
Copyright

by

Matthew Edmund Taylor

2008



The Dissertation Committee for Matthew Edmund Taylor

certifies that this is the approved version of the following dissertation:

Autonomous Inter-Task Transfer in Reinforcement

Learning Domains

Committee:

Peter Stone, Supervisor

Risto Miikkulainen

Raymond Mooney

Bruce Porter

Richard S. Sutton



Autonomous Inter-Task Transfer in Reinforcement

Learning Domains

by

Matthew Edmund Taylor, A.B.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2008



Acknowledgments

First, I would like to thank my advisor, Peter Stone, who has served as a role model

throughout my graduate career. I attribute my development as a researcher to his

advice, encouragement, patience, and suggestions. I would also like to thank my

committee members for their suggestions that have shaped this work. Every one

of my past co-authors have also helped to inform my research, provide technical

advice, and improve my presentation skills.

Completing a dissertation is a selfish process. One’s life seems to become

focused around creating a scientific contribution at the expense of many other im-

portant things. I would like to thank Cynthia Matuszek and my many friends for

their understanding, encouragement, and help throughout this process.

Lastly, my parents are an integral part of this dissertation. Their continual

support and encouragement, whether it felt deserved it or not, was unwaivering.

This work was funded in part by DARPA grant HR0011-04-1-0035, and NSF award

EIA-0303609.

Matthew Edmund Taylor

The University of Texas at Austin

August 2008

iv



Autonomous Inter-Task Transfer in Reinforcement

Learning Domains

Publication No.

Matthew Edmund Taylor, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Peter Stone

Reinforcement learning (RL) methods have become popular in recent years be-

cause of their ability to solve complex tasks with minimal feedback. While these

methods have had experimental successes and have been shown to exhibit some

desirable properties in theory, the basic learning algorithms have often been found

slow in practice. Therefore, much of the current RL research focuses on speeding

up learning by taking advantage of domain knowledge, or by better utilizing agents’

experience. The ambitious goal of transfer learning, when applied to RL tasks, is

to accelerate learning on some target task after training on a different, but related,

source task. This dissertation demonstrates that transfer learning methods can suc-

cessfully improve learning in RL tasks via experience from previously learned tasks.
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Transfer learning can increase RL’s applicability to difficult tasks by allowing agents

to generalize their experience across learning problems.

This dissertation presents inter-task mappings, the first transfer mechanism

in this area to successfully enable transfer between tasks with different state variables

and actions. Inter-task mappings have subsequently been used by a number of

transfer researchers. A set of six transfer learning algorithms are then introduced.

While these transfer methods differ in terms of what base RL algorithms they are

compatible with, what type of knowledge they transfer, and what their strengths

are, all utilize the same inter-task mapping mechanism. These transfer methods can

all successfully use mappings constructed by a human from domain knowledge, but

there may be situations in which domain knowledge is unavailable, or insufficient,

to describe how two given tasks are related. We therefore also study how inter-task

mappings can be learned autonomously by leveraging existing machine learning

algorithms. Our methods use classification and regression techniques to successfully

discover similarities between data gathered in pairs of tasks, culminating in what is

currently one of the most robust mapping-learning algorithms for RL transfer.

Combining transfer methods with these similarity-learning algorithms allows

us to empirically demonstrate the plausibility of autonomous transfer. We fully

implement these methods in four domains (each with different salient characteris-

tics), show that transfer can significantly improve an agent’s ability to learn in each

domain, and explore the limits of transfer’s applicability.
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Chapter 1

Introduction

In reinforcement learning [Sutton and Barto, 1998] (RL) problems, learning agents

execute sequential actions with the goal of maximizing a reward signal, which may

be time-delayed. For example, an agent could learn to play a game by being told

whether it wins or loses, without ever being told the “correct” action. The RL

framework has gained popularity with the development of algorithms capable of

mastering increasingly complex problems. However, when RL agents begin learning

tabula rasa, mastering difficult tasks is often slow or infeasible, and thus a signifi-

cant amount of current research in RL focuses on improving the speed of learning

by exploiting domain expertise with varying amounts of human-provided knowledge.

Common approaches include deconstructing the task into a hierarchy of subtasks

(c.f. MAXQ [Dietterich, 2000]), finding ways to learn over temporally abstract ac-

tions (e.g., using the options framework [Sutton et al., 1999]) rather than simple

one-step actions, and abstracting over the state space (e.g., via function approxima-

tion [Sutton and Barto, 1998]) so agents may efficiently generalize experience.

This dissertation examines one such general method for speeding up learning:

transfer learning (TL). The key insight behind transfer learning is that generaliza-

tion may occur not only within tasks, but also across tasks. This insight is not new;
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transfer has been studied in the psychological literature [Thorndike and Woodworth,

1901, Skinner, 1953] for many years. More relevant are a number of approaches

that transfer between machine learning tasks [Caruana, 1995, Thrun, 1996], plan-

ning tasks [Fern et al., 2004, Ilghami et al., 2005], and within cognitive architec-

tures [Laird et al., 1986, Choi et al., 2007]. However, TL for RL tasks has only

recently been gaining attention in the artificial intelligence community.

Transfer learning in RL is an important topic to address at this time for

three reasons. First, in recent years RL techniques have achieved notable suc-

cesses in difficult tasks which other machine learning techniques are either unable

or ill-equipped to address (e.g., backgammon [Tesauro, 1994], job shop schedul-

ing [Zhang and Dietterich, 1995], elevator control [Crites and Barto, 1996], heli-

copter control [Ng et al., 2004], Robot Soccer Keepaway [Stone et al., 2005], and

Server Job Scheduling [Whiteson and Stone, 2006b]). Second, classical machine

learning techniques such as rule induction and classification are sufficiently mature

that they may now easily be leveraged to assist with TL. Third, promising ini-

tial results show that not only are such transfer methods possible, but they can

be very effective at speeding up learning. The 2005 DARPA Transfer Learning

program [DARPA, 2005] helped to significantly increase interest in transfer learn-

ing. There have also been some recent workshops providing exposure for RL tech-

niques that use transfer. The 2005 NIPS workshop, “Inductive Transfer: 10 Years

Later,” [Silver et al., 2005] had few RL-related transfer papers, the 2006 ICML

workshop, “Structural Knowledge Transfer for Machine Learning,” [Banerjee et al.,

2006] had many, and the 2008 AAAI workshop, “Transfer Learning for Complex

Tasks,” [Taylor et al., 2008a] focuses on RL.

With motivations similar to those of case based reasoning [Aamodt and Plaza,

1994], where a symbolic learner constructs partial solutions to the current task from

past solutions, the primary goal of transfer learning is to autonomously determine

2



how a current task is related to a previously mastered task and then to automati-

cally use past experience to learn the novel task faster. This dissertation focuses on

the following question:

Given a pair of related RL tasks that have different state spaces,
different available actions, and/or different representative state
variables,

1. how and to what extent can agents transfer knowledge
from the source task to learn faster or otherwise better in
the target task, and

2. what, if any, domain knowledge must be provided to the
agent to enable successful transfer?

The primary contribution of this dissertation is to answer the first part of the

above question by demonstrating that TL is feasible. For this purpose, we introduce

inter-task mappings, a construct that relates pairs of tasks that have different actions

and state variables. Inter-task mappings are the field’s first [Taylor and Stone, 2004]

construct to enable such transfer techniques and are formalized in Chapter 4.

The first TL method to use inter-task mappings is Value Function Transfer

(Section 4.2), which can transfer between agents1 in tasks with different state vari-

ables and actions, assuming that both agents use temporal difference (TD) learning

algorithms and represent the learned value function in the same manner. Experi-

ments demonstrate that this method can significantly improve learning, but there

may be situations where it is inapplicable because an agent does not use TD learn-

ing, or because agents use different representations. However, the inter-task mapping

construct is robust enough to work in a variety of settings, and this dissertation fully

1It is reasonable to frame TL as transferring from an agent in a source task to a different agent
in a target task, or to consider training an agent in a source task and then having it move into the
target task. In this dissertation we discuss our methods assuming transfer between different agents,
but the two views are equivalent.
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explores the application of inter-task mappings as the core of multiple algorithms.

This dissertation introduces the following methods, all of which utilize inter-task

mappings:

1. Value Function Transfer (Section 4.2) is described above.

2. Q-Value Reuse (Section 5.1) builds on Value Function Transfer by directly

reusing a learned source task action-value function, allowing for transfer be-

tween TD agents with different function approximators.

3. Policy Transfer (Section 5.2) modifies the structure and weights of neural net-

work action selectors to transfer between direct policy search learning methods.

4. timbrel (Section 6.1) directly transfers experience data between tasks in order

to improve learning on a model-based learning method in the target task,

without placing any requirements on the type of source task learning method.

5. Rule Transfer (Section 6.2) learns production rules that summarize a source

task policy learned with any RL method, and provides the rules as advice to

a TD learner in a target task.

6. Representation Transfer (Section 6.3) allows experience from an agent trained

in a task to be reused in the same task by an agent with a different represen-

tation (as defined by the learning algorithm, the function approximator, and

the function approximator’s parameterization), or in a different task.

As a whole, these methods show that inter-task mappings can be used as a

core component in multiple algorithms, allowing for transfer between many different

types of learners and learning representations. Additionally, these methods show

that different types of knowledge can be successfully transferred, emphasizing that

inter-task mappings are a very general construct that allow for significant flexibility

in specific transfer algorithms.
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A second contribution of this dissertation is to answer the latter part of

the above question by demonstrating that inter-task mappings can be learned au-

tonomously. While all of the TL methods in this dissertation function well with

mappings provided by a human, a human may sometimes be unable to generate

such a mapping, either because she does not have the requisite domain knowledge,

or because the agent is fully autonomous. A pair of mapping-learning methods are

therefore introduced to address this potential shortcoming. The first uses classi-

fication, in conjunction with some limited domain knowledge, to learn a mapping

between two tasks. The second gathers data in both tasks, uses regression to learn

a simple model, and then selects an inter-task mapping by testing different possible

mappings against the model offline. This second method, as discussed in related

work (Section 8.5), is significantly more robust than existing methods that learn

such relationships between tasks, and is capable of enabling autonomous transfer.

As demonstrated by the variety of related work in Chapter 8, there are many

ways to formulate and address the transfer learning problem. This work differs from

existing approaches in three ways:

1. The TL methods enumerated above use inter-task mappings to transfer be-

tween tasks with differences in the action space and state variables, which

increases their applicability (relative to many existing transfer methods). Our

algorithms are also applicable when the transition function, reward function,

and/or initial state differ between pairs of tasks.2

2. Our methods are competitive with, or are able to outperform, other transfer

methods with similar goals.

3. We introduce two methods that are able to learn inter-task mappings in order

2This dissertation uses the Markov Decision Process [Puterman, 1994] (MDP) framework, sum-
marized in the following chapter with explanations of its components such as the transition function
and the reward function. More specifics regarding how tasks are allowed to differ are discussed when
introducing our first TL method in Chapter 4.
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to define relationships between pairs of tasks without relying on a human to

provide them. Such methods are necessary for achieving autonomous transfer

but remain a relatively unexplored area in the literature.

1.1 Problem Definition

All transfer learning algorithms use one or more source tasks to better learn in a

target task, relative to learning without the benefit of the source tasks. Transfer

techniques assume varying degrees of autonomy and make many different assump-

tions. In order for an agent to autonomously transfer, it would have to perform all

of the following steps:

1. Given a target task, select an appropriate source task from which to transfer,

if one exists.

2. Learn how the source task and target task are related.

3. Effectively transfer knowledge from the source task to the target task.

Although no TL methods are currently capable of robustly accomplishing all three

goals, there has been research on each independently. In this dissertation, six TL

algorithms are introduced for step 3, two for step 2, and one demonstrates initial

progress on step 1. The key commonality to all of these algorithms is the use of

inter-task mappings.

A TL agent leverages experience from an earlier task to learn its current

task. A common formulation for this problem is to present an agent with a pair of

tasks in sequence, where the first task is implicitly the source and the second task

is the target. Such a formulation, as used in this dissertation, requires the agent

to perform step #3 above, and possibly steps #1 or #2. An alternate formulation,

not studied in this dissertation, allows an agent to learn a set of source tasks, in

6



series or in parallel, and then transfer knowledge from one or more of them to speed

up learning in a target task (in the spirit of multitask learning [Caruana, 1995] or

lifelong learning [Thrun, 1996]). This second formulation necessarily emphasizes

step #1, as there are many tasks to potentially transfer from.

Past research on transfer between reinforcement learning tasks has focused

on step # 3 above, demonstrating that knowledge from a source task can be used

to learn a target task faster. Existing methods consider pairs of tasks with a variety

of differences. For example, the source task and target task may differ in:

1. Transition function: Effects of agents’ actions differ [Selfridge et al., 1985]

2. Reward structure: Agents have different goals and get rewarded for different

behavior [Singh, 1992]

3. Initial state: Agents start in different locations over time [Asada et al., 1994]

4. Goal state: The terminal state that provides a reward to an agent is allowed

to move [Fernandez and Veloso, 2006]

5. State space: Agents act in different environments [Andre and Russell, 2002]

6. State variables: The way in which agents describe their environment dif-

fer [Torrey et al., 2005]

7. Actions: Agents may execute different actions [Torrey et al., 2005]

Of these differences, the final two are the most difficult because transferred knowl-

edge must be significantly modified in order to usefully apply to the target task.

When physical or virtual agents are deployed, any mechanism that allows for faster

learned responses in a new task has the potential to greatly improve their efficacy.

As this dissertation shows, although inter-task mappings were designed to allow TL

methods to handle tasks with the final two differences in the list above, our TL

7



methods are compatible with all of them; this makes TL methods more useful in

practice, because they can transfer among a larger set of tasks than if only some of

the above differences could be handled.

1.2 Steps Towards Autonomous Transfer

This section outlines the contributions of the dissertation as well as presenting the

document’s high-level structure. First, the components of this dissertation necessary

to answer the dissertation’s main question are enumerated. Second, a chapter-by-

chapter outline is provided.

1. Problem Definition: As discussed in the previous section, our transfer prob-

lems focus on using a source RL task to speed up, or otherwise improve, learn-

ing in a target RL task. Empirical results show a wide range of successes

over different domains, different base learning algorithms, and different types

of knowledge being transferred. Assumptions about what domain knowledge

is available to the learner are minimized throughout the dissertation, and the

exposition of our transfer methods detail what knowledge is assumed, if any.

The two main criteria for successful transfer are that the tasks are learnable

and are transfer-compatible. If a base RL algorithm were unable to improve

performance when learning a task, transfer would provide little benefit. While

some pairs of tasks could produce negative transfer for certain transfer meth-

ods, we assume that it is possible for the source task to provide some benefit

when learning the target.3

2. Performance Metrics: In order to measure the efficacy of our methods, a

series of transfer-specific metrics are discussed in Section 2.4. The goal of such

TL metrics is to focus on learning improvement due to transfer, rather than

3A notable exception is Section 4.3.5, where the negative transfer phenomenon is investigated.
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the performance of a particular base RL algorithm. One type of metric, based

on the amount of experience needed to reach a given performance level, is

most appropriate for the RL domains considered in this dissertation.

3. Oracle-Enabled Transfer: The TL methods introduced in this dissertation

utilize inter-task mappings (further discussed in Section 4.1) to enable transfer

between pairs of tasks. The mappings describe how state variables and actions

in the source task and target task are related. An oracle (e.g., a human)

initially provides the mappings and the agent assumes that they are complete

and correct. Empirical results show that the six different TL methods in

this dissertation can all effectively transfer between source and target tasks

(Chapters 4–6) when provided an inter-task mapping.

4. Learning Task Relationships: There are also situations where no oracle

exists and inter-task mapping must be learned. Constructing such relation-

ships is the primary difficulty when transferring between disparate tasks, but

existing classification and regression techniques can assist with the process.

The effectiveness of these relationship-learning methods is demonstrated on

pairs of related tasks (Chapter 7), and are shown to enable autonomous trans-

fer, albeit possibly with reduced efficacy relative to oracle-provided inter-task

mappings.

5. Empirical Validation: To validate our transfer methods, they are fully im-

plemented in a variety of qualitatively different domains with different base

learning algorithms, and different function approximators. Successes in a range

of tasks suggest that our methods have broad applicability, as well providing

significant improvements to learning, relative to learning in the target task

without transfer.
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This chapter has introduced transfer learning and the goals of this thesis.

The next chapter familiarizes the reader with the RL framework, the base learning

algorithms used, and metrics to quantify the effects of transfer. Although this

dissertation does not focus on improving base RL algorithms, they are important

to the clarity of later TL experiments. The four different domains used in this

dissertation are presented in Chapter 3, as well as learning results for the base RL

algorithms. Each of these domains is chosen to highlight or test a different aspect

of the transfer learning algorithms.

Chapter 4 defines inter-task mappings and introduces Value Function Trans-

fer, the first TL method, which works by using Q-values learned in a source task to

initialize Q-values in target task agents. While effective, Value Function Transfer

requires that both the source and target task agents use TD algorithms, and re-

quires that both agents have the same type of function approximation (i.e., learning

representation).

Chapter 5 introduces two methods that reduce the requirements imposed by

Value Function Transfer. The first, Q-Value Reuse, again requires that both the

source task and target task agents use TD learning methods, but allows source and

target task agents to use different types of function approximation. The second,

Policy Transfer, enables transfer between direct policy search methods, a class of

RL methods distinct from TD methods.

Chapter 6 discusses three TL methods that allow the source task and target

task agents to use different learning methods. Again, all methods are compatible

with inter-task mappings. The first, timbrel, allows any type of learning algorithm

in the source task and then improves a model-learning RL target task agent. Rule

Transfer also allows any type of learning in the source task and can be applied

to a TD learning agent in the target task. Third, Representation Transfer is a

set of algorithms that provide even more flexibility than the previous methods.

10



Representation Transfer allows the source agent and target agent to differ by learning

method, function approximator, or the function approximator’s parameterization,

in addition to transferring between different tasks.

Chapter 7 presents two methods for learning inter-task mappings. The first,

Mapping Learning via Classification, uses a classification algorithm to discover simi-

larities between pairs of tasks based on observed action effects. The second, master,

leverages regression to learn an approximate transition model and test different pos-

sible mappings by measuring the error between outcomes predicted by the model

and outcomes observed in data. master is particularly significant because it relies

on no domain knowledge and thus can be incorporated into a fully autonomous TL

agent.

Related work is presented in Chapter 8 with an emphasis on how methods

in this dissertation differ from existing approaches, and Chapter 9 concludes with a

summary of the dissertation and possible future directions.
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Chapter 2

Reinforcement Learning

Background

This dissertation focuses on transfer learning in reinforcement learning domains;

some RL background is necessary. Our goal in this chapter is to briefly discuss RL

concepts and notation used in this dissertation so that the reader may understand

later TL algorithms and experiments. Readers who desire a more comprehensive

treatment of the reinforcement learning framework are referred to Kaelbling et al.

[1996] and Sutton and Barto [1998].

2.1 Framing the Reinforcement Learning Problem

RL problems are typically framed in terms of Markov decision processes [Puterman,

1994] (MDPs). For the purposes of this dissertation, “MDP” and “task” can be used

interchangeably. An MDP is specified by the 4-tuple 〈S,A, T,R〉.1 S is the set of

states in the task. The available actions are enumerated in the set A, although not

every action may be possible in every state. The transition function, T : S×A 7→ S,

1Some formulations also explicitly include a start state distribution, S0, and a terminal state
distribution, Sf .
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takes a state and an action and returns the state of the environment after the action

is performed. Transitions may be non-deterministic, making the transition function

a probability distribution function. The reward function, R : S 7→ R, maps each

state of the environment to a real-valued number which is the instantaneous reward

achieved for reaching the state.

