Fig. 18. This figure shows the average performance of Q-learning over 5 experiments in the reac-

tive navigation task for both flat and HRL. The x-axis denotes the number of training trials and

the y-axis denotes the average number of goals achieved by the agent for the tasks in the test set.

flicting rewards and the overall task can be logically divided into subtasks, HRL could

be successfully applied.

7 Relational Reinforcement Learning

Relational reinforcement learning [14] (RRL) combines the RL setting with relational

learning or inductive logic programming [26] (ILP) in order to represent states, ac-

tions, and policies using the structures and relations that identify them. These structural

representations allow generalization over specific goals, states, and actions. Because

relational reinforcement learning algorithms try to solve problems at an abstract level,

the solutions will often carry to different instantiations of that abstract problem. For

example, resulting policies learned by an RRL system often generalize over domains

with varying number of existing objects.

A typical example is the blocks world. A number of blocks with different properties

(size, color, etc.) are placed on each other or on the floor. It is assumed that an infinite

number of blocks can be put on the floor and that all blocks are neatly stacked onto

each other, e.g., a block can only be on one other block. The possible actions consist

of moving one clear block (e.g., a block with no other block on top of it) onto another

clear block, or onto the floor. It is impossible to represent such world states with a

propositional representation without an exponential increase of the number of states.

Consider as an example the right-most state in Figure 19. In First-Order Logic (FOL),

this state can be represented, presuming this state is called s, by the conjunction

{on(s, c, f loor) ∧ clear(s, c) ∧ on(s, d, floor) ∧ on(s, b, d) ∧ on(s, a, b) ∧
clear(s, a) ∧ on(s, e, floor) ∧ clear(s, e)}.

s is reached by executing the move action (indicated by the arrow), noted as move(r,s,a,b),

in the previous state (on the left in Figure 19).



ed

a b

c e

a

d

b

c

Fig. 19. The blocks world

One of the most important benefits of the relational learning approach is that one can

generalize over states, actions, objects, but one is not forced to do so (one can abstract

away selectively only these things that are less important). For instance, suppose that all

blocks have a size property. One could then say that “there exists a small block which is

on a large block” (∃B1, B2 : block(B1, small, ), block(B2, large, ), on(B1, B2)).
Objects B1 and B2 are free variables, and can be instantiated by any block in the

environment. RRL can generalize over blocks and learn policies for a variable number

of objects without necessarily suffering from the “curse of dimensionality” (where the

size of the value function increases exponentially with the dimension of the state space).

Although it is a relatively new representation, several approaches to RRL have been

proposed during the last few years. One of the first methods developed within RRL was

relational Q-learning [14], described in Algorithm 4. Relational Q-learning behaves

similarly to standard Q-learning, but is adapted to the RRL representation. In relational

reinforcement learning, the representation contains structural or relational information

about the environment. Relational Q-learning employs a relational regression algorithm

to generalize over the policy space. Learning examples, stored as a tuple (a, s,Q(s, a)),
are processed by an incremental relational regression algorithm to produce a relational

value-function or policy as a result. So far, a number of different relational regression

learners have been developed.1

In [28], we demonstrated how relational reinforcement learning and multi-agent

systems techniques could be combined to plan well in tasks that are complex, multi-

state, and dynamic. We used a relational representation of the state space in multi-agent

reinforcement learning, as this has many benefits over the propositional one. For in-

stance, it handled large state spaces, used a rich relational language, modeled other

agents without a computational explosion (generalizing over agents’ policies), and gen-

eralized over newly derived knowledge. We investigated the positive effects of relational

reinforcement learning applied to the problem of agent communication in multi-agent

systems. More precisely, we investigated the learning performance of RRL given some

communication constraints. Our results confirm that RRL can be used to adequately

deal with large state spaces by generalizing over states, actions and even agent policies.

1 A thorough discussion and comparison can be found in [13].



Algorithm 4: The Relational Reinforcement Learning Algorithm

REQUIRE initialize Q(s, a) and s0 arbitrarily;1

e← 0;2

repeat {for each episode}3

Examples← ∅;4

i← 0;5

repeat {for each step ∈ episode}6

take a for s using policy π(s) and observe r and s′;7

Q(a, s)→ (1− α)Q(a, s) + α

»

r + γ max
a′

Q(a′, s′)

–

;
8

Examples← Examples∪{a, s, Q(s, a)};9

i← i + 1;10

until si is terminal ;11

Update Q̂e using Examples and a relational regression algorithm to produce Q̂e+1;12

e← e + 1;13

until done ;14

8 Transfer Learning

This section of the chapter chapter focuses on transfer learning (TL) and its relationship

to generalization and abstraction. The interested reader is referred elsewhere [44] for a

more complete treatment of transfer in RL.

8.1 Transfer Learning Background

All transfer learning algorithms for reinforcement learning agents use one or more

source tasks to better learn in a target task, relative to learning without the benefit of

the source task(s). Transfer techniques assume varying degrees of autonomy and make

many different assumptions. For instance, one way TL algorithms differ is in how they

allow source and target tasks to differ. Consider the pairs of MDPs represented in Fig-

ure 20. The source and target tasks could differ in any portion of the MDP: the transition

function, T , the reward function, R, what states exist, what actions the agent can per-

form, and/or how the agent represents the world (the state is represented here in terms

of state variables 〈x1, x2, . . . , xn〉 in the source task MDP and 〈x1, x2, . . . , xm〉 in the

target task MDP).

The use of transfer in humans has been studied for many years in the psychological

literature [34, 47]. More related is sequential transfer between machine learning tasks

(c.f., [48]), which allows the learning of higher performing classifiers with less data.

For instance, one could imagine using a large training corpus from a newspaper to help

learn a classifier such that when the classifier is presented with training examples from

a magazine, it can learn with fewer examples than if the newspaper data had not been

used. Another common approach is that of learning to perform multiple tasks simulta-

neously (c.f., [8]). The motivation in this case is that a classifier capable of performing

multiple tasks in a single domain will be forced to capture more structure of the domain,

performing better than if any one classifier was trained and tested in isolation.
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Fig. 20. Simple transfer schematic

8.2 Transfer as Generalization

Generalization may be thought of as the heart of machine learning: given a set of data,

how should one perform on novel data? Such questions are prevalent in RL as well. For

instance, in a continuous action space, an agent is unlikely to visit a single state more

than once and it must therefore constantly generalize its previous data to predict how to

act.

Transfer learning may be thought of as a different type of generalization, where the

agent must generalize knowledge across tasks. This section examines two strategies

common to transfer methods. The first strategy is to learn some low-level information

in the source task and then use this information to better bias learning in the target task.

The second strategy is to learn something that is true for the general domain, regardless

of the particular task in question.

Example Domain: Keepaway One popular domain for demonstrating TL in RL tasks

is that of Keepaway [37], a sub-task of the full 11 vs. 11 simulated soccer, which uses the

RoboCup Soccer Server [27] to simulate sensor and actuator noise of physical robots.

Typically, n teammates (the keepers) attempt to keep control of the ball within a small

field area, while n − 1 teammates (the takers) attempt to capture the ball or kick it

out of bounds. The keepers typically learn while the takers follow a fixed policy. Only

the keeper with the ball may select actions intelligently: all keepers without the ball

always executes a getopen action, where they attempt to move to an area of the field

to receive a pass.

Keepers learn to extend the average length of an episode over time by selecting be-

tween executing the hold ball action (attempting to maintain possession), or they may

pass to a teammate. In 3 vs. 2 Keepaway, there are three keepers and two takers, and

thus the keeper with the ball has 3 macro2 actions (hold, pass to closest teammate, and

2 Note that because the actions may last more than one timestep, Keepaway is technically an

SMDP, rather than an MDP, but such distinction is not critical for the purposes of this chapter.
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Fig. 21. 3 vs. 2 Keepaway uses multiple distances and angles to represent state, enumerated in

Table 1.

pass to second closest teammate). The keeper with the ball represents its state with 13

(rotational invariant) state variables, shown in Figure 21. This is also a deictic represen-

tation, similar to the one discussed in Section 6.1, because players are labeled relative to

their distance to the ball, rather than labeled by jersey number (or another fixed scheme).

The 4 vs. 3 Keepaway task, which adds an additional keeper and taker, is more

difficult to learn. First, there are more actions (the keeper with the ball selects from 4

actions) and keepers have a more complex state representation (due to the extra players,

the world is described by 19 state variables). Second, because there are more players

on the field, passes must be more frequent. Each pass has a chance of being missed by

the intended receiver, and thus each pass brings additional risk that the ball will be lost,

ending the episode.