A learning agent senses its current state s ∈ S. The agent’s observed state

may be different from the true state if there is perceptual noise. If the task is episodic,

the agent begins at a start state, sinitial, and executes actions in the environment

until it reaches a terminal state, sfinal, at which point it is returned to a start state.

In some tasks where the agent is given no reward except when reaching a terminal

state, it is convenient to think of the final states as goal states. An agent in an

episodic task typically attempts to maximize the average reward per episode. In

non-episodic tasks, the agent attempts to maximize the total reward, which may be

discounted.2

Transfer learning methods are particularly relevant in MDPs that have a large

or continuous state space, as these are the problems which are slow to learn tabula

rasa and for which transfer may provide substantial benefits. Such tasks typically

factor the state using state variables, so that s = 〈x1, x2, . . . , xn〉 (see Figure 2.1).

A policy, π : S 7→ A, fully defines how a learner interacts with the envi-

ronment by mapping perceived environmental states to actions. The success of an

agent is determined by how well it maximizes the total reward it receives in the long

run while acting under some policy π. An optimal policy, π⋆, is a policy which does

maximize the expectation of this value. Any reasonable learning algorithm attempts

to modify π over time so that the agent’s performance approaches that of π⋆ in the

limit.

Rather than computing a policy directly, many learning methods first esti-

2By utilizing a discount factor, γ, the agent can weigh immediate rewards more heavily than
future rewards, allowing it to maximize the expectation of an infinite sum of rewards.
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Figure 2.1: An agent interacts with an environment by sequentially selecting an
action in an observed state, with the objective of maximizing an external reward
signal.

mate an action-value function, Q : S × A 7→ R. Q(s, a) is the expected return (or

total reward) found when executing action a from state s, and then greedily follow-

ing the current policy thereafter. The current policy may be generated from Q by

simply selecting the action that has the highest value for the current state. Another

possibility is to calculate the value function, V : S 7→ R, which maps states to the

expected return. Value functions are typically learned when the agent has a model

of the task: to generate a policy, the agent calculates V (s′) for all possible s′, which

can only be done by knowing T (s, a) for a ∈ A.

There are many possible approaches for learning a policy or action-value

function, which will be discussed in Section 2.3. We first provide an overview of

function approximation for RL, which will be crucial for learning in large tasks.

14



2.2 Function Approximation

In tasks with small and discrete state spaces, π, Q, and T can be represented

in a table. As the state space grows, using a table becomes impractical, or im-

possible if the state space is continuous. In this dissertation we use four func-

tion approximators and show that all are capable of successfully utilizing trans-

fer. Specifically, we consider linear tile-coding function approximation, also known

as cerebellar model arithmetic computers (CMACs), which has been successfully

used in many reinforcement learning systems [Albus, 1981]; radial basis functions

(RBFs) [Sutton and Barto, 1998], a continuous variant of CMACs; artificial neu-

ral networks (ANNs), a biologically-inspired method for computing with a network

simple computing units; and an instance-based approximator, which stores observed

data to predict future outcomes.

All of the function approximators have parameters that must be set to ac-

curately reflect the underlying task. Although some work in RL [Dean and Givan,

1997, Li et al., 2006, Mahadevan and Maggioni, 2007] has taken a more systematic

approaches to state abstractions (also called structural abstractions), the majority of

current research relies on humans to help bias a learning agent by carefully selecting

a function approximator with parameters appropriate for a given task.

2.2.1 Cerebellar Model Arithmetic Computers

CMACs take arbitrary groups of continuous state variables and lay infinite, axis-

parallel tilings over them (see Figure 2.2). This allows discretization of continuous

state space into tiles while maintaining the capability to generalize via multiple

overlapping tilings. Increasing the tile widths allows better generalization; increasing

the number of tilings allows more accurate representations of smaller details. The

number of tiles and the width of the tilings are generally handcoded: this sets the

center, ci, of each tile and dictates which state values will activate which tiles. The
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Figure 2.2: A CMAC’s value is computed by summing the weights, wi, from mul-
tiple activated tiles (outlined above with thicker lines). State variables are used to
determine which tile is activated in each of the different tilings.

function approximation is trained by changing how much each tile contributes to

the output of the function approximator (see Figure 2.3). Thus, the output from

the CMAC is the computed sum:

f(x) =
∑

i

wifi(x) (2.1)

but only tiles which are activated by the current state features contribute to the

sum:

fi(x) =







1, if tile i is activated

0, otherwise

Unless otherwise specified, in this dissertation all weights in a CMAC are

initialized to zero. However, if information about the task is known in advance,

a more informed initial weight selection could be used. Note that although the

majority of experiments in this dissertation will use one-dimensional tilings (one

per state variable), the principles above apply in the n-dimensional case.
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Figure 2.3: A CMAC approximator computes its output via a weighted sum of step
functions, where the contribution of the ith step function is controlled by the weight
wi. This figure depicts the output of a 1-dimensional CMAC with a single tiling.

2.2.2 Radial Basis Functions

We utilize RBFs to generalize the tile coding idea to continuous functions. When

considering a single state variable, an RBF approximator is a linear function ap-

proximator

f(x) =
∑

i

wifi(x) (2.2)

where the basis functions have the form

fi(x) = φ(|x− ci|) (2.3)

x is the value of the current state variable, ci is the center of feature i (similar to the

CMAC, Equation 2.1), and wi represents weights that can be modified over time by

a learning algorithm. Here we set the features to be evenly spaced Gaussian radial

basis functions, where

φ(x) = exp(−
x2

2σ2
) (2.4)

(see Figure 2.4). The σ parameter controls the width of the Gaussian function and

therefore the amount of generalization over the state space.

As with CMACs, experiments in this dissertation using RBFs are primarily

1-dimensional, with a different RBF tiling used for each state variable. When RBFs

are used to approximate the action-value function, Equations 2.2-2.4 are used to
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Figure 2.4: An RBF approximator computes Q(s,a) via a weighted sum of Gaussian
functions, analogous to the step weights in Figure 2.3. The contribution from the
ith Gaussian is weighted by the distance from its center, ci, to the relevant state
variable, and by the learned parameter wi. σ can be tuned to control the width of
Gaussians and thus how much the function approximator generalizes.

calculate Q-values for (s, a) pairs. All weights are initially set to zero, but over time

learning methods change the values of the weights so that the resulting Q-values

more closely predict the true returns and thus improve the policy implicitly defined

by Q.

2.2.3 Artificial Neural Networks

The ANN function approximator similarly allows a learner to approximate the

action-value function, given a set of continuous, real valued, state variables. Al-

though ANNs have been shown difficult to train in certain situations on relatively

simple RL problems [Boyan and Moore, 1995, Pyeatt and Howe, 2001], they have

had notable successes on some RL tasks [Tesauro, 1994, Crites and Barto, 1996,

Whiteson and Stone, 2006a]. Each input to the ANN is set to the value of a state

variable and each output corresponds to an action. Activations of the output nodes

correspond to Q-values (see Figure 2.5 for a diagram).

When using ANNs to approximate an action-value function, we use non-

recurrent feedforward networks. Each node in the input layer is given the value of

a different state variable and each output node corresponds is the the calculated Q-
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Figure 2.5: This diagram of an artificial feedforward 13-20-3 network shows how
Q-values for three actions can be calculated from 13 state variables.

value for a different action.3 The number of inputs and outputs are thus determined

by the task’s specification, but the number of hidden nodes is specified by the agent’s

designer. Note that by accepting multiple inputs the neural network can determine

its output by considering multiple state variables in conjunction (as opposed to

a CMAC or RBF consisting of only 1-dimensional tilings). Nodes in the hidden

layer have a sigmoid transfer function and output nodes are linear. Weights for

connections in the network are typically initialized to random values near zero.

Algorithm 1 details the process of calculating outputs for such a fully-connected two-

layer neural network. The networks are trained using standard backpropagation,

where the error signal to modify weights is generated by the learning algorithm (see

Section 2.3.1), as with the other function approximators.

ANNs can also be used to specify a policy directly, where the network func-

tions as an action selector. In this case, the number of inputs and outputs will

again be fixed per the MDP. Instead of calculating Q-values at the output nodes,

the agent can follow the greedy policy by selecting the action corresponding to the

output with the highest activation. This dissertation utilizes ANNs for action selec-

3Alternatively, there could be |A| different neural networks, each with one output node, that
corresponding to Q(·, a).
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Algorithm 1 ANNOutput(Topology, Weights, Inputs, out)

1: # Topology is a data structure that contains the number of nodes in each layer
2: # Weights is a data structure that contains the values of all weights in the network
3: # Inputs is a vector describing the current state, scaled from [−1, 1]
4: # out is the index of the output node
5: for j ∈ Topology.getHiddenNodes() do
6: HiddenNodeSum[j] ← 0
7: for i ∈ Topology.getInputs() do
8: HiddenNodeSum[j] ← HiddenNodeSum[j] + Inputs[i] × Weights.getLayer1(i,j)
9: HiddenNodeSum[j] ← 1.0

1.0+e−HiddenNodeSum[j] # sigmoid function
10: Output ← 0
11: for j ∈ Topology.getHiddenNodes() do
12: Output ← Output + HiddenNodeSum[j] × Weights.getLayer2(j,out)
13: return Output # Output node is linear (no sigmoid function)

tion when learning with direct policy search (see Section 2.3.2). When calculating

the output of an ANN that uses NEAT, the procedure is more complex due to

the possibility of complex network topologies, such as recurrent links between lay-

ers. However, the calculation is conceptually similar: node values are multiplied by

weights as they propagate through the network and the sums are then modified by

sigmoid functions.

2.2.4 Instance-based approximation

CMACs, RBFs, and ANNs aim to represent a complex function with a relatively

small set of parameters that can be changed over time. In this section we discuss

instance-based approximation, which stores instances experienced by the agent (i.e.,

〈s, a, r, s′〉) to predict the underlying structure of the environment. Specifically, this

approximation method will be used by a model-learning method (see Section 2.3.3),

which learns to approximate T and R by observing the agent’s experience when

interacting with an environment.

Consider the case where an agent is acting is a discrete environment with a

small state space. The agent could record every instance that it experienced in a

table. If the transition function were deterministic, as soon as the agent observed
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every possible (s, a) pair, it could calculate the optimal policy. If the transition

function were instead stochastic, the agent would need to take multiple samples for

every (s, a) pair. Given a sufficient number of samples, as determined by the variance

in the resulting r and s′, the agent could again directly calculate the optimal policy

(Section 2.3 will briefly discuss dynamic programming, one such way of calculating

π⋆ in this situation).

When used to approximate T and R for tasks with continuous state spaces,

using instances for function approximation becomes significantly more difficult (see

Figure 2.6). In a stochastic task the agent is unlikely to ever visit the same state

twice, with the possible exception of a start state, and thus approximation is critical.

Furthermore, since one can never gather “enough” samples for every (s, a) pair, such

methods generally need to determine which instances are necessary to store so that

the memory requirements are not unbounded. In Section 2.3.3 we will discuss one

such model-learning method that uses instance-based approximation to learn in

continuous state spaces.

2.3 Learning Methods

This section discusses different approaches to learning policies in MDPs. We first

give a high-level overview of some of the more popular methods and then detail the

four learning methods used in this dissertation’s experiments.

Temporal difference (TD) [Sutton and Barto, 1998] methods, such as Q-

learning [Sutton, 1988, Watkins, 1989] and Sarsa [Rummery and Niranjan, 1994,

Singh and Sutton, 1996], learn by backing up experienced rewards through time.

Their goal is to learn to approximate an action-value function, from which a policy

is easily derived. TD methods are among the most popular due to their relative

simplicity, theoretical guarantees, and empirical successes. Sarsa will be discussed

in detail in Section 2.3.1.
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Figure 2.6: Consider an MDP with only a single action a. In one part of the state
space, three transitions have been recorded. The instance-based approximator must
now estimate s′4 from these instances, which is equivalent to estimating T (s4, a).

Policy search [Williams, 1992, Williams and Singh, 1999, Ng and Jordan,

2000, Baxter and Bartlett, 2001] methods are in some sense simpler then TD meth-

ods. They directly modify a policy over time to increase the expected long-term

reward by using search or other optimization techniques. Neuro Evolution of Aug-

menting Topologies [Stanley and Miikkulainen, 2002], the policy search method used

in this dissertation, is discussed in Section 2.3.2.

Model-based methods [Moore and Atkeson, 1993, Kearns and Singh, 1998]

(also known as or Model-learning methods) attempt to estimate the true model of

the environment (i.e., T and R) by interacting with the environment over time.

Instance based methods [Ormoneit and Sen, 2002] save observed interactions with

the environment and leverage the instance to directly predict the model. The learned

model is then typically used to help the agent decide how to efficiently explore

or plan trajectories so that it can accrue higher rewards. While very successful

in small tasks, few such methods handle continuous state spaces (see Fitted R-

max[Jong and Stone, 2007] in Section 2.3.3), and they may have trouble scaling to

tasks with many state variables due to the “curse of dimensionality,” which is also

a problem in model-free methods.
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Other popular learning methods and techniques include:

• Dynamic programming [Bellman, 1957]: While most algorithms assume that

they do not know R or T , if the learner is supplied these functions, it can

learn without interacting with the environment. Instead, the agent iteratively

computes approximations for the true action-value function, by solving the

Bellman Equations [Bellman, 1957] to improve Q or V (and the resulting

policy) over time.

• Relational reinforcement learning (RRL) [Dzeroski et al., 2001]: If the state

of an MDP can be described in a relational or first-order language, algo-

rithms can reason about individual objects, such as a single block in a Blocks

World [Winograd, 1972] task. Such methods may simplify transfer, as the

number of objects can change in a task and the learned action-value function

can be applied without modification.

• Bayesian RL [Dearden et al., 1998]: After specifying a prior, which may be

uniform, a Bayesian mathematical model can be used to explicitly represent

uncertainty in the components of the model, updating expectations over time.

• Batch methods: On-line methods require that the agent update its knowledge

as it interacts with the environment. Batch, or offline, methods are designed

to be more sample efficient, as they can store environmental interaction data

and use the set multiple times to learn to approximate Q or π. Additionally,

such methods allow a clear separation of the learning mechanism from the

exploration mechanism (which much decide whether to attempt to gather more

data about the environment or exploit the current best policy).

• Temporal abstractions: Rather than learn over the actions in the MDP, dif-

ferent methods have been designed to group series of actions together. These

macro-actions or options [Sutton et al., 1999] may allow the agent to leverage
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the sequence of actions to learn its task with less data. Options may be hand

specified or learned.

• Hierarchical methods: If a task can be decomposed into different sub-tasks,

methods such as in MAXQ [Dietterich, 2000] can exploit such a hierarchy. By

subdividing the MDP in this way, an agent can learn each subtask relatively

quickly and then combine them together, resulting in an overall learning speed

improvement relative to “flat” learning methods.

2.3.1 Sarsa

The experiments presented in this dissertation use Sarsa as a representative TD

method. Sarsa is an appropriate choice because of past empirical successes [Sutton,

1996, Sutton and Barto, 1998, Stone et al., 2005]. Sarsa learns to estimate Q(s, a)

by backing up the received rewards through time. Sarsa is an acronym for State

Action Reward State Action, describing the 5-tuple needed to perform the update,

(st, at, r, s
′
t, a

′
t), where st is the agent’s current state at time t, at is the agent’s

action, r is the immediate reward the agent receives from the environment, s′t is

the agent’s next state, and a′t is the agent’s subsequently chosen action. After each

action, Q-values are updated according to the following rule:

Q(st, at)← (1− α)Q(st, at) + α(r +Q(s′t, a
′
t)) (2.5)

where α is the learning rate. The full algorithm is detailed in Algorithm 2. Note

that if the task is non-episodic (continuing) we need to apply an extra discount

factor γ in the range (0,1) to Q(s′t, a
′
t) so that the future rewards are weighted less

than the immediate rewards.

Like other TD methods, Sarsa estimates the value of a given state-action pair

by bootstrapping off the estimates of other such pairs. In particular, the value of a
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Algorithm 2 Sarsa(α, A)

1: # α is the learning rate
2: # A is the set of possible actions

Require: Q has been initialized (arbitrarily)
3: loop
4: Observe state s
5: Select action a by evaluating Q(s, ·)
6: repeat
7: Execute a
8: Observe r and s′

9: Select a′ by evaluating Q(s′, ·)
10: Q(s, a)← (1− α)Q(s, a) + α(r +Q(s′, a′))
11: s← s′, a← a′

12: until s is a terminal state # the episode ends

given state-action pair (st, at) can be estimated as r+Q(s′t, a
′
t), which is the imme-

diate reward received during the transition plus the value of the subsequent state-

action pair. Sarsa’s update rule thus takes the old action-value estimate, Q(st, at),

and moves it incrementally closer towards this new estimate. The learning rate

parameter, α, controls the size of these increments. These action-value estimates

should become more accurate over time and therefore improve the agent’s perfor-

mance. When acting in small, discrete environments, the agent can store Q-values

in a table. In large MDPs or MDPs with continuous state variables, a function

approximator (e.g., a CMAC, RBF, or ANN) is used to calculate a Q-value for a

given (s, a) pair.

The intuition behind this update rule is that over time the Q-values will

converge towards the true values through many small “backups.” In episodic tasks,

the Q-value of the goal state is defined by the task and thus the final Q-value of an

episode will have the correct value once reached. Over time the correct values are

“backed up” so that, ideally, the correct values for all regularly visited states will

be learned.

Exploration, when the agent chooses an action to learn more about the envi-

ronment, must be balanced with exploitation, when the agent selects what it believes

25



to be the best action. One simple approach to action selection (lines 5 and 9 in Algo-

rithm 2) is ǫ-greedy action selection: the agent selects a random action with chance

ǫ, and the current best action is selected with probability 1− ǫ (where ǫ is in [0,1]).

See Algorithm 3 for an algorithmic description. Over time, the agent may decay ǫ

to encourage more exploitation as learning progresses.

One useful refinement to Sarsa utilizes eligibility trances [Watkins, 1989]. In

brief, traces are used to keep track of (s, a) pairs that have been visited recently.

Rather than doing a single update at each timestep, recently visited (s, a) pairs also

share some of the update because they are partially “responsible” for the agent’s

current situation. New (s, a) pairs are set to have an eligibility of 1 and on each

update all eligibilities are decayed by a fixed parameter, typically denoted λ. The

Sarsa(λ) update [Rummery and Niranjan, 1994] is:

Q(st, at)← (1− α)Q(st, at) + αe(st, at)(r +Q(s′t, a
′
t))

where e is the eligibility trace:

et(s, a)







1 if s = st and a=at

λet−1(s, a) otherwise

2.3.2 NeuroEvolution of Augmenting Topologies (NEAT)

NeuroEvolution of Augmenting Topologies [Stanley and Miikkulainen, 2002] (NEAT)

is used in this dissertation as a representative policy search method for RL. NEAT

belongs to the class of genetic algorithms which use biologically-inspired evolution-

ary techniques to search the policy space, and is an appropriate choice because

of it has had a number of empirical successes on RL tasks, such as pole bal-

ancing [Stanley and Miikkulainen, 2002], game playing [Stanley and Miikkulainen,

2004b], robot control [Stanley and Miikkulainen, 2004a], and Server Job Schedul-
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Algorithm 3 SelectAction(Q, A, s, ǫ)

1: # Q is the action-value function
2: # A is the set of actions available to the agent
3: # s is the current state
4: # ǫ is the exploration rate
5: if GetRand(0,1) ≤ ǫ then
6: return SelectRandom(A)
7: else
8: return argmaxa(Q(s, a)) # (for a ∈ A)

ing [Whiteson and Stone, 2006b]. NEAT utilizes ANNs, but rather than computing

Q-values, it directly represents a policy via the network’s topology and weights, both

of which are modified over time to improve performance.