Given these two tasks, there are (at least) two possible goals for transfer. First, one

may assume that a set of keepers have trained on the source task. Considering this

source task training a sunk cost, the goal is to learn better/faster on the target task by

using the source task information, compared to learning the target task while ignoring

knowledge from the source task. A second, more difficult, goal is to explicitly account

for source task training time. In other words, the second goal of transfer is to learn

the source task, transfer some knowledge, and then target task better/faster than if the

agents had directly trained only on the target task.

Transferring Low-Level Information: Ignoring novel structure When considering

transfer from 3 vs. 2 to 4 vs. 3, one approach would be to learn a Q-value function

in the source task and then copy it over into the target task, ignoring the novel state



Description 3 vs. 2 and 4 vs. 3 State Variables

3 vs. 2 state variable 4 vs. 3 state variable

dist(K1, C) dist(K1, C)

dist(K1, K2) dist(K1, K2)
dist(K1, K3) dist(K1, K3)

dist(K1,K4)

dist(K1, T1) dist(K1, T1)
dist(K1, T2) dist(K1, T2)

dist(K1,T3)

dist(K2, C) dist(K2, C)
dist(K3, C) dist(K3, C)

dist(K4,C)

dist(T1, C) dist(T1, C)
dist(T2, C) dist(T2, C)

dist(T3,C)

Min(dist(K2, T1), dist(K2, T2)) Min(dist(K2, T1), dist(K2, T2), dist(K2,T3))

Min(dist(K3, T1), dist(K3, T2)) Min(dist(K3, T1), dist(K3, T2), dist(K3,T3))

Min(dist(K4,T1), dist(K4,T2), dist(K4,T3))

Min(ang(K2, K1, T1), ang(K2, K1, T2)) Min(ang(K2, K1, T1), ang(K2, K1, T2),

ang(K2,K1,T3)
Min(ang(K3, K1, T1), ang(K3, K1, T2)) Min(ang(K3, K1, T1), ang(K3, K1, T2),

ang(K3,K1,T3))

Min(ang(K4,K1,T1), ang(K4,K1,T2),

ang(K4,K1,T3))

Table 1. This table lists the 13 state variables for 3 vs. 2 Keepaway and the 19 state variables for

4 vs. 3 Keepaway. The distance between a and b is denoted as dist(a, b); the angle made by a,

b, and c, where b is the vertex, is denoted by ang(a, b, c); and values not present in 3 vs. 2 are

in bold. Relevant points are the center of the field C, keepers K1-K4, and takers T1-T3, where

players are ordered by increasing distance from the ball.

variables and actions. This is similar to the idea of domain hiding, discussed earlier in

Section 4.2. For instance, the hold action in 4 vs. 3 can be considered the same as the

hold action in 3 vs. 2. Likewise, the 4 vs. 3 actions pass to closest teammate and

pass to second closest teammate may be considered the same as the 3 vs. 2 actions

pass to closest teammate and pass to second closest teammate. The “novel” 4 vs. 3

action, pass to third closest teammate, is ignored. Table 1 shows the state variables

from the 3 vs. 2 and 4 vs. 3 tasks, where the novel state variables in the 4 vs. 3 task are

in bold.

This is precisely the approach used in Q-value Reuse [45]. Results (reproduced in

Table 2) show that the Q-values saved after training in the 3 vs. 2 task can be success-

fully used directly in the 4 vs. 3 task by ignoring the novel state variables and actions.

Specifically, the source task action-value function is used as an initial bias in the target

task, which is then refined over time with SARSA learning (e.g., Q-values for the novel

4 vs. 3 action are learned, and existing Q-values are refined). Column 2 of the table

shows that the source task knowledge can be successfully reused, and column 3 shows

that the total training can be successfully reduced via transfer.



Lazaric et al. [23] also focuses on transferring very low-level information by using

source task instances in a target task. After learning one or more source tasks, some

experience is gathered in the target task, which may have a different state space or

transition function, but the state variables and actions must remain unchanged. Saved

instances (that is, observed 〈s, a, r, s′〉 tuples) are compared to recorded instances in

the target task. Source task instances that are very similar, as judged by their distance

and alignment with target task data, are transferred. A batch learning algorithm (Fit-

ted Q-iteration [15], which uses instance-based function approximation, then uses both

source instances and target instances to achieve a higher total reward (relative to learn-

ing without transfer).

Region transfer, introduced in the same chapter [23], calculates the similarity be-

tween the target task and different source tasks per sample, rather than per task. Thus,

if source tasks have different regions of the state space which are more similar to the

target, only those most similar regions can be transferred. In this way, different regions

of the target task may reuse data from different source tasks, and regions of the target

task that are completely novel will use no source task data. Although this work did

not use Keepaway, one possible example would be to have source tasks with different

coefficients of friction: in the target task, grass conditions in different sections of the

field would dictate which source tasks(s) are most similar and where data should be

transferred from.

Transferring Low-Level Information: Mapping novel structure Inter-task map-

pings [45] allow a TL algorithm to explicitly state the relationship between different

state variables and actions in the two tasks. For instance, the novel 4 vs. 3 action, pass

to third closest teammate, may be mapped to the 3 vs. 2 action pass to second closest

teammate. When such an inter-task mapping is provided (and is correct), transfer may

be even more effective than if the novelty is ignored. Such an approach generalizes the

source task knowledge to the target task. By generalizing over different target task state

variables and actions, the TL method can initialize all target task Q-values to values

learned in the source task, biasing learning and resulting in significantly faster learning.

The Value Function Transfer method in Table 2 uses inter-task mappings (columns four

and five), and outperforms Q-value Reuse, which had ignored novel state variables and

actions.

While inter-task mappings are a convenient way to fully specify relationships be-

tween MDPs, it is possible that not enough information is known to design a full map-

ping. For instance, an agent may know that a pair of state variables describe “distance

to teammate” and “distance from teammate to marker,” but the agent is not told which

teammate the state variables describe. Homomorphisms [31] are a different abstraction

that can define transformations between MDPs based on transition and reward dynam-

ics, similar in spirit to inter-task mappings, and have been used successfully for trans-

fer [35]. However, discovering homomorphisms is NP-hard [32]. Work by Soni and

Singh [35] supply an agent with a series of possible state transformations (i.e., potential

homomorphisms) and an inter-task mapping for all actions. One transformation, X , ex-

ists for every possible mapping between target task state variables to source task state

variables. The agent learns in the source task as normal. Then the agent must learn the



Transfer Results between 3 vs. 2 and 4 vs. 3 Keepaway

Q-value Reuse Value Function Transfer

# of 3 vs. 2 Avg. 4 vs. 3 Avg. Total Avg. 4 vs. 3 Avg. Total

Episodes Time (sim. hours) Time (sim. hours) Time (sim. hours) Time (sim. hours)

0 30.84 30.84 30.84 30.84

10 28.18 28.21 24.99 25.02

50 28.0 28.13 19.51 19.63

100 26.8 27.06 17.71 17.96

250 24.02 24.69 16.98 17.65

500 22.94 24.39 17.74 19.18

1,000 22.21 24.05 16.95 19.70

3,000 17.82 27.39 9.12 18.79

Table 2. Results in columns two and three (reproduced from [45]) show learning 3 vs. 2 for

different numbers of episodes and then using the learned 3 vs. 2 CMAC directly while learning

4 vs. 3. Minimum learning times for reaching a preset 4 vs. 3 performance threshold are bold.

All times reported are “simulator hours,” the number of playing hours simulated, as opposed

to wall-clock time. The top row of results shows the time required to learn in the 4 vs. 3 task

without transfer. As source task training time increases, the required target task training time

decreases. The total training time is minimized with a moderate amount of source task training.

The results of using Value Function Transfer (with inter-task mappings) are shown in columns

four and five. Q-value Reuse provides a statistically significant benefit relative to no transfer, and

Value Function Transfer yields an even higher improvement.

correct transformation: in each target task state s, the agent must choose to randomly

explore the target task actions, or choose to take the action suggested by the learned

source task policy using one of the existing transformations, X . Q-learning allows the

agent to select the best state variable mapping, defined as the one which allows the

player to accrue the most reward, as well as learn the action-values for the target task.

Later work by Sorg and Singh [36], extend this idea to that of learning “soft” homomor-

phisms. Rather than a strict surjection, these mappings assign probabilities that a state

in a source task is the same as a state in the target task. This added flexibility allows the

authors to provide bounds on their algorithm’s performance, as well as show that such

mappings are indeed learnable.

The MASTER algorithm [42] transfers instances similar to Lazaric [23], except that

novel state variables and actions may be explicitly accounted for by using inter-task

mappings. MASTER uses an exhaustive search to generate all possible inter-task map-

pings, and then selects the one that best describes the relationship between the source

and target task, learning the best inter-task mapping. Then, data from the source task

is mapped to the target task, and learning can continue to refine the source task data.

Although this method currently does not scale to Keepaway (due to its reliance on

model-learning methods [19] for continuous state variables), but is similar in spirit to

the above two methods.