Most neuroevolutionary [Yao, 1999] systems require the network topology

to be fixed and given (i.e., how many hidden nodes there are and how they are

connected). By contrast, NEAT automatically evolves the topology by combining

the search for network weights with evolution of the network structure. In NEAT,

a population of genomes, each of which describes a single neural network, is evolved

over time: each genome is evaluated and the fittest individuals reproduce through

crossover and mutation.

NEAT begins with a population of simple networks with no hidden nodes

and inputs connected directly to sigmoidal outputs. Two special mutation operators

introduce new structure incrementally, as depicted in Figure 2.7. Only structural

mutations that improve performance tend to survive evolution and thus NEAT often

finds an appropriate level of complexity needed for a given problem.

Since NEAT is a general purpose optimization technique, it can be applied

to a wide variety of problems. In this dissertation, we use NEAT for policy search

RL. Each neural network in the population represents a candidate policy in the form

of an action selector. The inputs to the network describe the agent’s current state.

There is one output for each available action; the agent takes whichever action has

the highest activation.
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Figure 2.7: Examples of NEAT’s mutation operators for adding structure to net-
works. Left: a link, shown as a dotted red line, is added to connect two nodes.
Right: a hidden node is added by splitting a link in two.

A candidate policy is evaluated by allowing the corresponding network to con-

trol an agent’s behavior and observing how much reward it receives. The policy’s fit-

ness is typically the sum of the rewards the agent accrues while under the network’s

control. In deterministic domains, each member of the population can be evaluated

in a single episode. However, most real-world problems are non-deterministic and

hence the reward a policy receives over the course of an episode may have substantial

variance. In such domains, it is necessary to evaluate each member of the population

for many episodes to accurately estimate policy fitnesses.

Algorithm 4 describes the NEAT algorithm in pseudocode for episodic tasks.

In it we assume that the fitness of an organism is its total accumulated reward.

This assumption is true in all our experiments, but other fitness functions may also

be appropriate. The function evolvePopulation takes a number of parameters,

as described in the original NEAT paper [Stanley and Miikkulainen, 2002]. Our

experiments will make note of parameters when tuned (rather than using the default

NEAT settings [Stanley and Miikkulainen, 2002]).

2.3.3 Fitted R-Max

In contrast to Sarsa and NEAT, Fitted R-max [Jong and Stone, 2007] is a model-

based RL algorithm. While there are many existing model-learning RL algorithms
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Algorithm 4 NEAT(numInputs, numOutputs, popSize, e, NEATParams)

1: # numOutputs is the required number of input nodes
2: # numInputs is the required number of output nodes
3: # popSize is number of organisms in the population
4: # e is the number of episodes of evaluation (per organism) to perform
5: # NEATParams is a data structure containing the parameters used in evolution, in-

cluding AddNodeMutationProb and AddLinkMutationProb
6: P ←InitPopulation(numInputs, numOutputs, popSize)
7: loop
8: for evals ← 1 to e do
9: ANN, s← P [evals % popsize], getStartState()

10: repeat
11: for a ∈ A do
12: Activation[a] ← ANN.Output(ANN.topology, ANN.weights, s, a)
13: a← argmaxi(Activation[i]) # Select action with the highest activation
14: Execute a
15: Observe r and s
16: ANN.fitness ← ANN.fitness + r
17: until s is a terminal state # the episode ends
18: P ← evolvePopulation(P , NEATParams)

(e.g., Moore and Atkeson [1993], Kearns and Singh [1998]), only a handful of other

methods (c.f. Bayesian RL methods [Dearden et al., 1999]) are applicable to non-

deterministic tasks with continuous state spaces. Fitted R-max is an algorithm

that approximates the action-value function for large or infinite state spaces by

constructing an abstract MDP over a small (finite) sample of states X ⊂ S. For

each sample state x ∈ X and action a ∈ A, Fitted R-max estimates the dynamics

T (x, a) using all the available data for action a and for states s near x.

Some generalization from nearby states is necessary because we cannot ex-

pect the agent to be able to visit x enough times to try every action. As a result of

this generalization process, Fitted R-max first approximates T (x, a) as a probability

distribution over predicted successor states in S (see Figure 2.8). A value approx-

imation step then approximates this distribution of states in S with a distribution

of states in X. The result is a stochastic MDP over a finite state space X, with

transition and reward functions derived from observed data. Applying dynamic pro-

29



s’
3

s’
2

s’
1

s

s

s

1

2

3

s
4

s’
3

s’
2

s’
1

s
4

s
4

(b) (c)(a)

Figure 2.8: (a) Three observed transitions, all of which execute the same action,
can be used to approximate T (s4, a). (b) One simple way of approximating the next
state after executing a is to average the existing next states near s4. (c) A more
appropriate approximation, and one of the key insights of Fitted R-max, is to use
the relative transitions to approximate the effect of an action from a novel state.

gramming to this MDP yields an action-value function Qmodel : X × A 7→ R, that

can be used to approximate the desired action-value function Qtask : S × A 7→ R.

In some benchmark RL tasks, Jong and Stone [2007] show empirically that Fitted

R-max learns policies using less data than many existing model-free algorithms.

In the version of Fitted R-max used in this dissertation [Jong and Stone,

2007], all experienced instances are recorded. As the model stores more instances,

updating the model with additional data becomes slower (although the running

time of dynamic programming is bounded because X is bounded). However, a more

complete implementation of Fitted R-max could include a mechanism to discard

instances that were similar enough to existing stored instances that approximate

the fitted model, thereby bounding the memory requirements.

Four parameters must be set for Fitted R-max to efficiently learn a policy in

an MDP. The first, resolution, determines the size of the set X (i.e., the number of

sample states used for planning). In general, higher resolutions will lead to higher

asymptotic performance at the cost of increased computational complexity.

The second, the model breadth, helps weight different instances when esti-

mating T . For any state x ∈ X and action a ∈ A, Fitted R-max estimates T (x, a)
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using a probability distribution over observed instances, 〈si, ai, ri, s
′
i〉, in the data

available for action a. Each instance i is given a weight wi depending on the Eu-

clidean distance from x to si and on the model breadth parameter b, according to

the following formula:

wi ∝ e
−

“

|x−si|

b

”2

. (2.6)

Intuitively, b controls the degree of generalization used to estimate T (x, a) from

nearby data. As the breadth increases, the computational complexity increases, the

sample complexity decreases, and the asymptotic policy performance decreases (due

to generalization errors).

The third parameter, the exploration threshold, is used to determine when

enough data exists to accurately estimate some T (x, a). When an instance is used

to approximate T (x, a), that instance’s weight (Equation 2.6) is added to the total

weight of the approximation. If the total weight for an approximation does not reach

an exploration threshold, an optimistic value (Rmax) is used because not enough data

exists for an accurate approximation. By assigning optimistic values to unknown

transitions, the agent is encouraged to explore areas of the space where it has not

experienced many transitions and potentially increase the weight of approximations

in that region. In our experiments we left this threshold value set at the default,

1.0, from Jong and Stone [2007].

The fourth parameter is used to decrease the computational complexity of the

dynamic programming step. In theory, all instances that share the action a could be

used to help approximate x, where each instance i’s contribution is modified by wi

(a Gaussian weighting that exponentially penalizes distance from x). To reduce the

computational cost of the algorithm when approximating x, weights for the nearest

instances are computed first. Once a single instance’s weight fails to increase the

cumulative weight by at least some minimum fraction, the remaining instances’

contributions are ignored as negligible.
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Algorithm 5 Fitted R-max(Rmax, r, b, minFraction, explorationThreshold)

1: X ← {sopt, sterm} # Initialize state sample
2: X.InitializeUniformGrid(r)
3: for all a ∈ A do # Initialize experience sample
4: Da ← {〈sopt, a, Vmax, sterm〉}
5: loop
6: s← initial state # Begin a trajectory
7: a← argmaxa

[

R(s) +
∑

x′∈X P (x′|s, a)V (x′)
]

8: repeat
9: Execute a

10: Observe r and s′

11: if s′ is terminal then
12: s′ ← sterm

13: else
14: a′ ← argmaxa

[

R(s) +
∑

x′∈X P (x′|s, a)V (x′)
]

15: Da ← Da ∪ {〈s, a, r, s′〉} # Update experience sample
16: Use experience to update φX and φSa

, accounting for minFraction and explo-
rationThreshold

17: Update estimates of R and P based on φX and φSa

18: Compute V (x) for x ∈ X via dynamic programming
19: s← s′

20: a← a′

21: until s is a terminal state # the episode ends

Fitted R-max is summarized in Algorithm 5. sopt is a dummy state that

represents unexplored states (where V (sopt) is set to Rmax). sterm is a dummy

absorbing state that all discovered terminal states get mapped to. D is a data

structure that holds all observed instances. φSa
is an averaging object that approx-

imates the effect of action a at state s using nearby sample transitions d ∈ Da. φX

is an averaging object that approximates the value of each predicted successor state

using nearby sample states x ∈ X. The reader is referred to Jong and Stone [2007]

for detailed descriptions of the update rules (lines 16 and 17).

2.4 Metrics for Transfer Evaluation

The previous sections have discussed the MDP framework and the RL algorithms

used in this dissertation. When evaluating the TL methods presented in this dis-
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sertation, the primary goal is to evaluate the benefit of transfer rather than directly

evaluate the base RL algorithm’s performance. In this section we present metrics

designed to do just that by looking at how learning performance changes with and

without transfer, which has the effect of factoring out the base learning algorithm’s

performance.

One of the challenges in TL research is defining evaluation metrics; there are

many possible options and algorithms may focus on the three necessary steps to

providing autonomous transfer, as discussed in the previous chapter:

1. Given a target task, select an appropriate source task from which to transfer,

if one exists.

2. Learn how the source task and target task are related.

3. Effectively transfer knowledge from the source task to the target task.

For instance, it’s not always clear how to treat learning in the source task: whether

to charge it to the TL algorithm or to consider it as a “sunk cost.” On the one

hand, a possible goal of transfer is to reduce the overall time required to learn a

complex task. In this scenario, a total time scenario, which explicitly includes the

time needed to learn the source task or tasks, would be most appropriate. On the

other hand, a second reasonable goal of transfer is to effectively reuse past knowledge

in a novel task. In this case, a target task time scenario, which only accounts for

the time spent learning in the target task, is reasonable.

The total time scenario is more appropriate when the agent is guided by a

human. Suppose that a researcher wants an agent to learn how to perform a task

but recognizes that it may be faster if the agent learns a sequence of tasks instead of

tackling the difficult task directly. The human can construct a series of tasks that

the agent can train on and specify how the tasks are related. In this scenario the

agent’s TL method will have to do little or no work for steps 1 and 2 above, but
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it does need to efficiently transfer knowledge between tasks (step 3). To succeed,

the agent would have to learn the entire sequence of tasks faster than if it had

spent its time learning the final target task directly (see the Total Time Scenario

in Figure 2.9) because it is only learning the source task(s) to assist learning in the

target task.4 This scenario can be thought of as expressing an “engineering goal” –

the goal is to use human knowledge to enable transfer, ultimately reducing the total

amount of learning time required.

The target task time scenario is more appropriate for a fully autonomous

learner. A fully autonomous agent must be able to perform steps 1–3 on its own.

However, metrics for this scenario do not need to take into account the cost of

learning source tasks, under the assumption that these tasks had been learned in the

past for a separate (and useful) purpose. The target task time scenario emphasizes

the agent’s ability to use knowledge from one or more previously learned source

tasks without being charged for the time spent learning them (see the Target Task

Time Scenario in Figure 2.9). This scenario can be considered more of an “artificial

intelligence goal” than the total time scenario – a human does not provide assistance

and the agent is expected to transfer autonomously. As discussed in the related work

section of this dissertation (Chapter 8), the majority of existing transfer algorithms

assume a human-guided scenario, but disregard time spent training in the source

task, which we consider an awkward merger of the two scenarios.

Achieving success in both of these scenarios is an important validation of a

transfer learning method. The more similar the source and target tasks are, the

more of an immediate performance improvement we expect to see. For example,

in the degenerate case where the source and target tasks are identical, the initial

4We do not directly address methods which receive advice from a human watching the agent
interact with the environment (c.f. Maclin and Shavlik [1996], Maclin et al. [2005]) in this disser-
tation, but limit the discussion to methods which acquire knowledge autonomously. However, if
a human is in the loop, as in the human-guided scenario, methods that utilize explicit human
knowledge may be used in conjunction with transfer.
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Figure 2.9: Successful TL methods may be able to reduce the total training time
(left). In some scenarios, it is more appropriate to treat the source task time as
a sunk cost and test whether the method can effectively reuse past knowledge to
reduce the target task time (right).

performance in the target task will be equivalent to the final performance in the

source task. However, reducing the total time in such a situation, our more difficult

transfer goal, would prove impossible.

There are many TL metrics which measure various possible transfer benefits

(see Figure 2.10), including:

1. Jumpstart : The initial performance of an agent in a target task may be im-

proved by transfer from a source task.

2. Asymptotic Performance: The final learned performance of an agent in the

target task may be improved via transfer.

3. Total Reward : The total reward accumulated by an agent (i.e., the area under

the learning curve) may be improved if it uses transfer, compared to learning

without transfer.

4. Reward Area Ratio: This metric measures the ratio of the area between the

transfer and non-transfer learning curves in the target task and the area under

the non-transfer learning curve.
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Figure 2.10: Many different metrics to evaluate TL algorithms are possible. This
graph show benefits to the jumpstart, the asymptotic performance, the total reward
(the area under a learning curve), the reward area ratio (the ratio of the area under
the transfer to the area under the non-transfer learning curve), and the time to
threshold.

5. Time to Threshold : The learning time needed by the agent to achieve a pre-

specified performance level may be decreased via transfer. This metric may

measure only the time in the target task, or the total time (the sum of the

source task learning time and the target task learning time). Figure 2.10

implicitly shows only the target task time because the source task learning

time is unspecified.

The first proposed transfer measure considers the agent’s initial performance

in a target task: can transfer be used so that the initial performance is increased

relative to the performance of an initial (random) policy? While such an initial

jumpstart is appealing, we are primarily interested in the learning process of agents

in pairs of tasks and thus it makes more sense to concentrate on the rate of learning
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in the target task.

Asymptotic performance, the second proposed metric, measures how much

total reward policies accrue when learned in the target task with and without trans-

fer. However, it may be difficult to tell when the learner has converged and such

convergence may take prohibitively long. In many RL tasks we are interested in the

time required to learn, not the performance of a learner with infinite time. Lastly,

it is possible for different learning algorithms to converge to the same asymptotic

performance, but take very different amounts of time to reach such performance.

A third possible measure is that of the total reward accumulated during

training. Better initial performance and faster learning will help agents achieve more

on-line reward. RL methods are typically not guaranteed to converge with function

approximation and even when they do, often learners converge to different, sub-

optimal performance levels. This means that if the time considered is long enough,

a learning method which achieves very fast learning will “lose” to a learning method

which learns very slowly but eventually plateaus at a slightly higher performance

level. Thus this metric is most appropriate for tasks that have a well-defined time

limit.

A fourth measure of transfer efficacy is that of the ratio of areas defined by

two learning curves. Consider two learning curves in the target task: one utilizes

transfer and one does not. Assuming that the transfer learner is able to learn faster,

the area under the transfer leaning curve will be greater than the area under the

non-transfer learning curve. The ratio

r =
area under curve with transfer - area under curve without transfer

area under curve without transfer

gives an alternative metric that quantifies improvement from TL. This metric is most

appropriate if the same final performance is achieved, or there is a predetermined

time for the task. Otherwise the ratio will directly depend on how long the agents
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act in the target task. In the domains we consider, the learners that use transfer

and the learners that learn without transfer do not always plateau to the same

performance, nor do we generally have a defined task length.

For these reasons we choose to focus on the time to threshold metric in this

dissertation. After preliminary experiments are conducted, thresholds for analysis

are chosen so that all trials must learn for some amount of time before reaching

the threshold (i.e., no agents meet the threshold performance before learning), and

most trials are able to eventually reach the threshold.5 The time to threshold will

be the primary metric we use in our empirical studies in later chapters. We also

make use of other metrics in some experiments, and all of the above metrics will be

mentioned in the related work section.

Note that for the purposes of this dissertation, we may think of the amount

of learning time required to reach a threshold as a surrogate for sample complex-

ity. Sample complexity (or data complexity) in RL refers to the amount of data

required by an algorithm to learn. It is strongly correlated with learning time be-

cause RL agents only gain data by collecting it through repeated interactions with

an environment.

5Experiments in Section 5.2.1 show that selecting different threshold values result in qualitatively
similar results, provided that the two conditions above hold.

38



Chapter 3

Empirical Domains

In this chapter we introduce the testbed domains used in this dissertation, where

we informally define a domain as a setting for one or more tasks (i.e., MDPs).

The primary purpose of this chapter is to provide sufficient background to allow a

reader to fully understand the TL experiments in subsequent chapters. In addition

to describing each domain, we explain how each can be learned1 with one or more

of the RL methods discussed in the previous chapter. In every domain we will

emphasize how some tasks are faster to master than others. In general, experiments

in this dissertation transfer from relatively simple, quick to learn, source task to a

more complex target task. In the target task time scenario, an effective TL algorithm

may reduce the target task learning time regardless of task ordering, but only by

ordering tasks in order of increasing difficulty will the total training time be reduced.

The canonical Mountain Car task, and a novel extension to 3D Mountain

Car, are discussed in Section 3.1. Section 3.2 presents Server Job Scheduling, a

discrete task with many actions. Keepaway is the most complex domain used in

this dissertation and is presented in Section 3.3. We then introduce two novel

tasks that have been explicitly constructed to be similar to Keepaway: Ringworld

1Recall that because this dissertation is about transfer learning, not about base learning algo-
rithms, we assume that some type of learning is possible in the experimental domains.
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(Section 3.4) and Knight Joust (Section 3.5). Finally, in Section 3.6, we summarize

and contrast the domains in terms of their properties and the different challenges

learners face when acting in a task drawn from each domain.

3.1 Generalized Mountain Car

This section introduces a generalized version of the standard RL benchmark Moun-

tain Car task [Moore, 1991, Singh and Sutton, 1996]. Mountain Car is among the

simplest continuous domains that can benefit from RL, and it is generalizable to be

appropriate for TL experiments.

In the standard 2D Mountain Car task, the agent must generalize across

continuous state variables in order to drive an underpowered car up a mountain to

a goal state. We also introduce a 3D Mountain Car task [Taylor et al., 2008c] as

extension of the 2D task, retaining much of the structure of the 2D problem. In

both tasks the transition and reward functions are initially unknown. The agent

begins at rest at the bottom of the hill and receives a reward of −1 at each time

step. After reaching a goal state or taking 500 actions, whichever comes first, the

agent is reset to the start state.