Transferring High-Level Information This section discusses four methods which

transfer higher-level information than the previously discussed transfer methods. One



example is an option, where a set of actions are composed into a single high-level

macro-action that the agent may choose to execute. Thus far, researchers have not quan-

tified “high-level” and “low-level” information well, nor have they made convincing

arguments to support the claim that high-level information is likely to generalize to dif-

ferent tasks within a similar domain. However, this claim makes intuitive sense and is

an interesting open question.

Section 7 introduced Relational RL (RRL). Recall that the propositional representa-

tion allows state to be discussed in terms of objects and their properties. Actions in the

RRL framework typically have pre- and post-conditions over objects. When the state

changes such that there are more or fewer objects, learned Q-values for actions may

be very similar, as the object on which the action acts has not changed. One example

of such transfer is by Croonenbourghs et al. [10], where they first learn a source task

policy with RRL. This source task policy then generates state-action pairs, which are

in turn used to build a relational decision tree. This tree predicts which action would

be executed by the policy in a given state. As a final step, the trees produce relational

options. These options are directly used in the target task with the assumption that the

tasks are similar enough that no translation of the relational options is necessary.

Konidaris and Barto [22] also consider transferring options, but do so in a different

framework. Instead of an RRL approach, they divide problems into agent-space and

problem-space representations [21]. Agent-space defines an agent’s capabilities that

remains fixed across all problems (e.g., it represents a robot’s physical sensors and ac-

tuators); agent-space may be considered a type of domain hiding. The problem-space

may change between tasks (e.g., there may be different room configurations in a navi-

gation task). By assuming “pre-specified salient events,” such as when a light turns on

or an agent unlocks a door, agents may learn options to achieve these events. Options

succeed in improving learning in a single task by making it easier for agents to reach

such salient events (which are assumed to be relevant for the task being performed). Ad-

ditionally, the agent may train on a series of tasks, learning options in both agent- and

problem-space, and reusing them in subsequent tasks. The authors suggest that agent-

space options will likely be more portable than problem-space options, and it is likely

that problem-space options will only be useful when the source and target tasks are very

similar.

Torrey et al. [49] also consider transferring option-like knowledge. Their method

involves learning a strategy, represented as a finite-state machine, which can be ap-

plied to a target task with different state variables and actions. Strategies are learned in

the source task and then remapped to the target task with inter-task mappings. These

transferred strategies are then demonstrated to the target task learner. Instead of ex-

ploring randomly, the agent is forced to execute any applicable strategy for the first

100 episodes, learning to estimate the value of executing different strategies. After this

demonstration phase, agents may then select from all of the MDP’s actions. Experi-

ments show that learning first on 2-on-1 BreakAway (similar to 2 vs. 1 Keepaway, but

where the “keepers” are trying to score a goal on the “takers”), improves learning in

both 3-on-2 Breakaway and 4-on-3 BreakAway.



8.3 Abstraction in Transfer

The majority of the TL methods in the above section focused on the first goal of transfer:

showing that source task knowledge can improve target task learning, when the source

task is treated as a sunk cost. (An exception is Taylor et al. [45], where they demonstrate

that learning a pair or sequence of tasks can be faster than directly learning the target

task.) In this section, we discuss abstraction in the context of transfer. Specifically, if

the source task is an abstract version of the target task, it may be substantially faster

to learn than the target task, but still provide the target task learner with a significant

advantage.

Taylor and Stone [43] introduced the notion of inter-domain transfer in the context

of Rule Transfer (similar in spirit to Torrey et al.’s method [49]). The chapter showed

two instances where transfer between very different domains was successful. In both

cases, the source tasks are discrete and fully observable, and one is deterministic. The

target task was 3 vs. 2 Keepaway, which has continuous state variables, is partially

observable, and is stochastic (due to sensor and actuator noise).

One of the source tasks is shown in Figure 22. In this task, the player begins at one

end of the 25 × 25 board and the opponent begins at the opposite end of the board. The

goal of the player is to reach the opposite end of the board without being touched by

the opponent (either condition will end the episode). The player’s state is represented

by three state variables and it has three actions available. The player may move North

(forward) or perform a knight’s jump: North + East + East, or North + West + West.

Although this task is very different from Keepaway, there are some important similar-

ities. For instance, when the distance between the keeper with the ball and the closest

taker is small, the player is likely to lose the ball (and thus end the episode). In Knight’s

Joust, when the distance between the player and the opponent is small, the episode is

also likely to end.