3.1.1 Two Dimensional Mountain Car

In the two dimensional Mountain Car task, the car travels along the curve sin(3x)

between −1.2 ≤ x ≤ 0.6. Two continuous variables fully describe the agent’s state:

The horizontal position, x, and velocity, ẋ, which has a range of [−0.07, 0.07]. The

agent may select one of three actions at each timestep; the actions {Left, Neutral,

and Right} change the velocity by -0.001, 0, and 0.001 respectively. The state

variables and actions are listed in Table 3.1. Additionally, −0.025(cos(3x)) is added
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to ẋ at each timestep to account for the force of gravity on the car.2 The start state

is at the bottom of the hill (x = −π
6 , ẋ = 0), and the goal states are those where

x ≥ 0.5 (see Figure 3.1). We use the publicly available version of this code for our

experiments.3

Figure 3.2 shows an example learned policy.

The transfer experiments in this dissertation use four variants of the 2D

Mountain Car task. The No Goal 2D task, Low Power 2D task, and High Power 2D

task are novel tasks introduced in this dissertation.

• The Standard 2D task is described in the previous paragraph and is a standard

RL benchmark task.

• The No Goal 2D task is the same as the standard task, except that goal state

has been removed. Every episode lasts 500 timesteps.

• The third variant, Low Power 2D task, changes the car so that actions modify

the velocity by ±0.0007, making the task more difficult than the Standard 2D

task.

• the fourth variant, Hand Brake 2D task, adds a fourth action to the Low Power

2D task which sets the car’s velocity to zero. This is particularly problematic

for the agent because it must learn that this action is never useful (and, when

executed, makes it more difficult for the car to reach the goal because all

kinetic energy is lost).

• The fifth variant is the High Power 2D task, where actions change the car’s

velocity by ±0.0015: the car has 50% more acceleration than the benchmark

car.
2The acceleration due to gravity of the car is determined by the slope of the surface at the car’s

current location, found by taking the derivative of the sin(3x) curve, which gives a constant factor
multiplied by cos(3x).

3Available as a domain for use in the RL-Glue framework at:
http://rlai.cs.ualberta.ca/RLR/MountainCarBestSeller.html
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2D Mountain Car

State Variables Actions
x position Left accelerate left
ẋ velocity Neutral no acceleration

Right accelerate right

Table 3.1: This table summarizes the state space and the action space of the 2D
Mountain Car task.
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Figure 3.1: In the 2D Mountain Car task, the agent must travel along a curve
(mountain).

In Section 6.1.3, the No Goal 2D task will be used to show how the effectiveness of

transfer changes when using a different reward function, R. The other three variants

will be used to show how transfer efficacy changes when a source task’s transition

function changes (relative to the Standard 2D task).

3.1.2 Three Dimensional Mountain Car

To create a novel three dimensional task, we extend the mountain’s curve into a

surface (see Figure 3.3) defined by sin(3x) + sin(3y). The state is composed of

four continuous state variables: x, ẋ, y, ẏ. The positions and velocities have ranges

of [−1.2, 0.6] and [−0.07, 0.07], respectively. The agent selects from five actions

at each timestep: {Neutral, West, East, South, and North} (summarized in Ta-
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Figure 3.2: This figure shows a sample learned trajectory in the Standard 2D Moun-
tain Car task. x and ẋ are graphed showing a spiral structure common to solutions
in this task.

ble 3.2). West and East modify ẋ by -0.001 and +0.001 respectively, while South

and North modify ẏ by -0.001 and +0.001 respectively.4 The force of gravity adds

−0.025(cos(3x)) and −0.025(cos(3y)) to ẋ and ẏ, respectively, at each time step,

where the force of gravity is again proportional to the slope of the surface at the

agent’s position. The goal state region is defined by x ≥ 0.5 and y ≥ 0.5.

This task is more difficult than the 2D task because of the increased number

of state variables and additional actions (see Figure 3.4 for an example trajectory).

Furthermore, since the agent can affect its acceleration in only one of the two spacial

dimensions at any given time, this problem cannot readily be “factored” into the

simpler 2D task. While data gathered from a 2D task should be able to help an

agent learn a 3D Mountain Car task, we do expect that some amount of learning

would be required even after transferring information from a source task.

In addition to the Standard 3D task described above, we also define a Low

Power 3D task, and a Hand Brake 3D task. In the low power task, each action

4Although we call the agent’s vehicle a “car,” it does not turn but simply accelerates in the four
cardinal directions. In Moore’s original paper, the 2D task was called the “puck-on-hill.”
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Figure 3.3: In 3D Mountain Car the 2D curve becomes a 3D surface. The agent
starts at the bottom of the hill with no kinetic energy and attempts to reach the
goal area in the Northeast corner.

3D Mountain Car

State Variables Actions
x x-position Neutral no acceleration
y y-position West accelerate in the -x direction
ẋ x-velocity East accelerate in the x direction
ẏ y-velocity South accelerate in the -y direction

North accelerate in the y direction

Table 3.2: This table summarizes the state space and the action space of the 3D
Mountain Car task.

modifies the velocities by ±0.0007, which makes discovering the goal state more

difficult. The hard brake variant adds a 6th actions which has the effect of setting

the car’s velocity to zero and makes discovering the goal more difficult.

3.1.3 Learning Mountain Car

In this dissertation we use both Sarsa and Fitted R-max to learn Mountain Car

tasks. In the 2D tasks, Sarsa(λ) utilizes a two-dimensional CMAC made of 14 tilings

(utilizing the setup detailed in Singh and Sutton [1996]). Sarsa has a learning rate

of α = 0.5, an ǫ-greedy exploration rate of ǫ = 0.1, and an eligibility trace decay rate
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3D Mountain Car: Example Trajectory

Figure 3.4: This figure shows a sample learned trajectory in the 3D Mountain Car
task. x and y are graphed and ẋ and ẏ can be inferred by the spacing between the
samples in the trajectory, plotted once per timestep.

of λ = 0.95. We multiply the exploration rate by 0.99 at the end of each learning

episode to assist convergence. The learning rate is not decayed. These settings were

selected because they were included in the released Mountain Car package as the

best found to date. To learn the 3D task, we use a four-dimensional CMAC with 14

tilings, and again set λ = 0.95. After initial experiments with roughly 100 different

parameter settings, we selected α = 0.2, ǫ = 0.5, and an ǫ-decay of 0.99.

To learn 2D Mountain Car tasks with Fitted R-max, the state space is dis-

cretized so that X is composed of 625 states. b is set to 0.01 and the minimum

fraction to 1%. When learning in 3D we set |X| = 5184, b = 0.4, and the minimum

fraction to 10%. We found that changing the learning parameters for Fitted R-max

affect three primary aspects of learning:

• How accurately the optimal policy can be approximated.

• How many samples are needed to accurately approximate the best policy, given

the representation.

• How much computation is required when performing dynamic programming.
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The Fitted R-max settings above were chosen via initial experimentation to allow

the agent to learn a reasonably good policy in relatively few episodes so that we could

demonstrate the effectiveness of TL. We do not argue that the above parameters are

optimal; they could be tuned to emphasize any of the above goals, such as achieving

higher performance in the limit. Figure 3.5 shows that Fitted R-max learns with

significantly less experience than Sarsa on the Standard 2D task.

Figure 3.6 compares the average performance of 12 Fitted R-max trials with

12 Sarsa trials in the Low Power 3D Mountain Car task. This result demonstrates

that Fitted R-max can be tuned so that it learns with significantly less data, consis-

tently finding a path to the goal in roughly 50 episodes instead of 10,000 episodes,5

but does not achieve optimal performance. Learning with Fitted R-max takes sub-

stantially more computational resources than Sarsa in this domain; the Fitted R-

max learning curves were terminated once their performance plateaued (and thus

are run for fewer episodes than Sarsa).

When learning with the Low Power and Hand Brake variants of the 2D and

3D tasks, learning is qualitatively similar, but slower because of the increased diffi-

culty. Conversely, agents learning in the High Power 2D task are able to consistently

find the goal faster than in the Normal or Low Power tasks. Finally, because the

NoGoal task has a uniform reward function and every episode lasts for 500 episodes,

agents learning in this task cannot affect their average reward over time.

Transfer experiments later in this dissertation will use 2D Mountain Car

tasks as source tasks, and 3D Mountain Car tasks as target tasks. The reader may

have noticed that the Standard 2D task (Figure 3.5) is learned much faster than

the Standard 3D task (Figure 3.6) for both Fitted R-max and Sarsa. It is precisely

this difference in task difficulty that TL methods can leverage to reduce the total

training time, first learning a source task and then a target task, rather than directly

5We hypothesize this is due in part to Fitted R-max’s efficient exploration scheme, which may
allow the agent to discover the goal much faster than Sarsa’s random exploration.
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learning a target task.

3.2 Server Job Scheduling

While Mountain Car tasks force the agent to handle a continuous state space, Server

Job Scheduling [Whiteson and Stone, 2006b] (SJS) has a discrete state space but

many more available actions. SJS is a autonomic computing [Kephart and Chess,

2003] control task in which a server, such as a website’s application server or

database, must determine in what order to process jobs waiting in its queue. The

agent’s goal is to maximize the aggregate utility of all the jobs it processes. A utility

function for each job type maps the job’s completion time to the utility derived by

the user [Walsh et al., 2004]. This type of scheduling problem becomes challenging

when these utility functions are non-linear and/or the server must process multi-

ple types of jobs. Since selecting a particular job for processing necessarily delays

the completion of all other jobs in the queue, the scheduler must weigh difficult

trade-offs to maximize aggregate utility.

Each experiment in our simulator begins with 100 jobs pre-loaded into the

server’s queue and ends when the queue becomes empty. During each timestep,

the server removes and processes one job from its queue. For each of the first 100

timesteps, a new job of a randomly selected type is added to the beginning of the

queue after the agent processes a job, forcing the agent to make decisions about

which job to process as new jobs are arriving. If a job is located at the end of the

queue, the server must process the job, limiting each job’s life to 200 timesteps. Each

episode lasts 200 timesteps. The scheduling agent receives an immediate reward for

each job that completes, as determined by that job’s age and utility function.

Utility functions for the four job types used in our experiments, which are not

provided to the scheduling agent, are shown in Figure 3.7. We consider two tasks

in the SJS domain. The 2-job-type SJS task requires the scheduler to select jobs of
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types #1 and #2, and the 4-job-type SJS task uses job types #1–#4. Learning to

schedule with only two task types is significantly easier than learning to schedule

all four types.

State and action spaces are discretized: the range of possible job ages is

divided into four equal sections. At each timestep, the scheduler knows how many

jobs of each type in the queue fall into each range, resulting in 8 state variables in

the 2-job-type task and 16 in the 4-job-type SJS task. The action space is similarly

discretized to 8 or 16 distinct actions: rather than selecting a particular job, the

scheduler specifies what type of job to process and which of the four age ranges that

job should lie in. See Table 3.3 for a list of the state variables and actions in the

2-job-type SJS task.

3.2.1 Learning Server Job Scheduling

To learn the 2- and 4-job-type SJS tasks we utilize NEAT, as initial experiments

showed it significantly outperformed Sarsa with CMAC function approximation,

perhaps due to the large conjunctive state space. Each NEAT network has 8 inputs

and outputs in the 2-job-type task and 16 in the 4-job-type task. We use a population

size of 50 and evaluate each policy by averaging the reward from 5 episodes. After

training is finished, the champion policies are evaluated for an additional 95 episodes

to reduce noise when graphing performance. This learning setup is similar to past

research in this domain, and all other NEAT parameters are the same as those

reported in Whiteson and Stone [2006b]. Figures 3.8 and 3.9 show the performance

of NEAT when learning 2- and 4-job-type SJS tasks. The learning curves show that

NEAT can successfully learn in this domain. Whiteson and Stone [2006b] show

that 4-job-type task schedules learned via NEAT outperform three other scheduling

methods and compare favorably to a near-optimal schedule (found by solving a large

linear program on each timestep).
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Figure 3.7: The four utility functions used in our SJS experiments.

2-job-type SJS Task
State Variables Actions

C 1,1 Count of type 1 jobs aged 1-50 P1,1 Process oldest type 1 job aged 1-50
C 1,2 Count of type 1 jobs aged 51-100 P1,2 Process oldest type 1 job aged 51-100
C 1,3 Count of type 1 jobs aged 101-150 P1,3 Process oldest type 1 job aged 101-150
C 1,4 Count of type 1 jobs aged 151-200 P1,4 Process oldest type 1 job aged 151-200
C 2,1 Count of type 2 jobs aged 1-50 P2,1 Process oldest type 2 job aged 1-50
C 2,2 Count of type 2 jobs aged 51-100 P2,2 Process oldest type 2 job aged 51-100
C 2,3 Count of type 2 jobs aged 101-150 P2,3 Process oldest type 2 job aged 101-150
C 2,4 Count of type 2 jobs aged 151-200 P2,4 Process oldest type 2 job aged 151-200

Table 3.3: This table summarizes the state space and the action space of the 2-job-
type Server Job Scheduling task. The 4-job-type task has twice the number of state
variables and actions.
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3.3 Robot Soccer Keepaway

In this section we discuss Keepaway, a domain with a continuous state space and

significant amounts of noise in the agent’s actions and sensors. Keepaway is situated

in RoboCup simulated soccer, which has been the basis of multiple international

competitions and research challenges. The multiagent domain incorporates noisy

sensors and actuators, as well as enforcing a hidden state so that agents only have

a partial world view at any given time. While previous work has attempted to

use machine learning to learn the full simulated soccer problem [Andre and Teller,

1999, Riedmiller et al., 2001], the complexity and size of the problem have so far

proven intractable. However, many RoboCup subproblems have been isolated and

solved using machine learning techniques, including the task of playing Keepaway.

By focusing on the smaller task of Keepaway, we are able to use RL to learn an

action-value function for this complex task and hold the required computational

resources to manageable levels.

Since late 2002, the Keepaway task has been part of the official release of the

open source RoboCup Soccer Server used at RoboCup (starting with version 9.1.0).6

Agents in the simulator [Noda et al., 1998] receive visual perceptions every 150

milliseconds that indicate the agent’s relative distance and angle to visible objects

in the world, such as the ball and other agents. They may execute a primitive,

parameterized action such as turn(angle), dash(power), or kick(power,angle)

every 100 msec. Thus the agents must sense and act asynchronously. Random noise

is injected into all sensations and actions. Individual agents must be controlled

by separate processes, with no inter-agent communication permitted other than via

the simulator itself, which enforces communication bandwidth and range constraints.

Full details of the simulator are presented in the server manual [Chen et al., 2003]

6In our experiments, unless noted otherwise, we use version 9.4.5 of the RoboCup Soccer Server.
Unless direct comparisons with previous work are needed, researchers are encouraged to use version
11.1.0 or higher, which fixed a significant memory leak.
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and subsequent changelog.7

When started in a special mode, the simulator enforces the rules of the

Keepaway task instead of the rules of full soccer. One team—the keepers—attempts

to maintain possession of the ball within a limited region while another team—the

takers—attempts to steal the ball or force it out of bounds. The simulator places the

players at their initial positions at the start of each episode and ends an episode when

the ball leaves the play region or is taken away from the keepers. At the beginning

of a new episode, the teams are reset and a random keeper is given possession of

the ball.

Standard parameters for Keepaway tasks include the size of the region, the

number of keepers, and the number of takers. Other parameters such as player

speed, player kick speed, player vision capabilities,8 sensor noise, and actuator noise

are also adjustable. Keepaway tasks described in this dissertation use standard

settings, with the exception of a task described in Section 3.3.3 that uses a different

pass actuator. Figure 3.10 shows a diagram of 3 vs. 2 Keepaway (3 keepers and 2

takers).9

When Keepaway was introduced as a testbed [Stone and Sutton, 2002], a

standard task was defined. Most experiments are run on a code base derived from

version 0.5 of the benchmark Keepaway implementation.10 Exceptions include some

of the Keepaway illustrative experiments in this chapter, and the experiments in

Section 6.2, which use version 0.6 (the newest version of the players that includes

some bug fixes). The text will note if version 0.5 is not used, and all comparisons

7Changelogs are text files describing all changes made to the Soccer Server and are distributed
with the server source code.

8In our experiments we set the players to have a 360◦ field of view. Although agents also learn
with a more realistic 90◦ field of view, allowing the agents to see 360◦ speeds up the rate of learning,
enabling more experiments. Additionally, 360◦ vision also increases the learned performance when
compared to learning with the limited 90◦ vision.

9Flash files illustrating the task are available at:
http://www.cs.utexas.edu/~AustinVilla/sim/Keepaway/ .

10Released players are available at http://www.cs.utexas.edu/~AustinVilla/sim/Keepaway/ .
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Figure 3.10: This diagram depicts the distances and angles used to construct the 13
state variables used for learning with 3 keepers and 2 takers. Relevant objects are
the 5 players, ordered by distance from the ball, and the center of the field, C. All
13 state variables are enumerated in Table 3.4.

made in this dissertation use the players with the same code base.

While some recent work [Iscen and Erogul, 2008] allows keepers to learn, our

setup is similar to past research in Keepaway [Stone et al., 2005]; we concentrate

exclusively on keeper learning and assume that takers do not learn. Keepers are

initially placed near three corners of the square field and a ball is placed near one

of the keepers. The two takers are placed in the fourth corner. When the episode

starts, the three keepers attempt to maintain control of the ball by passing among

themselves and moving to open positions.

The keeper with the ball has the option to either pass the ball to one of

its two teammates or to hold the ball. In this task A = {hold, pass to closest

teammate, pass to second closest teammate}. S is defined by 13 state variables,

enumerated in Table 3.4. The reward to the learning algorithm is the number of

time steps the ball remains in play after an action is taken. The keepers learn in a

constrained policy space: they have the freedom to decide which action to take only
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3 vs. 2 Keepaway State Variables and Actions
State Variables

dist(K1, C) Distance from keeper with ball to center of field
dist(K1,K2) Distance from keeper with ball to closest teammate
dist(K1,K3) Distance from keeper with ball to 2nd closest teammate
dist(K1, T1) Distance from keeper with ball to closest taker
dist(K1, T2) Distance from keeper with ball to 2nd closest taker
dist(K2, C) Distance from closest teammate to center of field
dist(K3, C) Distance from 2nd closest teammate to center of field
dist(T1, C) Distance from closest taker to center of field
dist(T2, C) Distance from 2nd closest taker to center of field
Min(dist(K2, T1), dist(K2, T2)) Distance from nearest teammate to nearest taker
Min(dist(K3, T1), dist(K3, T2)) Distance from 2nd nearest teammate to nearest taker
Min(ang(K2,K1, T1), Angle of passing lane from keeper with ball to

ang(K2,K1, T2)) closest teammate
Min(ang(K3,K1, T1), Angle of passing lane from keeper with ball to

ang(K3,K1, T2)) 2nd closest teammate
Actions

Hold
Maintain possession of the ball
(as far as possible from nearest taker)

Pass1 Pass to closest teammate
Pass2 Pass to second-closest teammate

Table 3.4: This table lists all state variables and actions used for representing the
state of 3 vs. 2 Keepaway. Note that the state is ego-centric for the keeper with the
ball and rotationally invariant.

when in possession of the ball. Keepers not in possession of the ball are required to

execute the Receive macro-action in which the player who can reach the ball the

fastest goes to the ball and the remaining players follow a handcoded strategy to

try to get open for a pass.

3.3.1 More Complex Keepaway Tasks

As more players are added to the task, Keepaway becomes harder for the keepers

because the field becomes more crowded. As more takers are added, there are more

opponents to block passing lanes and chase down errant passes. As more keepers

are added, the keeper with the ball has more passing options, but the average pass

distance is shorter. This reduced distance forces more passes and often leads to
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more errors because of the noisy actuators and sensors. Additionally, because each

keepers learns independently and a keeper can only only select actions when it

controls the ball, adding more keepers to the task means that keepers receive less

experience per timestep. For these reasons, keepers in 4 vs. 3 Keepaway require more

data to learn a good control policy, compared to 3 vs. 2 Keepaway. The average

episode length of the best policy for a constant field size decreases when adding an

equal number of keepers and takers, and the time needed to learn a policy with

performance equal to a handcoded solution roughly doubles with each additional

keeper and taker [Stone et al., 2005].

In the 4 vs. 3 task, all three takers again start the episode in a single cor-

ner. Three keepers start in each of the other three corners and the fourth keeper

begins each episode at the center of the field. The reward function is effectively

unchanged from 3 vs. 2 Keepaway because the agents still receive a reward of +1

on each timestep, and the transition function is similar because the simulator is un-

changed. Now A = {hold, pass to closest teammate, pass to second closest

teammate, pass to third closest teammate}, and S is made up of 19 state vari-

ables due to the added players (see Table 3.5).

It is also important to point out that the addition of an extra taker and

keeper in 4 vs. 3 results in a qualitative change to the keepers’ task. In 3 vs. 2, both

takers must go towards the ball because two takers are needed to capture the ball

from the keeper. In 4 vs. 3, the third taker is now free to roam the field and attempt

to intercept passes. This changes the optimal keeper behavior, as one teammate is

often blocked from receiving a pass by a taker. Furthermore, adding a keeper in the

center of the field changes the start state significantly: the keeper that starts with

the ball has a teammate closer to itself but also quite close to the takers.
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4 vs. 3 Keepaway State Variables and Actions
State Variables

dist(K1, C)
dist(K1,K2) dist(T1, C)
dist(K1,K3) dist(T2, C)
dist(K1,K4) dist(T3,C)
dist(K1, T1) Min(dist(K2,T1), dist(K2,T2), dist(K2,T3))
dist(K1, T2) Min(dist(K3,T1), dist(K3,T2), dist(K3,T3))
dist(K1,T3) Min(dist(K4,T1), dist(K4,T2), dist(K4,T3))
dist(K2, C) Min(ang(K2,K1,T1), ang(K2,K1,T2), ang(K2,K1,T3))
dist(K3, C) Min(ang(K3,K1,T1), ang(K3,K1,T2), ang(K3,K1,T3))
dist(K4,C) Min(ang(K4,K1,T1), ang(K4,K1,T2), ang(K4,K1,T3))

Actions
hold Pass1

Pass2 Pass3

Table 3.5: This table lists all state variables and actions used in 4 vs. 3 Keepaway.
Novel state variables and actions resulting from the addition of K4 and T3 are in
bold.

3.3.2 3 vs. 2 XOR Keepaway

This section describes a modification to the 3 vs. 2 Keepaway task in which the

agent’s internal representation must be capable of learning an “exclusive or” to

achieve top performance. This serves as an example of a task where a linear learning

representation can learn quickly, but is eventually outperformed by a more complex

learning representation.

In XOR Keepaway, the 3 vs. 2 Keepaway task is modified to change the effect

of agents’ actions. Good pass executes the pass action and additionally disables the

takers for 2 seconds. Bad pass causes the keeper’s pass to travel directly to the

closest taker. These effects are triggered based on the agent’s chosen pass action

and 4 state variables: the distance to the closest taker, d(K1, T1); the distance

from the closest teammate to a taker, d(K2, T ); the passing angle to the closest

teammate, ang(K2); and the distance to the closest teammate, d(K1,K2). Agents

which lack the representational power to express an XOR can learn to improve their
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performance, but are unable to achieve optimal performance. This modification to

the task changes the effects of the agents’ decisions but leaves the rest of the task

unchanged. Details appear in Figure 3.11.

3.3.3 Additional Keepaway Variants

Section 3.3.1 discussed extending 3 vs. 2 Keepaway to 4 vs. 3 Keepaway. In this

dissertation we will also discuss extensions of the Keepaway task to 5 vs. 4 Keepaway,

6 vs. 5 Keepaway, and 7 vs. 6 Keepaway. In these tasks, the players remain on a

25m × 25m field. The start state is defined so that the extra keepers are placed

near the center of the field and the takers are grouped in the same corner. In 5

vs. 4, there are 5 actions and 25 state variables. 6 vs. 5 has 6 actions and 31 state

variables; 7 vs. 6 has 7 actions and 37 state variables. As discussed in the previous

section, adding more players to the task increases the difficulty of the problem as

well as increasing the size of the state and action spaces.

In addition to changing the number of players in Keepaway tasks, we can

also change properties of the environment or properties of the players. Examples

of environmental changes include field size or friction; examples of player changes

include using different levels of sensor noise or actuator noise. By allowing such

changes to the keepaway task, we are able to design tasks that change in qualitatively

different ways from adding players, allowing us to test transfer learning between

more pairs of tasks.

In this dissertation we also investigate a pair of new tasks, 3 vs. 2 Inaccurate

Keepaway and 4 vs. 3 Inaccurate Keepaway [Taylor et al., 2007a], created by chang-

ing the passing actuators on some sets of agents so that the passes are significantly

less accurate.11 As we will show later in Section 4.3.3, such a change causes the

11Passing actuators are changed in the benchmark players by modifying the pass action from the
default “PassNormal” to “PassFast.” This increases the speed of the pass by 50%, significantly
reducing accuracy and causing more missed passes.
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if Keeper attempts pass to closest teammate then
if (4m < d(K1, T1) < 6m) XOR (9m < d(K2, T ) < 12m) then

Execute good pass

else
Execute bad pass

else if Keeper attempts pass to furthest teammate then
if (9m < d(K1,K2) < 12m) OR (450 < ang(K2) < 900) then

Execute good pass

else
Execute bad pass

else
if Keeper could have executed good pass if it had decided to pass then

Execute bad pass

else
Execute hold ball

Figure 3.11: XOR Keepaway changes the effects of agent’s actions but leave the rest
of the task unchanged from 3 vs. 2 Keepaway.

keepers’ actions in this task to have qualitatively different transition functions from

the standard Keepaway tasks.

3.3.4 Learning Keepaway

The Keepaway problem maps fairly directly onto the discrete-time, episodic RL

framework. As a way of incorporating domain knowledge, the learners choose not

from the simulator’s primitive actions but from a set of higher-level macro-actions

implemented as part of the player, as described by Stone et al. [2005]. These macro-

actions can last more than one time step and the keepers have opportunities to

make decisions only when an on-going macro-action terminates. The macro-actions

(Hold, Pass1, and Pass2 in 3 vs. 2) that the learners select among can last more

than one time step, and the keepers have opportunities to make decisions only when

an on-going macro-action terminates. To handle such situations, it is convenient to

treat the problem as a semi-Markov decision process, or SMDP [Puterman, 1994,
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Bradtke and Duff, 1995]. The agents make decisions at discrete SMDP time steps

(when macro-actions are initiated and terminated).

Learning Keepaway with Sarsa

To learn Keepaway with Sarsa, each keeper is controlled by a separate agent. CMAC,

RBF, and ANN function approximation have all been successfully used to approxi-

mate an action-value function in Keepaway [Stone et al., 2005, Taylor et al., 2005].

When using a CMAC or RBF, each state variable is tiled independently (e.g., in

3 vs. 2, there are 13 separate CMAC or RBF approximators). All weights in the

CMAC and RBF function approximators are initially set to zero; every initial state-

action value is thus zero, and the action-value function is uniform. When using

a feedforward ANN, we used 20 hidden units, selected via initial experimentation

on six different network topologies. The number of input nodes and output nodes

are set to the number of state variables and actions in the task, respectively. For

example, the 3 vs. 2 task uses a 13-20-3 neural network. All weights and biases in

the feedforward ANN are given small random numbers to encourage faster backprop

training [Mehrotra et al., 1997], but the initial action-value is still near uniform. As

training progresses, the weights of the function approximators are changed by Sarsa

so that the average hold time of the keepers increases.

In our experiments we set the learning rate, α, to be 0.1 for the CMAC

function approximator, as in previous experiments. α is 0.05, and 0.125 for the RBF

and ANN function approximators, respectively. These values were determined after

trying approximately five different learning rates for each function approximator.

The exploration rate, ǫ, was set to 0.01 (1%) in all experiments, and λ was set to 0,

which we selected to be consistent with past work [Stone et al., 2005].

Figures 3.12(a)–(c) show the online reward from 15 trials graphed with a

1,000 episode sliding window. Figure 3.13 shows the same data, but graphs average
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learning curves rather than individual trials. All three function approximators allow

successful learning, but the neural network’s total reward was the lowest. We posit

that this difference is due to the ANN’s non-locality property. When a particular

CMAC weight for one state variable is updated during training, the update will

affect the output value of the CMAC for other nearby state variable values. The

width of the CMAC tiles determines the generalization effect, and outside of this tile

width the change has no effect. Contrast this with a neural network: every weight

is used for the calculation of a value function, regardless of how close two inputs

are in state space. Any update to a weight in the neural network must necessarily

change the final output of the network for every set of inputs. Therefore it may

take the neural network longer to settle into an optimal configuration. The RBF

function approximator had the best average performance of the three. RBF function

approximation shares CMAC’s locality benefits, but is also able to generalize more

smoothly due to the Gaussian summation of weights.

Figure 3.14 shows learning results on 3 vs. 2 XOR Keepaway with Sarsa

learners. The players labeled “Individually Tiled CMAC” treat each state variable

independently, while the players labeled “Conjunctively Tiled CMAC” conjunctively

tile the four critical state variables (as described in Figure 3.11) together in a 4-

dimensional CMAC, treating the remaining 9 state variables independently. The

simpler representation that only considers each state variable in isolation is able to

achieve higher performance than the more complex representation initially, but ulti-

mately plateaus at a lower performance level. Section 6.3.4 will present experiments

showing that it is possible to transfer from one representation to another and thus

receive the benefits of both learning representations. Regardless of the representa-

tion, however, the XOR task is significantly harder than 3 vs. 2 Keepaway, as can be

seen in the decreased performance relative to the standard 3 vs. 2 Keepaway task.

Figure 3.15 shows the performance of a Sarsa learner using CMAC function
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(c)

Figure 3.12: These three graphs show qualitative learning results in 3 vs. 2 Keepaway
with Sarsa on a 20m × 20m field. The CMAC, RBF, and ANN function approx-
imators are used in (a), (b), and (c), respectively. The x-axis shows the training
time in simulator hours and the y-axis shows the average episode length in simulator
seconds. Wall clock time is roughly half of the simulator time. These graphs use
version 0.6 of the Keepaway benchmark players.
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Figure 3.13: This graph displays the average learning curves for the three function
approximators (Figures 3.12a–c), along with the standard deviation.
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Figure 3.14: This graph compares the performance of learning 20m × 20m 3 vs. 2
XOR Keepaway using Sarsa with two different function approximations. The Indi-
vidually Tiled CMAC treats each state variable independently, whereas the Conjunc-
tively Tiled CMAC is able to learn the interdependence of different state variables.
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Figure 3.15: This graph shows that RBF function approximation is superior to
CMAC function approximation on 25m× 25m 4 vs. 3 Keepaway. 14 trails are aver-
aged for each setting. Error bars show the standard deviation of the two methods.

approximation and RBF function approximation in 4 vs. 3 Keepaway. As in 3 vs. 2

Keepaway, RBF learners are significantly faster than CMAC learners.

The learning setup for 3 vs. 2 Inaccurate Keepaway and 4 vs. 3 Inaccurate

Keepaway is similar to the accurate versions of the tasks. As discussed later in

Section 4.3.3, keepers require more training to reach a threshold performance level

when their passing actuators are inaccurate, because the task is significantly harder.

Learning Keepaway with NEAT

Every network evolved by NEAT for 3 vs. 2 Keepaway has 13 inputs, corresponding

to the Keepaway state variables, and 3 outputs, corresponding to the available

macro-actions. The keepers always select the action with the highest activation,

breaking ties randomly. We found that a population of 100 policies with a target of

5 species and the default values of c1 = 1.0, c2 = 1.0, and c3 = 2.0 allowed NEAT
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to learn well in the Keepaway task [Taylor et al., 2006].12

We used NEAT to evolve teams of homogeneous agents: in any given episode,

the same neural network is used to control all three keepers on the field. The reward

accrued during that episode then contributes to NEAT’s estimate of that network’s

fitness. While heterogeneous agents could be evolved using cooperative coevolu-

tion [Potter and De Jong, 2000], doing so is beyond the scope of this dissertation,

as this dissertation focuses on transfer learning rather than on the base RL algo-

rithms.

Since the Keepaway task is stochastic and the evaluations are noisy, it is

difficult to establish a priori the optimal number of episodes to evaluate each NEAT

policy. To set this parameter, we generated a number of NEAT learning curves with

the number of Keepaway episodes per generation set to one of {1,000, 2,000, 6,000,

10,000} and found that 6,000 episodes per generation yielded the best performance.

Another difficult question is how to distribute these episodes among the poli-

cies in a particular generation when given a noisy fitness function. While previous

research has developed statistical schemes for performing such allocations [Stagge,

1998, Beielstein and Markon, 2002], we adopt a simple heuristic strategy to increase

the performance of NEAT: we concentrate evaluations on the more promising poli-

cies in the population because their offspring will populate the majority of the next

generation. In each generation, every policy is initially evaluated for ten episodes.

After that, the highest ranked policy that has not already received 100 episodes is

always chosen for evaluation. Hence, every policy receives at least 10 evaluations

and no more than 100, with the more promising policies receiving the most.

NEAT learns significantly slower than Sarsa, but may achieve a higher asymp-

12Stanley and Miikkulainen [2002] describe the semantics of the NEAT parameters in detail.
When using NEAT to learn Keepaway tasks, we used the following additional parameters. The
compatibility distance δt was adjusted dynamically to maintain a target of 5 species. The survival
threshold was 0.2, the weight mutation power was 0.01, the interspecies mating rate was 0.05, the
drop-off age was 1,000, and the probability of adding recurrent links was 0.2.

65



totic performance on some variants of 3 vs. 2 Keepaway [Taylor et al., 2006]. Fig-

ures 3.16 and 3.17 shows example learning curves in 3 vs. 2 and 4 vs. 3; NEAT

agents take roughly an order of magnitude more time to converge when compared

to Sarsa agents.

3.4 Ringworld

Having introduced the Keepaway domain in the previous section, this section and

the next introduce two novel tasks in the gridworld domain which were designed

to be similar to 3 vs. 2 Keepaway. We are interested in transfer not only between

tasks within a single domain, but also between tasks in different domains (i.e.,

cross-domain transfer). In order to show that cross-domain transfer is feasible, we

construct the Ringworld [Taylor and Stone, 2007b] task, which can be used as a

source task to speed up learning in 3 vs. 2 Keepaway.

The state space of Ringworld is discretized into 0.01m2 tiles, there is no

noise in agents’ perceptions, and only one agent (the player) is learning. This is in

contrast with Keepaway, which has a continuous state space, noisy perceptions, and

is a multi-agent learning problem.

The goal of a Ringworld player is to avoid capture by an opponent for as long

as possible. The agent receives a reward of +1 for every time step in which it is not

captured by the opponent. The opponent always moves towards the player. When

the episode starts, the player is randomly assigned two possible “Run Targets,”

which always lie on a fixed ring (see Figure 3.18). At each timestep, the player

may either stay in its current location, or choose to run to one of the two targets.

If the player runs, it moves at twice the speed of the opponent directly towards

the run target. If the opponent does not intercept the player, as determined by

the transition function, two new random run targets on the ring are chosen for the

player and the episode continues. As the opponent approaches the player, either
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Figure 3.16: This graph shows a learning curve averaged over 5 NEAT trials. After
learning has ended, the champion from each generation is tested for 1,000 episodes,
and these off-line evaluations are used to plot the agents’ performance. This graph
was generated with the 0.5 version of the Keepaway benchmark agents.
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Figure 3.17: This graph shows a learning curve averaged over 10 NEAT trials. After
learning has ended, the champion from each generation is tested for 1,000 episodes,
and these off-line evaluations are used to plot the agents’ performance. Error bars
show the standard deviation. This graph was generated with the 0.5 version of the
Keepaway benchmark agents.
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Figure 3.18: The Ringworld player may stand still or run to 1 of 2 possible target
locations. The episode ends when the opponent captures the player. The underlying
0.01m grid shown at the top of the ring and shown in detail in Figure 3.19.

when the player is standing still or while running, the chance of capture increases.

The only stochasticity in the environment is the randomness associated with the

probability of capture. The state is represented by 5 distances and 2 angles (see

Table 3.6).

This gridworld task was constructed to have similarities to 3 vs. 2 Keepaway;

for instance, the 7 state variables were chosen to be similar to the state variables in

Keepaway. The width of the ring (9.5m) was selected so that the distance between

runs is similar, on average, to the distance between keepers when playing 3 vs. 2

Keepaway. The Ringworld transition function, T , takes as input the state variable

dist(P,O) and determines if the opponent captures the player, ending the episode.

This function was constructed using the observed likelihood of whether a Keepaway

episode ends, given dist(K1,T1). While it is impossible to recreate many of the

dynamics associated with a complex, stochastic, and continuous task, Ringworld

captures some of Keepaway’s characteristics. We show later (see Section 6.2) that
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Figure 3.19: This figure shows the detail of the underlying 0.01m grid near the top
of the ring from Figure 3.18.

Ringworld
State Variables

dist(P, O) Distance from player to opponent
dist(P, Target1) Distance from player to near location
dist(P, Target2) Distance from player to far location
dist(Target1, O) Distance from near location to opponent
dist(Target2, O) Distance from far location to opponent

ang(O, P, Target1) Open angle between opponent and near location
ang(O, P, Target2) Open angle between opponent and far location

Actions
Stay Do not move

RunNear Run to the near location
RunFar Run to the far location

Table 3.6: This table summarizes the state space and the action space of Ringworld.
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we can effectively transfer between Ringworld and Keepaway, even though the tasks

are quite different.

3.4.1 Learning Ringworld

We learn Ringworld using Sarsa with tabular function approximation. Because

Ringworld is a relatively low-dimensional task, episodes can be run orders of magni-

tude faster than Keepaway. We found that an agent sees an average of 8,100 distinct

states over the course of a 25,000 episode learning trial, taking roughly 3 minutes

of wall clock time on an Intel 3.4 MHz desktop machine. A representative learning

curve is shown in Figure 3.20.

3.5 Knight Joust

Knight Joust [Taylor and Stone, 2007b] is also situated in the gridworld domain.