Most significant with respect to transfer is the fact that an agent sees an average

of only 600 distinct states over a 50,000 episode learning trial of Knight’s Joust. This

makes learning a good source task policy relatively easy: learning in the Knight’s Joust

abstraction takes on the order of a minute, whereas learning in 3 vs. 2 Keepaway takes

hours of wall clock time. Using an abstract source task that allows very fast learning

makes the task of reducing the total training time must easier: if the goal is to learn 3

vs. 2 Keepaway, it makes sense to spend a minute or two learning an abstract source

task because it can save hours of learning in the target task (relative to directly learning

3 vs. 2 Keepaway).

While this result is encouraging, it can be regarded as a proof of concept: both

source tasks used by Taylor and Stone [43] were carefully designed to be useful for

transfer into the Keepaway task. The idea of constructing sequences of tasks which are

fast to learn is very appealing [4, 41], but there are currently no concrete guidelines.

This is due, in part, to the absence of a general method for deciding when transfer from

a given source task will help learn a target task.

For instance, consider an agent that first learns the game of “Giveaway,” where the

goal is to loose the ball as fast as possible. If the agent then transfers this knowledge

to Keepaway, it will perform worse than if it had ignored its previous knowledge [45].

While this may appear “obvious” to a human, such differences may be opaque to an
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Fig. 22. Knight’s Joust: The player attempts to reach the goal end of a a 25× 25 grid-world while

the opponent attempts to touch the player.

agent and its learning algorithm. In the above example, the source task and target task

differ only in reward function: the transition model, state variables, actions, etc. are all

identical. Similarly, if an agent learns a specific path out of a maze in a source task and

then uses this policy to navigate a target task maze, a malicious designer of the target

task may make the source task policy perform arbitrarily poorly. Protecting against such

negative transfer is an important open question.

9 Conclusions

In this survey we investigated generalization and abstraction in Reinforcement Learn-

ing. We provided the fundamentals of RL, introduced definitions of generalization and

abstraction, and elaborated on the most common techniques to achieve both. These

techniques include function approximation, hierarchical reinforcement learning, rela-

tional reinforcement learning and transfer learning. With novel and existing examples

from the literature, we illustrated these techniques and provided many references to the

literature. Our hope is that this chapter has provided a solid introduction and structure

to the concepts of abstraction and generalization in RL, encouraging additional work in

this exciting field.

Acknowledgements

The authors would like to thank Scott Alfeld and Jason Tsai for useful comments and

suggestions. Marc Ponsen is sponsored by the Interactive Collaborative Information

Systems (ICIS) project, supported by the Dutch Ministry of Economic Affairs, grant nr:

BSIK03024.



References

1. J. S. Albus. Brains, Behavior, and Robotics. Byte Books, Peterborough, NH, 1981.

2. A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Dis-

crete Event Dynamic Systems: Theory and Application, 13(4):341–379, 2003.

3. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, New Jersey,

1957.

4. Y. Bengio, J. L., R. Collobert, and J. Weston. Curriculum learning. In Proceedings of the

Twenty-Sixth International Conference on Machine Learning, June 2009.

5. J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely approximat-

ing the value function. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in

Neural Information Processing Systems 7, pages 369–376, Cambridge, MA, 1995. The MIT

Press.

6. R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for near-

optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2003.

7. R.A. Brooks. Intelligence without representation. Artificial Intelligence, (47):139–159,

1991.

8. R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

9. R. H. Crites and A. G. Barto. Improving elevator performance using reinforcement learn-

ing. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural

Information Processing Systems 8, pages 1017–1023, Cambridge, MA, 1996. MIT Press.

10. T. Croonenborghs, K. Driessens, and M. Bruynooghe. Learning relational options for induc-

tive transfer in relational reinforcement learning. In Proceedings of the Seventeenth Confer-

ence on Inductive Logic Programming, 2007.

11. T. Dean and R. Givan. Model minimization in Markov decision processes. In Proceedings

of the Thirteenth National Conference on Artificial Intelligence, pages 106–111, 1997.

12. T. Dietterich. An overview of MAXQ hierarchical reinforcement learning. In Proceedings of

the Symposium on Abstraction, Reformulation and Approximation (SARA-00), Lecture Notes

in Computer Science, volume 1864, pages 26–44, 2000.

13. K. Driessens. Relational Reinforcement Learning. PhD thesis, DEPTCW, 2004.

http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2004 05.abs.html.
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