It was designed to be less similar to Keepaway than Ringworld is, but still retain

enough commonalities to enable successful transfer into Keepaway. In this task the

player begins on one end of a 25× 25 board, the opponent begins on the other end,

and the players alternate moves. The player’s goal is to reach the opposite end of

the board without being touched by the opponent (see Figure 3.21); the episode

ends if the player reaches the goal line or the opponent is on the same square as the

player. The state space is discretized into squares (1m2 each) and there is no noise

in the perception. The player’s state variables are composed of the distance from

the player to the opponent, and two angles which describe how much of the goal

line is viewable by the player.

The player chooses between deterministically moving one square North or

performing a knight’s jump, moving one square North and then two East or West:

A = {Forward, JumpWest, JumpEast}. Table 3.7 lists the state variables and actions

for Knight Joust. The opponent may move in any of 8 directions and follows a fixed
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Figure 3.20: Learning with tabular function approximation takes many episodes,
but each trial is orders of magnitude faster than Keepaway in terms of wall clock
time. This graph shows the average on-line performance of 10 learning trials with
standard error bars.
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Figure 3.21: Knight Joust: The player attempts to reach the goal end of a 25 × 25
gridworld and the opponent attempts to tag the player.
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Knight Joust

State Variables
dist(P, O) Distance from player to opponent
ang(West) Open angle to West
ang(East) Open angle to East

Actions
North Move one square North

JumpWest Move one square North and two West
JumpEast Move one square North and two East

Table 3.7: This table summarizes the state space and the action space of the Knight
Joust task.

stochastic policy. If the opponent had an optimal policy, the player could never

successfully reach the goal line; the player can only take a limited number of jumps

before hitting the edge of the board. The player must instead rely on the opponent

to “stumble” so that the player can pass it. The opponent’s policy is summarized

Figure 3.22.

The player receives a reward of +5 every time it takes the forward action,

a +50 upon reaching the goal line, and 0 otherwise.13 While this task is quite

dissimilar from Keepaway (Knight Joust is fully observable, has a discrete state

space, the player’s actions are deterministic, and only a single agent learns), note

that there are some similarities, such as favoring larger distances between player

and opponent. We will show in Sections 4.3.4 and 6.2 that our transfer algorithms

can effectively improve learning in 3 vs. 2 Keepaway after first learning in Knight

Joust.

3.5.1 Learning Knight Joust

Knight Joust, like Ringworld, can be learned with Sarsa using a tabular represen-

tation. The agent experiences an average of only 600 distinct states in a 50,000

episode learning trial. Figure 3.23 shows an average learning curve.

13In one set of experiments in Section 6.2.2, we use a previous version of this task where the
player receives a reward of +20 for every forward actions and a reward of +20 for reaching the goal
line.
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if opponent is E of player then
Move W with probability 0.9

else if opponent is W of player then
Move E with probability 0.9

if opponent is N of player then
Move S with probability 1.0

else if opponent is S of player then
Move N with probability 0.8

Figure 3.22: The Knight Joust opponent’s policy gives the player some chance of
reaching the opposite side of the board successfully.
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Figure 3.23: Each 50,000 episode trail of Knight Joust takes less than a minute of
wall clock time on an Intel 3.4 MHz desktop machine. This graph shows the average
on-line performance of 30 learning trials with standard error bars.
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Players learning 3 vs. 2 Keepaway takes roughly 20 hours of wall-clock time

to achieve their asymptotic performance (which is equivalent to 40 simulator hours

in the RoboCup Soccer Server), but Ringworld players require only 3 minutes of wall

clock time. Knight Joust, as discussed in this section, requires even less time. Such

differences in training time highlight the possible benefit of cross-domain transfer.

As we show in later chapters (Chapters 4.3.4 and 6.2.2), even though Ringworld

and Knight Joust are much simpler than Keepaway, they can be successfully used as

source tasks for transfer into Keepaway. If a researcher was attempting to minimize

the wall-clock total training time, using a gridworld task as a source is attractive

because agents can train in a negligible amount of time compared to learning a

Keepaway task.

3.6 Summary of Domains

In this chapter we have discussed a number of tasks in four different domains: Moun-

tain Car, Server Job Scheduling, Keepaway, and gridworld. These tasks were chosen

so that the experiments in later chapters demonstrate the flexibility of transfer: in

addition to using different learning methods and function approximators, utilizing

tasks with different characteristics shows that our TL algorithms function in a wide

variety of settings. The tasks and their most salient characteristics are summarized

in Table 3.8.

The existing tasks discussed in this chapter and the novel tasks introduced by

this chapter serve two purposes. We selected tasks from the Server Job Scheduling

domain and the Keepaway domain that existed in the literature; the fact that we

were able to readily find tasks suitable for transfer is a good indication that our TL

methods are applicable to existing problems.

The novel tasks were introduced to test the applicability of our TL methods

and examine particular questions. For instance, in the Mountain Car domain, Stan-
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dard 2D and Standard 3D are more similar than High Power 2D and Standard 3D,

and thus we expect the former pair to be more successful for transfer than the later

pair. The XOR Keepaway task was introduced to serve as an existence proof of a

task that could be learned with multiple representations: a simple representation

which could learning quickly, and a more complex representation which could learn

to achieve better performance at the expense of requiring more data.

The next chapter introduces a key concept in this dissertation, inter-task

mappings. These mappings are used to transfer between tasks with different state

variables and actions. The next chapter also discusses Value Function Transfer,

the first of six TL methods in this dissertation capable of successful transfer via

inter-task mappings.
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Selected Domain and Task Characteristics
# # Discrete Deterministic Fully

Domain Tasks Actions State State Transition Observable?
Variables Space? Function?

Standard 2D 3 2 N Y Y
No Goal 2D† 3 2 N Y Y

Hand Brake 2D† 4 2 N Y Y
Mountain Low Power 2D† 3 2 N Y Y

Car High Power 2D† 3 2 N Y Y
Standard 3D† 5 4 N Y Y

Lower Power 3D† 5 4 N Y Y
Hand Brake 3D† 6 4 N Y Y

Server 2-job-type 8 8 Y N Y
Job 4-job type 16 16 Y N Y

Scheduling
3 vs. 2 3 13 N N N
4 vs. 3 4 19 N N N
5 vs. 4 5 25 N N N

Keepaway 6 vs. 5† 6 31 N N N
7 vs. 6† 7 37 N N N

3 vs. 2 XOR† 3 13 N N N
3 vs. 2 Inaccurate† 3 13 N N N
4 vs. 3 Inaccurate† 4 19 N N N

Gridworld Ringworld† 3 7 Y N Y
Knight Joust† 3 3 Y N Y

Table 3.8: This table summarizes characteristics of domains used in this dissertation.
Tasks marked with a † are novel. Not shown in the table is whether the domains
are multi- or single-agent, as Keepaway is the only multi-agent domain presented.
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Chapter 4

Value Function Transfer via

Inter-Task Mappings

The previous chapter introduced a number of different tasks and demonstrated that

all could be learned with existing RL techniques. This chapter presents the core con-

tributions of the thesis: inter-task mappings [Taylor et al., 2007a], Value Function

Transfer [Taylor et al., 2007a], and empirical results demonstrating their effective-

ness in the Keepaway domain.

This dissertation focuses on transfer between tasks that have different state

variables and actions. For a given pair of tasks which we wish to transfer between,

we use the notation Ssource and Asource to denote the states and actions for the

source task, and Starget and Atarget for states and actions in the target task.

The next section introduces inter-task mappings, a novel construct that en-

ables transfer between tasks with different state variables and actions. This dis-

sertation uses such mappings to transfer action-value functions, policies, rules, and

instances between source and target tasks. Section 4.2 introduces Value Function

Transfer, a novel TL method that utilizes inter-task mappings to effectively transfer

a learned action-value function from a source task to a target task. Section 4.3
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presents results from the Keepaway and Knight Joust domains showing that Value

Function Transfer can significantly increase learning performance in a variety of

tasks.

The following two chapters will present additional TL methods and empirical

results that make use of inter-task mappings. In Chapters 4–6, we assume that all

inter-task mappings are provided to the agent and are correct. In Chapter 7, we

relax this assumption and introduce two methods that can autonomously learn such

mappings.

4.1 Inter-Task Mappings

In order to effectively transfer between tasks that have different state variables and

actions, some type of mapping is typically necessary. In addition to knowing that a

source task and target task are related, a TL method often needs to know how they

are related. Inter-task mappings provide such a relation.

Consider an agent that is presented with a target task that has a set of

actions (Atarget ). If the agent knows how those actions are related to the action set

in the source task (Asource ), it is much more likely that it will be able to effectively

reuse knowledge gained in the source task. (For the sake of exposition we focus

on actions, but an analogous argument holds for state variables.) The majority of

transfer algorithms assume that no explicit task mappings are necessary because

the source and target task have the same state variables and actions. However, if

this assumption is false, the agent needs to be told, or learn, how the two tasks are

related.

In addition to having the same labels, the state variables and actions need

to have the same semantic meanings in both tasks if no mapping is used. For

instance, consider the Mountain Car domain. Suppose that the source task had the

actions A = {Forward, Neutral, Backward}. If the target task had the actions
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A = {Right, Neutral, Left}, a TL method would need some kind of mapping

because the actions had different labels. Furthermore, suppose that the target task

had the same actions as the source (A = {Forward, Neutral, Backward}) but the

car was facing the opposite direction, so that Forward accelerated the car in the

negative x direction and Backward accelerated the car in the positive x direction. If

the cardinality of two action sets are not equal, some actions may have no equivalence

in the two tasks. Mappings would be less critical if the agent had access to semantic

information about the tasks, but such information is typically not provided to agents

in the RL framework and this dissertation does not assume that such information

is available.

We define an action mapping (χA) that maps actions in the target task to

actions in the source task that have “similar” effects on the environment. Similarity

depends on how the transition and reward functions in the two MDPs are related.

Figure 4.1 depicts an action mapping as well as a state-variable mapping (χX)

between two tasks. Transfer scenarios considered in this dissertation typically have

more actions and state variables in the target task than in the source task; a source

task is thus used to learn a relatively complex target task faster than if transfer was

not used. If the two tasks had the same number of actions, the action mapping could

be one-to-one. For instance, one could define χA(Neutral) = Neutral, χA(East) =

Right and χA(West) = Left in the previous example. If the source task instead had

more actions than the target task, we could construct a one-to-one action mapping

that ignores the irrelevant source task actions, or construct a one-to-many mapping.

Which type of mapping to choose, and its construction, depends on the particulars

of the tasks in question.1 In Section 4.1.1 we provide examples of action and state

variable mappings using tasks from the Keepaway domain.

1This dissertation focuses on many-to-one mappings under the assumption that the target task
is larger than the source task. However, TL methods in this dissertation should be applicable to
one-to-many mappings as well.
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Figure 4.1: The action mapping and state variable mappings describe similarities
between two MDPs.

Rather than defining full mappings, in some situations partial inter-task map-

pings [Taylor et al., 2007b] may be more appropriate, depending on the amount of

knowledge available about the source task and the target task. In a partial map-

ping, novel actions in the target task are ignored. Continuing the above example,

consider an alternative target task that included a third action, North. Suppose

that the human creating the mappings (or an agent learning the mappings) could

not determine if the target task action North was similar to either of the source task

actions, Left, Neutral, or Right. The partial mapping could again map Neutral

to Neutral, West to Left, and East to Right, but not map North to any source

task action. Such a partial mapping may be easier to intuit than full mappings, or

may be all that’s justifiable, particularly if the target task’s actions are a superset

of the source task’s actions (this is the case in the Keepaway domain, as discussed

in Section 4.1.1).

For a given pair of tasks, there could be many ways to formulate inter-task

mappings. If a human is in the loop, assisting the agent as it learns, a TL method
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may be provided with inter-task mappings. However, if the agent is expected to

transfer autonomously, such mappings have to be learned. In this case, learning

methods attempt to minimize the amount of samples needed, and/or the computa-

tional complexity of the learning method, while still learning a mapping that enables

effective transfer. This dissertation introduces two methods in Chapter 7 that are

able to learn such mappings off-line from experience gathered in a pair of tasks,

and existing learning methods for inter-task mappings will be discussed as part of

the related work (Chapter 8). All TL methods presented in this dissertation are

capable of using inter-task mappings, regardless of whether they are provided or

learned autonomously.

When Inter-Task Mappings are Unnecessary

One group of TL methods, which will be discussed in the related work (Section 8.1),

do not allow state variables or actions to change between the source and target tasks.

Such methods instead focus on transfer between tasks that have different transition

functions, reward functions, or state spaces. Because of this, methods with these

assumptions do not utilize any form of inter-task mappings.

A second class of TL methods, also discussed in Chapter 8.3, allow the source

task and target task to have different state variables and actions, but formulate the

problem so that inter-task mappings are not needed. The agent instead reasons

about the MDP in such a way that some types of action or state variable changes

are possible without requiring the agent to reformulate how it reasons about a task.

The TL methods presented in this dissertation are part of a third class. Such

methods all allow for different state variables and actions in the source and target

tasks. By doing so, they are more flexible than those in the first or second groups

because they allow transfer between pairs of tasks disallowed by other TL methods.
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4.1.1 Inter-Task Mappings for the Keepaway Domain

In this section we introduce hand-coded inter-task mappings for tasks in the Keep-

away domain. In addition to detailing mappings which will be used in later ex-

periments in this dissertation, this section grounds out the discussion of inter-task

mappings in a set of examples.

One advantage of using the Keepaway domain for TL research is that inter-

task mappings between different tasks may be easily generated. In general, map-

pings between tasks may not be so straightforward, but experimenting in a domain

where they are easily defined allows us to focus on showing the benefits of transfer

(experimental results using these mappings are presented in Section 4.3).

To construct an inter-task mapping between 4 vs. 3 Keepaway and 3 vs.

2 Keepaway, we first define χA by identifying actions that have similar effects on

the environment in both tasks. For the 3 vs. 2 and 4 vs. 3 tasks, the action Hold

ball is considered to be equivalent; this action has a similar effect on the envi-

ronment in both tasks. Likewise, the action labeled Pass to closest keeper is

analogous in both tasks, as is Pass to second closest keeper. We choose to

map the novel target action, Pass to third closest keeper, to Pass to second

closest keeper in the source task.

The state variable mapping, χX , is constructed using a similar strategy. Each

of the 19 state variables in the 4 vs. 3 task are mapped to a similar state variable in

the 3 vs. 2 task. For instance, the state variable labeled Distance to closest keeper is

the same in both tasks. The Distance to second closest keeper state variable in the

target task is similar to Distance to second closest keeper state variable in the source

task. Distance to third closest keeper in the target task is mapped to Distance to

second closest keeper, which is the most similar state variable in the source task.

See Table 4.1 for a full description of χX and χA

We do not claim that this definition of χA and χX is optimal for the Keep-
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away domain. However, experiments show that it does enable effective transfer.

Further investigation demonstrates that possible alternate inter-task mappings are

less effective for transfer than χA and χX (see Section 4.3.2).

The information to relate the two tasks, as contained in χX and χA, may not

always be available. For example, when the target task is an extension of the source

task, we may know which state variables and actions are most similar in the two tasks

but not know how to map novel state variables and actions back to the source task.

In Keepaway, this would mean that the human (or learning algorithm) identified

which actions and state variables in 4 vs. 3 Keepaway were related to keepers 1–3

and takers 1–2, but did not know how to handle actions and state variables having

to do with the fourth keeper or third taker. Thus χA would map the 4 vs. 3 actions

Hold ball, Pass to closest keeper, and Pass to second closest keeper to

their equivalent actions in 3 vs. 2, but leave χA(Pass to third closest keeper)

undefined. We will see later (Sections 4.3.2 and 5.2.3) that this partial mapping

allows transfer to significantly outperform learning without transfer on the 4 vs. 3

task, but it is inferior to the fully defined inter-task mapping.

χA for 5 vs. 4 to 4 vs. 3 can be constructed analogously to the full mapping

between 4 vs. 3 and 3 vs. 2. The novel action in 5 vs. 4 is mapped to Pass to

the third keeper in the source task, and the novel state variables are mapped to

the fourth keeper and third taker in the source task. Specifically, the target task

actions Hold ball, Pass to closest keeper, Pass to second closest keeper,

and Pass to third closest keeper are all mapped to the corresponding actions

in 4 vs. 3. The novel 5 vs. 4 action, Pass to fourth closest keeper, is mapped

to the 4 vs. 3 action Pass to third closest keeper. χX then follows the same

pattern – novel state variables are mapped to the most similar state variables in the

4 vs. 3 task.

All mappings from n vs. m Keepaway to (n− 1) vs. (m− 1) Keepaway may
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Description of χX Mapping from 4 vs. 3 to 3 vs. 2
4 vs. 3 state variable 3 vs. 2 state variable

dist(K1, C) dist(K1, C)
dist(K1,K2) dist(K1,K2)
dist(K1,K3) dist(K1,K3)
dist(K1,K4) dist(K1,K3)
dist(K1, T1) dist(K1, T1)
dist(K1, T2) dist(K1, T2)
dist(K1,T3) dist(K1, T2)
dist(K2, C) dist(K2, C)
dist(K3, C) dist(K3, C)
dist(K4,C) dist(K3, C)
dist(T1, C) dist(T1, C)
dist(T2, C) dist(T2, C)
dist(T3,C) dist(T2, C)
Min(dist(K2, T1), dist(K2, T2), dist(K2,T3)) Min(dist(K2, T1), dist(K2, T2))
Min(dist(K3, T1), dist(K3, T2), dist(K3,T3)) Min(dist(K3, T1), dist(K3, T2))
Min(dist(K4,T1), dist(K4,T2), dist(K4,T3)) Min(dist(K3, T1), dist(K3, T2))
Min(ang(K2,K1, T1), ang(K2,K1, T2), Min(ang(K2,K1, T1), ang(K2,K1, T2))
ang(K2,K1,T3))
Min(ang(K3,K1, T1), ang(K3,K1, T2), Min(ang(K3,K1, T1), ang(K3,K1, T2))
ang(K3,K1,T3))
Min(ang(K4,K1,T1), ang(K4,K1,T2), Min(ang(K3,K1, T1), ang(K3,K1, T2))
ang(K4,K1,T3))

Table 4.1: This table describes the mapping between state variables in 4 vs. 3
Keepaway and state variables in 3 vs. 2 Keepaway. Distances and angles not present
in 3 vs. 2 are in bold.
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be constructed following this pattern. TL experiments that utilize mappings for 6

vs. 5 and 7 vs. 6 are presented in Section 4.3.6.

We additionally construct χA for 5 vs. 4 to 3 vs. 2. Now the actions

Hold ball, Pass to closest keeper, and Pass to second closest keeper are

mapped from 5 vs. 4 to the same titled actions in 3 vs. 2. However, both 5 vs.

4 actions Pass to third closest keeper and Pass to fourth closest keeper

are mapped to the 3 vs. 2 action Pass to second closest keeper. χX is created

analogously – state variables for the two novel keepers and two novel takers are

mapped to state variables for the third keeper and second taker in 3 vs. 2. Both 3

vs. 2 and 4 vs. 3 may therefore be used as source tasks for 5 vs. 4 Keepaway. We

will show in Section 4.3.6 that both inter-task mappings enable successful transfer,

but that a two-step transfer, from 3 vs. 2 into 4 vs. 3 and then to 5 vs. 4, is superior

to a single step transfer between 3 vs. 2 and 5 vs. 4.

4.2 Value Function Transfer

The previous section defined inter-task mappings and gave examples from the Keep-

away domain. This section introduces Value Function Transfer, the core TL method

in this dissertation.

The goal of Value Function Transfer is to use the learned action-value func-

tion from the source task, Q(source,final ), to initialize the action-value function of

a TD learner in a related target task. However, the learned action-value function

cannot simply be copied over directly because it may not be defined on the target

task’s state variables and actions.

Value Function Transfer relies on a transfer functional, ρ(Q), which allows an

agent to use a source task learner’s Q-function to initialize a target task learner’s Q-

function (see Figure 4.2). The transfer functional ρ needs to modify the action-value

function so that it accepts Starget and Atarget as inputs. This transformed action-
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value function may not provide immediate improvement over acting randomly in the

target task (as measured by the jumpstart TL metric), but it should bias the learner

so that it is able to learn the target task faster than if it were learning without

transfer. Defining ρ to do so correctly is the key technical challenge for this TL

method. The construction of ρ depends on the type of function approximator used

by the agent. However, for each type of function approximator, inter-task mappings

can be automatically used by a function-approximator-specific ρ to enable transfer

between different source and target tasks. We introduce ρCMAC , ρRBF , and ρANN

in the next two sections which can be used with agents utilizing CMAC, RBF, and

ANN function approximation, respectively.

It may seem counterintuitive that this TL method uses low-level action-

value function information to speed up learning across different tasks, rather than

attempting to abstract knowledge so that it is applicable to more general tasks.

For instance, an agent could be trained to balance a pole on a cart and then be

asked to balance a pair of poles on a cart. An example of abstract knowledge in this

domain would be things like “avoid hitting the end of the track,” and “it is better to

have the pole near vertical.” Instead of trying to transfer higher level information

about a source task into a target task, Value Function Transfer instead focuses

on information contained in individual weights within function approximators (or

information about individual state, action pairs, in the case of a tabular action-value

function). In this example, such weights would contain specific information such as

how fast to move the cart to the left when a pole was at a particular angle. Weights

that encode this type of low level knowledge are the most task-specific part of the

learner’s knowledge, but it is exactly these task-dependant details that allow Value

Function Transfer to achieve significant speedups on similar tasks.
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Figure 4.2: ρ is a functional that transforms a state-action function Q from a source
task so that it is applicable in a target task with different state and action spaces.

4.2.1 Constructing ρCMAC and ρRBF

As discussed in Section 2.2.1, the CMAC function approximator is trained via tem-

poral difference learning so that its input is a (state, action) pair and its output is the

expected long-term (discounted) reward. ρCMAC is a transfer functional that can

be applied to CMAC function approximators. ρCMAC is used by Value Function

Transfer so that when the target task learner evaluates a novel (starget , atarget )

pair, the weights for the activated tiles in the target task CMAC are not zero, but

instead have been initialized by Q(source,final) . To accomplish this, after learning

the source task but before learning begins in the target task, Value Function Trans-

fer copies weights learned in the source CMAC into weights in a newly initialized

target CMAC. Algorithm 6 describes the transfer functional and shows how χX and

χA are leveraged (lines 4–7).

As a final step (Algorithm 6, lines 8–11), any weights which have not yet been

initialized in the target task CMAC are set to the average value of all initialized

weights. When transferring between Keepaway tasks, it is often the case that the
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Algorithm 6 Application of ρCMAC

1: for each non-zero weight, wi in the source CMAC do
2: xsource ← state variable corresponding to tile i
3: asource ← action corresponding to tile i
4: for each value xtarget such that χX(xtarget ) = xsource do
5: for each value atarget such that χA(atarget ) = asource do
6: j ← the tile in the target CMAC activated by xtarget , atarget
7: wj ← wi

8: waverage ← average value of all non-zero weights in the target CMAC
9: for each weight wj in the target CMAC do

10: if wj = 0 then
11: wj ← waverage

source task training was not exhaustive: some weights which may be utilized in 4

vs. 3 would otherwise remain uninitialized if not for this final step. By setting these

weights to an average value, every weight in the target task CMAC can be initialized

to values which have been determined via training in 3 vs. 2. This averaging effect

is discussed further in Section 4.3.2, along with other possible options, and can be

considered a heuristic that allows agents in the target task to learn faster in practice.

If an agent uses Value Function Transfer to initialize a 4 vs. 3 keeper’s CMAC

from 3 vs. 2, the agent will initially be unable to distinguish between some states and

actions because the inter-task mappings allow duplication of values. The weights

corresponding to the tiles that are activated for the Pass to second closest

teammate in the source task are copied into the weights for the tiles that are acti-

vated when evaluating the target task actions Pass to second closest teammate

and Pass to third closest teammate. Thus a 4 vs. 3 keeper is initially unable

to distinguish between these two actions after transfer. In other words, because

the values for the weights corresponding to the two 4 vs. 3 actions are the same,

Q
(target,initial) will evaluate both actions as having the same expected return. The

4 vs. 3 agents will therefore have to learn to differentiate these two actions as they

learn in the target task.
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ρRBF is constructed similarly to ρCMAC . The main difference between the

RBF and CMAC function approximators are how weights are summed together to

produces values, but the weights have similar structure in both function approxi-

mators. For a given state variable, a CMAC sums one weight per tiling. An RBF

differs in that it sums multiple weights for each tiling, where weights are multiplied

by the Gaussian function φ(x − ci). Thus ρRBF copies weights following the same

schema as in ρCMAC in Algorithm 6.

4.2.2 Constructing ρANN

This section discusses constructing a transfer functional for a neural network func-

tion approximator. Specifically, a learned ANN for 3 vs. 2 Keepaway is used to

initialize a ANN for 4 vs. 3 Keepaway. However, the algorithm discussed generalizes

to other tasks, provided an appropriate inter-task mapping.

To construct a (fully connected, feedforward) neural network for the 4 vs. 3

Keepaway target task, we first create a new 19-20-4 ANN. The weights connecting

inputs 1–13 to the hidden nodes are copied over from the source task (13-20-3)

network. Likewise, the weights from hidden nodes to outputs 1–3 are copied without

modification. Weights from inputs 14–19 to the hidden nodes correspond to the

new state variables and are copied over from the analogous 3 vs. 2 state variables,

according to χX . The weights from the hidden nodes to the novel output are copied

over from the analogous 3 vs. 2 action, according to χA. Every weight in the 19-

20-4 network is thus set to an initial value based on the trained 13-20-3 network.

Algorithm 7 describes this process for an arbitrary pair of source and target neural

networks, where ANNtarget .weight(ni, nj) is the weight of a link between nodes i

and j in the target task network, and ANNsource .weight(ni, nj) is the weight of a

link between nodes i and j in the source task network.

We define the function ψ to map target task nodes to nodes in the source
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Algorithm 7 Application of ρANN

1: Create target task network, ANNtarget , with specified topology
2: for each pair of nodes ni, nj in ANNtarget do
3: if ANNsource .weight(ψ(ni), ψ(nj)) is defined then
4: ANNtarget .weight(ni, nj) ← ANNsource .weight(ψ(ni), ψ(nj))

task ANN:

ψ(n) =



















χX(n), if node n is an input

χA(n), if node n is an output

δ(n), if node n is a hidden node

where a function δ represents a mapping between hidden nodes. In our experi-

ments, the number of hidden nodes used are the same in both tasks, resulting in the

mapping: ψ(“nth hidden node in the target task ANN ”) = “nth hidden node in the

source task ANN.” However, if the target task ANN had additional hidden nodes, a

more sophisticated mapping could be utilized, such as distributing the link weights

connecting source task hidden nodes over multiple weights connecting target task

hidden nodes.

Whereas ρCMAC and ρRBF copied many weights (hundreds or thousands,

where increasing the amount of source task training will increase the number of

learned, non-zero, weights), ρANN always copies the same number of weights re-

gardless of training. In fact, ρANN initializes only 140 novel weights for this pair of

network topologies in the 4 vs. 3 task (in addition to the 320 weights that existed

in 3 vs. 2). Thus, this transfer functional is in some sense simpler than the other

two ρs.

4.3 Empirical Evaluation of Value Function Transfer

Now that we have introduced inter-task mappings and Value Function Transfer, this

section experimentally evaluates Value Function Transfer in the Keepaway domain.
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These results constitute one of the core contributions of this thesis by empirically

showing that this approach to TL can significantly improve learning in a complex

RL domain.

Section 4.3.1 presents experiments that demonstrate Value Function Transfer

can significantly improve learning in 4 vs. 3 by transferring from 3 vs. 2, using the

inter-task mappings introduced in Section 4.1.1 and the transfer functionals from

Sections 4.2.1 and 4.2.2. Section 4.3.2 analyzes Value Function Transfer further by

experimenting with a number of variations, such as changing how ρCMAC is con-

structed, how the inter-task mapping is defined, and CMAC initialization values.

Section 4.3.3 then shows that Value Function Transfer can be successfully applied to

players in different Keepaway tasks, even if those players have different kick actua-

tors. Value Function Transfer is successfully used for cross-domain transfer between

Knight Joust and 4 vs. 3 Keepaway in Section 4.3.4. Section 4.3.5 uses variants of

3 vs. 2 Keepaway in experiments that show how transfer efficacy is reduced when

the source and target task become less similar, even to the point of negative trans-

fer. Lastly, Section 4.3.6 presents results that show Value Function Transfer scales

to larger Keepaway tasks, and investigates multi-step transfer [Taylor et al., 2007a]

to learn such complex tasks. The experiments in this section are summarized in

Table 4.2.

4.3.1 Transfer from 3 vs. 2 Keepaway to 4 vs. 3 Keepaway

As discussed previously (Section 2.4), there are many possible ways to measure the

benefit of transfer. In this chapter, we measure performance by how much training

it takes target task keepers to reach a threshold performance in various situations.

In order to quantify how fast an agent in 4 vs. 3 learns, we set a target performance

of 10.0 seconds per episode for ANN learners, while CMAC and RBF learners have

a target of 11.5 seconds. These threshold times are chosen so that learners are
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Method Name: Value Function Transfer

Scenario: Value Function Transfer is only applicable when both the source
task agent and target task agent use TD learning, and both use the same type
of function approximation. Results suggest that learning speeds in target tasks
are improved more than with other TL methods for TD RL agents. All
experiments use Sarsa as the base RL algorithm.

Source Task Target Task Function Approximator Section

3 vs. 2 4 vs. 3 CMAC, RBF, or ANN 4.3.1

3 vs. 2∗ 4 vs. 3∗ CMAC 4.3.3

Knight Joust 4 vs. 3 Tabular and CMAC 4.3.4

3 vs. 2 Flat Reward 4 vs. 3 CMAC 4.3.5

3 vs. 2 Giveaway 4 vs. 3 CMAC 4.3.5

3 vs. 2 5 vs. 4 CMAC 4.3.6

3 vs. 2 – 4 vs. 3 5 vs. 4 CMAC 4.3.6

5 vs. 4 6 vs. 5 CMAC 4.3.6

6 vs. 5 7 vs. 6 RBF 4.3.6

3 vs. 2 – 6 vs. 5 7 vs. 6 RBF 4.3.6

Table 4.2: This table summarizes the primary Value Function Transfer experiments
in this section of the dissertation. Keepaway tasks are abbreviated in this table by
the number of players (i.e., “3 vs. 2” is substituted for “3 vs. 2 Keepaway”). The
experiments in Section 4.3.3, marked with an ∗, focus on transfer between agents
with different actuators.

able to consistently attain the performance level without transfer, but players using

transfer must also learn and do not initially perform above the threshold. CMAC

and RBF learners are able to learn better policies than the ANN learners and thus

have higher threshold values. When a group of four CMAC keepers has learned

to keep the ball from the three takers for an average of 11.5 seconds over 1,000

episodes, we say that the keepers have successfully learned the 4 vs. 3 task. Thus

agents learn until the on-line reward of the keepers, averaged over 1,000 episodes
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(with exploration), passes a set threshold.2 In 4 vs. 3, it takes a set of four keepers

using CMAC function approximators 30.8 simulator hours3 (roughly 15 hours of

wall-clock time, or 12,000 episodes) on average to learn to possess the ball for 11.5

seconds when training without transfer. By comparison, in 3 vs. 2, it takes a set of

three keepers using CMAC function approximators 5.5 hours on average to learn to

maintain control of the ball for 11.5 seconds when training without transfer.

The ANN used in 4 vs. 3 is a 19-20-4 feedforward network. The ANN learners

do not learn as quickly nor achieve as high a performance before learning plateaus.

(After training four keepers using ANN function approximation without transfer in

4 vs. 3 for over 80 hours, the average hold time was only 10.3 seconds.)

Using the three ρs described earlier, keepers in 4 vs. 3 Keepaway can initialize

their action-value functions from ρ(Q(3vs2,final)). We do not claim that these initial

action-value functions are correct (and empirically they are not), but instead that the

constructed action-value functions allow the learners to more quickly discover better-

performing policies. This section’s results compare learning 4 vs. 3 without transfer

to learning 4 vs. 3 after using Value Function Transfer with varying amounts of 3

vs. 2 training. Analyses of learning times required to reach threshold performance

levels show that agents utilizing CMAC, RBF, and ANN function approximation

are all able to learn faster in the target task by using Value Function Transfer with

ρCMAC , ρRBF , and ρANN , respectively.4

To test the effect of using Value Function Transfer, we train a set of keepers

2We begin each trial by following the initial policy for 1,000 episodes without learning (and
therefore without counting this time towards the learning time). This enables us to assign a well-
defined initial performance when we begin learning because there already exist 1,000 episodes to
average over.

3All times reported in this section refer to simulator time, which is roughly twice that of the
wall clock time. We only report simulator time (a surrogate for sample complexity) and not com-
putational complexity for Keepaway; the running time for Sarsa is negligible compared to that of
the RoboCup Soccer Server.

4Our results hold for other threshold times as well, provided that the threshold is not initially
reached without training and that learning will enable the keepers’ performance to eventually cross
the threshold.
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for some number of 3 vs. 2 episodes on a 25m2 field, save the function approximator’s

weights (Q(3vs2,final)) from a random 3 vs. 2 keeper, and use the weights to initialize

all four keepers5 in 4 vs. 3 on a 25m2 field so that Q(4vs3,initial) ← ρ(Q(3vs2,final)).

The agents train on the 4 vs. 3 Keepaway task until reaching the performance

threshold.

To determine if keepers using CMAC function approximation can benefit

from transfer, we compare the time it takes agents to learn the target task after

transferring from the source task with the time it takes to learn the target task

without transfer. Table 4.3 reports the average time spent training in 4 vs. 3 with

CMAC function approximation to achieve an 11.5 second average possession time

after different amounts of 3 vs. 2 training. The minimum learning times are in

bold. To overcome the high amounts of noise in our evaluation we run at least 25

independent trials for each data point reported. The top row of the table shows the

average time needed to learn the target task without transfer.

Column three reports the time spent training in the target task. The target

task training time TL scenario goal is met by any TL experiments that take less

time than learning without transfer. The fourth column shows the total time spent

training in the source task and target task. As can be seen from the table, spending

time training in the 3 vs. 2 task can cause the total learning time to decrease. Rows

where transfer reduces the time in the third column, relative to the time needed to

learn without TL, denote experiments where Value Function Transfer successfully

reduces the total training time.

The potential of Value Function Transfer is evident in Table 4.3, which is

visually depicted in Figure 4.3. The table and chart both show that the time to

5We do so under the hypothesis that the policy of a single keeper represents all of the keepers’
learned knowledge. Though in theory the keepers could be learning different policies that interact
well with one another, so far there is no evidence that they do. One pressure against such special-
ization is that the keepers’ start positions are randomized. There may be such specialization when
each keeper starts in the same location every episode. Informal experiments that used all source
task action-value functions did not produce significant differences in performance.
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CMAC Learning Results

# 3 vs. 2 Episodes Ave. 3 vs. 2 Time Ave. 4 vs. 3 Time Ave. Total Time Std. Dev.

0 0 30.84 30.84 4.72
10 0.03 24.99 25.02 4.23
50 0.12 19.51 19.63 3.65
100 0.25 17.71 17.96 4.70
250 0.67 16.98 17.65 4.82
500 1.44 17.74 19.18 4.16
1000 2.75 16.95 19.70 5.5
3000 9.67 9.12 18.79 2.73
6000 21.65 8.56 30.21 2.98

Table 4.3: Results show that learning Keepaway with a CMAC and Value Function
Transfer can reduce training time (in simulator hours). Minimum learning times for
reaching the 11.5 second threshold are bold. As source task training time increases,
the required target task training time decreases. The total training time is minimized
with a moderate amount of source task training.

threshold metric for the target time scenario and the total time scenario can be

improved by Value Function Transfer. To analyze these results, we conduct a num-

ber of Student’s t-tests to determine if the differences between the distributions of

learning times for the different settings are significant.6 These tests confirm that

all the differences in the distributions of 4 vs. 3 training times when using Value

Function Transfer are statistically significant (p < 10−16), compared to training 4

vs. 3 without transfer. Not only is the time to train the 4 vs. 3 task decreased when

we first train on 3 vs. 2, but the total training time is less than the time to train 4

vs. 3 without transfer. We conclude that in the Keepaway domain, training first on

a simple source task can increase the rate of learning enough that the total training

time is decreased when using a CMAC function approximator.

6Throughout this dissertation, Student’s t-tests are used to determine statistical significance.
T-tests can accurately estimate whether two distributions of samples are statistically different,
even for small sample sizes, but assumes that the distributions are normally distributed. When
the distributions contain a large numbers of samples (typical n >= 30), the distribution can be
assumed to be normal by the Central Limit Theorem. However, for smaller sample sizes, we
technically should test whether the distribution is normal, or use a non-parametric test, such as the
Mann-Whitney U test. The U statistic was calculated to verify that differences in Table 4.3 were
significant, as well as for an experiment in Section 6.1.3 with many fewer data points, and in all
cases the outcome was similar to that of the Student’s t-test. Thus we use the simpler (and more
common) t-test throughout the remainder of this dissertation to determine significance.
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Figure 4.3: This figure graphs the results in Table 4.3 using a logarithmic x-axis
scale. The thin red bars show the amount of time spent training in the source task,
the thick blue bars show the amount of time spent training in the target task, and
their sum represents the total time. Note that the target task time bar is graphed
below the source task time bar to make the trend of decreasing target task time
apparent.

Analogous experiments for Keepaway players using RBF and ANN function

approximation are presented in Table 4.4 and as bar charts in Figures 4.4 and 4.5.

Successful transfer is again demonstrated because both the transfer agents’ target

task training time and the transfer agent’s total training time are less than the time

required to learn the target task without transfer. All numbers reported are averaged

over at least 25 independent trials. All transfer experiments with RBF players that

use at least 500 3 vs. 2 episodes show a statistically significant difference from those

that learn without transfer (p < 9.1× 10−3), while the learning trials that used less

than 500 source task episodes did not significantly reduce the target task training

time. The target task training time is significantly reduced via Value Function

Transfer in all ANN experiments (p < 1.6 × 10−3).

The RBF function approximator yielded the best learning rates for 3 vs.
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RBF and ANN Learning Results
# of 3 vs. 2 Ave. RBF Ave. RBF Standard Ave. ANN Ave. ANN Standard

Episodes 4 vs. 3 Time Total Time Deviation 4 vs. 3 Time Total Time Deviation

0 19.52 19.52 6.03 33.08 33.08 16.14
10 18.99 19.01 6.88 19.28 19.31 9.37
50 19.22 19.36 5.27 22.24 22.39 11.13
100 18.00 18.27 5.59 23.73 24.04 9.47
250 18.00 18.72 7.57 22.80 23.60 12.42
500 16.56 18.12 5.94 19.12 20.73 8.81

1,000 14.30 17.63 3.34 16.99 20.19 9.53
3,000 14.48 26.34 5.71 17.18 27.19 10.68

Table 4.4: Results from learning Keepaway with different amounts of 3 vs. 2 training
time (in simulator hours) indicate that ρRBF and ρANN can reduce training time
for RBF players (11.5 second threshold) and ANN players (10.0 second threshold).
Minimum learning times for each method are in bold.
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Figure 4.4: This chart shows the RBF results from Table 4.4, where the x-axis uses
a logarithmic scale, the thick blue bars show 4 vs. 3 learning times, the thin red
bars show the 3 vs. 2 time, and the combination shows the total time.
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Figure 4.5: This bar chart shows the neural network results from Table 4.4, where
the x-axis uses a logarithmic scale, the thick blue bars show 4 vs. 3 learning times,
the thin red bars show the 3 vs. 2 time, and the combination shows the total time.

2 Keepaway, followed by the CMAC function approximator, and lastly the ANN

trained with backpropagation. However, Value Function Transfer provided the low-

est percentage speedup to the RBF agents. One hypothesis is that transfer is less

useful to the best learners. If a particular representation is poorly suited for a task,

it could be that transfer is able to provide proportionally more speedup because it

is that much further from an “optimal learner.” Nonetheless, while some function

approximators get more or less benefit from Value Function Transfer, it is clear that

all three are able learn the target task faster with the technique, and that more

training in the source task generally reduces the time needed to learn the target

task.
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4.3.2 Understanding ρCMAC’s Benefit

To better understand how Value Function Transfer uses ρCMAC to reduce the re-

quired training time in the target task, and to isolate the effects of its various

components, this section details a number of supplemental experiments.7

To help understand how ρCMAC enables transfer its two components are

isolated. First, the transfer functional is ablated so that the final averaging step,

which places the average weight into all zero weights (Algorithm 6 , lines 8–11), is

removed. As anticipated, the benefit from transfer is increasingly degraded, relative

to using the full ρCMAC , as fewer numbers of training episodes in the source task

are used. The resulting 4 vs. 3 training times are all shorter than training without

transfer, but longer than when the averaging step is incorporated. The averaging

step appears to give initial values to weights in the state/action space that have

never been visited when the source task agents are only allowed a limited number

of learning episodes. In this scenario, the full ρCMAC can provide a useful bias in

the target task even with very little 3 vs. 2 training. If agents are given more time

to explore the source task, more weights in the source task CMAC are set, and the

difference between the full transfer functional and the ablated transfer functional is

reduced. This set of experiments show that the averaging step is most useful with

small amounts of source task training, but becomes less so as more source experience

is accumulated (see Table 4.5, rows 5 and 6).

In order to evaluate a ρCMAC that only performed the averaging step, we

first learn for a number of episodes in 4 vs. 3, instead of 3 vs. 2, and then overwrite

all zero weights with the non-zero average. (Thus 4 vs. 3 is both the source and

7Informal experiments showed that the CMAC and RBF transfer results were qualitatively
similar, which is reasonable given the two function approximator’s many similarities. Thus we
expect that the supplemental experiments in this section would yield qualitatively similar results
if we used RBFs rather than CMACs. While results demonstrate that all three function approx-
imators can successfully transfer knowledge, these supplementary experiments focus on CMAC
function approximation so that our transfer work can be more comparable to previous work in
Keepaway [Stone et al., 2005] that also used CMACs.
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Ablation Studies with ρCMAC

Transfer # Source Task Ave. Target Standard
Functional Episodes Task Time Deviation

No Transfer 0 30.84 4.72

ρCMAC 100 17.71 4.70
ρCMAC 1000 16.95 5.5
ρCMAC 3000 9.12 2.73

ρCMAC,No Averaging 100 25.68 4.21
ρCMAC,No Averaging 3000 9.53 2.28

only averaging 100 19.06 6.85
only averaging 3000 10.26 2.42

ρCMAC,Ave Source 1000 15.67 4.31

Table 4.5: This table lists results that show transfer using the full ρCMAC , using
ρCMAC without the final averaging step (rows 4 and 5), using only the averaging
step of ρCMAC (rows 6 and 7), and when averaging weights in the source task before
transferring the weights (bottom row). Note that all variants of ρCMAC are able to
successfully reduce the required 4 vs. 3 training time relative to learning without
transfer.

target task; our results report the time spent learning the 4 vs. 3 task after transfer.)

Isolating the averaging step helps determine how important this step is to ρCMAC ’s

effectiveness. Applying the averaging step causes the total training time to decrease

below that of training 4 vs. 3 without transfer, but again the training times are

longer than running ρCMAC on weights trained in 3 vs. 2. This result confirms that

both parts of ρCMAC contribute to reducing 4 vs. 3 training time and that training

on 3 vs. 2 is more beneficial for reducing the required 4 vs. 3 training time than

training on 4 vs. 3 and applying ρCMAC (see Table 4.5, rows 7 and 8, for result

details).

The averaging step in ρCMAC is defined so that the average weight in the

target CMAC overwrites all zero-weights. We also conducted a set of 30 trials which

modified ρCMAC so that the average weight in the source CMAC is put into all zero-

weights in the target CMAC, which is possible when agents in the source task know

that their saved weights will be used for Value Function Transfer. Table 4.5 shows
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that when the weights are averaged in the source task (ρCMAC,Ave Source, bottom

row) the performance is not statistically different (p > 0.05) from when using ρCMAC

for Value Function Transfer with the same number of source task episodes.

To verify that the 4 vs. 3 CMAC players benefit from Value Function Transfer

and not from simply having non-zero initial weights, we initialized CMAC weights

uniformly to 0.5 in one set of experiments, to 1.0 uniformly in a second set of ex-

periments, and then to random numbers uniformly distributed from 0.0-1.0 in a

third set of experiments. We do so under the assumption that 0.0, 0.5, and 1.0 are

all reasonable initial values for weights (although in practice 0.0 seems most com-

mon). The learning time was never statistically better than learning with weights

initialized to zero, and in some experiments the non-zero initial weights decreased

the speed of learning. This set of experiments suggest that haphazardly initializing

CMAC weights may hurt the learner, but systematically setting them through Value

Function Transfer may be beneficial. We conclude that the benefit of transfer is not

a byproduct of our initial setting of weights in the CMAC (see Table 4.6 for result

details).

To test the sensitivity of the ρCMAC function, we next change it in two

different ways. We first define ρmodified by modifying χA so that instead of mapping

the novel target task action Pass to third closest keeper into the action Pass

to second closest keeper, we instead map the novel action to the source task

action Hold ball. Now Q4vs3,initial will initially evaluate Pass to third closest

keeper and Hold ball as equivalent for all states. We also define ρpartial by defining

new inter-task mappings. χA and χX are modified so that state variables and actions

not present in 3 vs. 2 are not initialized in the target task. Using these partial inter-

task mappings, ρpartial is a functional which copies over information learned in 3 vs.

2 exactly but assigns the average weight to all novel state variables and actions in

4 vs. 3.
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Time Required for CMAC 4 vs. 3 players to Achieve 11.5 sec. Performance
Initial CMAC weight Ave. Learning Time Standard Deviation

0 30.84 4.72
0.5 35.03 8.68
1.0 N/A N/A

Each weight randomly selected from
28.01 6.93

the uniform distribution from [0,1.0]

Table 4.6: 10 independent trials are averaged for different values for initial CMAC
weights. The top line is reproduced from Table 4.3. None of the trials with initial
weights of 1.0 were able to reach the 11.5 threshold within 45 hours, and thus are
shown as N/A above.

When ρmodified was used by Value Function Transfer to initialize weights in

4 vs. 3, the total training time increases relative to the normal ρCMAC , but still out-

performs training without transfer. Similarly, ρpartial is able to outperform learning

without transfer, but underperforms the full ρCMAC , particularly for higher amounts

of training in the source task. Choosing non-optimal inter-task mappings when con-

structing ρ seems to have a detrimental, but not necessarily disastrous, effect on the

training time, as theses different transfer functionals significantly outperform learn-

ing without transfer. These results show that the structure of ρ is indeed important

to the success of transfer (see Table 4.7).

When the CMACs’ weights are loaded into the keepers in 4 vs. 3, the ini-

tial hold times of the keepers do not differ significantly from those of keepers with

uninitialized CMACs (i.e., CMACs where all weights are initially set to zero). The

information contained in the function approximators’ weights prime the 4 vs. 3

keepers to more quickly learn their task by biasing their search, even though the

knowledge we transfer is of limited initial value. See Figures 4.6 and 4.7 for repre-

sentative learning curves and Table 4.8 for details. The more similar the source and

target tasks are, the more of a jumpstart in performance would be expected. For

example, in the degenerate case where the source and target task are identical, the

initial performance in the target task will be equivalent to the final performance in

the source task. However, in such a situation, reducing the total time — the more
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Testing Sub-optimal Inter-task Mappings
Transfer # of 3 vs. 2 Ave. 4 vs. 3 Standard

Functional Episodes Time Deviation

No Transfer 0 30.84 4.72

ρCMAC 100 17.71 4.70
ρCMAC 3000 9.12 2.73

ρmodified 100 21.74 6.91
ρmodified 3000 10.33 3.21

ρpartial 100 18.90 3.73
ρpartial 3000 12.00 5.38

Table 4.7: Results show that transfer with the full ρCMAC outperforms using sub-
optimal or partial inter-task mappings. The top line represents learning without
transfer and is reproduced from Table 4.3 and lines 2 and 3 are from Table 4.3.

Initial Performance in 4 vs. 3 with CMAC Function Approximation
# of 3 vs. 2 Episodes Ave. Performance (sec.) Standard Deviation

0 8.46 0.17
1000 8.92 1.48
6000 9.24 1.15

Table 4.8: This table shows the difference in initial performance between 4 vs.
3 players with and without transfer. 40 independent trials are averaged for each
setting and the differences in initial performance (i.e., initial episode lengths) are
small. A Student’s t-test shows that 8.46 and 8.92 are not statistically different
(p > 0.05) while 8.46 and 9.24 are (p < 6.6× 10−5).

difficult transfer scenario — would prove impossible.

Value Function Transfer relies on effectively reusing learned data in the tar-

get task. We hypothesized that successfully leveraging this data may be affected

by ǫ, the ǫ-greedy exploration parameter, which balances exploration with exploita-

tion. Recall that we had chosen an exploration rate of 0.01 (1%) in Keepaway to be

consistent with past research. Table 4.9 lists the results of learning 3 vs. 2 Keep-

away with ǫ = 0.01 for 1,000 episodes, utilizing ρCMAC , and then learning 4 vs. 3

Keepaway with various settings for ǫ. The results show that of these 4 additional

settings for ǫ, only ǫ = 0.05 is statistically better than the default rate of 0.01.

To further explore this last result we ran a series of 30 trials that learned 4 vs. 3
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Figure 4.6: The average performance of representative learning curves show that
transfer via inter-task mapping does not produce a significant jumpstart in 4 vs. 3,
but enables faster learning. Learning in 4 vs. 3 without transfer is compared with
learning after transfer from 250 episodes of 3 vs. 2.
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Figure 4.7: Eight 4 vs. 3 learning curves without transfer are compared to eight
learning curves in 4 vs. 3 after transferring from 250 episodes of 3 vs. 2. This graph
shows the high variance in trials graphed in Figure 4.6.
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Varying the Exploration in 4 vs. 3
ǫ in 4 vs. 3 # 3 vs. 2 Episodes Ave. 4 vs. 3 Time Standard Deviation

0.001 1000 22.06 10.52
0.005 1000 19.22 8.31

0.01 (default) 1000 16.95 5.5
0.05 1000 12.84 2.55
0.1 1000 18.40 5.70

0.01 (default) 0 30.84 4.72
0.05 0 17.57 2.59

Table 4.9: The first five rows detail experiments where 3 vs. 2 is first learned with
ǫ = 0.01 and then transfer is used to speed up learning in 4 vs. 3. 30 independent
trials are averaged for each setting of ǫ in the target task. The “default” result
is from Table 4.3 The last two rows show the results of learning 4 vs. 3 without
transfer for two settings of ǫ. These results show that the amount of exploration in
the target task affects learning speed both with and without transfer.

without transfer with the value of ǫ = 0.05 and found that there was a significant

difference from learning 4 vs. 3 without transfer with ǫ = 0.01. The speedup for

this particular setting of ǫ in transfer, relative to the default value, is explained by

the increased learning speed without transfer. This experiment does suggest, how-

ever, that the previously determined value of ǫ = 0.01 is not optimal for Sarsa with

CMAC function approximation in the Keepaway domain.

From the experiments in this section we conclude:

1. Both parts of ρCMAC — copying weights based on χX and χA, and the final

averaging step — contribute to the success of Value Function Transfer. The

former gives more benefit after more training is completed in the source task

and the second helps more when less knowledge is gained in the source task

before transfer.

2. Using Value Function Transfer with ρCMAC is superior to weights initialized

to zero (training without transfer), as well as weights initialized to 0.5, 1.0

and [0,1.0], three other reasonable initial settings.

3. A suboptimal or incomplete transfer functional, such as ρmodified and ρpartial,
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allows Value Function Transfer to improve learning speeds relative to learning

without transfer, but not as much as the full ρCMAC .

4. Keepers initialized by Value Function Transfer in the source task do not always

initially outperform players learning without transfer in the target task, but

the transfer players are able to learn faster.

4.3.3 Transfer between Players with Differing Abilities

Results in the previous sections demonstrate that Q-values can be successfully trans-

ferred between 3 vs. 2 Keepaway and 4 vs. 3 Keepaway. This section tests how robust

Value Function Transfer is to changes in agents’ abilities. In addition to changing

the number of players between the source and target tasks, other variables such as

the size of the field, the wind speed, and the players’ abilities can be modified in

the Keepaway domain. It is a qualitatively different challenge to use Value Function

Transfer to speed up learning between two tasks where the agents’ actions have

qualitatively different effects (i.e., the nature of the transition function, T , has been

modified) in addition to different state and action spaces. We choose to test the

robustness of Value Function Transfer by changing the passing actuators on some

sets of agents so that the passes are less accurate.8 We show in this section that

Value Function Transfer speeds up learning, relative to learning without transfer,

in the following three scenarios:

1. Learning 4 vs. 3 with inaccurate passing actuators after transferring from 3

vs. 2 keepers with inaccurate passing actuators.

2. Learning 4 vs. 3 with a normal passing actuators after transferring from 3

vs. 2 keepers with inaccurate passing actuators.

8Actuators are changed in the benchmark players by changing the pass action from the default
“PassNormal” to “PassFast.” This increases the speed of the passed ball by 50% and significantly
reduces pass accuracy.
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3. Learning 4 vs. 3 with inaccurate passing actuators after transferring from 3

vs. 2 keepers with normal passing actuators.

Recall that accurate CMAC players learning without transfer in 4 vs. 3 take

30.1 hours to reach the threshold performance level (row 1 of Table 4.10). When

sets of CMAC keepers learn 4 vs. 3 without transfer while using the less accurate

pass mechanism, the average time to reach an average performance of 11.5 seconds

is 54.2 hours (row 4 of Table 4.10). ρCMAC can speed up learning in the target task

when both the target and source tasks have inaccurate actuators (rows 5 and 6 of

Table 4.10, scenario #1). These two results, as well as all other 4 vs. 3 transfer

learning times in this table, are statistically significant when compared to learning

the relevant 4 vs. 3 task without transfer (p < 1.4× 10−12).

Now consider scenario #2. Suppose that the 4 vs. 3 target task players use

inaccurate passing, and some 3 vs. 2 keepers have trained using an accurate pass

action in the source task. As we can see in the third group of results in Table 4.10

(rows 7 and 8), even though the players in the source task have different actuators

than in the target task, transfer is able to significantly speed up learning compared

to not using transfer.

This result confirms that the same ρ will allow Value Function Transfer to

effectively transfer between tasks that not only have different S and A, but have

also had their actions qualitatively changed. This situation is of practical import,

as many robotic systems experience gradual degradation in performance over time

due to wear and tear. If a set of robots with worn down actuators are available,

they may still be able to benefit from action-value function transfer of Q-values from

learners that have fresh actuators. Alternately, if a set of agents have learned a task

and then later want to learn a new target task but have damaged their actuators

since learning the source task, transfer may still increase the speed of learning.
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Learning Results with Different Actuators
# of 3 vs. 2 3 vs. 2 3 vs. 2 Actuator Ave. 4 vs. 3 Standard 4 vs. 3 Actuator
Episodes Time Accurate? Time Deviation Accurate?

0 0 N/A 30.84 16.14 Yes
500 1.44 Yes 17.74 4.16 Yes
3000 9.67 Yes 9.12 2.73 Yes

0 0 N/A 54.15 6.13 No
500 1.23 No 37.3 9.24 No
3000 8.36 No 29.86 9.20 No
500 1.37 Yes 37.54 7.48 No
3000 9.45 Yes 24.17 5.54 No
500 1.3 No 18.46 3.93 Yes
3000 8.21 No 13.57 3.64 Yes

Table 4.10: Results showing transfer via inter-task mapping benefits CMAC players
utilizing ρCMAC with two kinds of actuators. These results demonstrate that trans-
fer can succeed even when actions in the source and target tasks are qualitatively
different. The results in rows 1–3 are from Table 4.3.

In the inverse experiment (scenario #3), agents in the source task have inac-

curate actuators and agents in the target task have normal actuators. We perform

Value Function Transfer after 500 and 3,000 episodes of 3 vs. 2 with inaccurate pass-

ing to initialize the Q-values of agents in 4 vs. 3 with accurate passing. The final two

rows in Table 4.10 again show that using transfer is a significant improvement over

learning without transfer. This results suggests that a fielded agent with worn down

actuators would be able to successfully transfer its learned action-value function to

agents with undamaged actuators. Interestingly, transferring from source task keep-

ers that have accurate actuators is more effective than transferring from source task

keepers that have inaccurate actuators, regardless of which actuator is used in the

target task. This is most likely because it is easier to learn with accurate actuators,

which means that there is more useful information to transfer from agents trained

with accurate actuators.

Section 4.3.1 first showed that transfer from 3 vs. 2 keepers with accurate pass

actuators to 4 vs. 3 keepers with accurate pass actuators was successful. This sec-

tion demonstrates that transfer also works in three different scenarios that consider
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source and/or target agents with inaccurate passing actuators. Combined, these

results show that Value Function Transfer is able to speed up learning in multiple

target tasks with different state and action spaces, and even when the agents have

qualitatively different actuators (and therefore have qualitatively different transition

functions) in the two tasks.

4.3.4 Transfer from Knight Joust to 4 vs. 3 Keepaway

Previous sections in this chapter have empirically demonstrated that Value Func-

tion Transfer can successfully transfer between different Keepaway tasks. A more

difficult challenge is to transfer between different domains. Such cross-domain trans-

fer [Taylor and Stone, 2007b] has been a long-term goal of transfer learning because

it could allow transfer between less similar tasks, significantly increasing TL’s flex-

ibility. In previous sections, experiments showed that Value Function Transfer can

reduce the total training time, in part because source tasks were selected so that

they were faster to learn than the target tasks. If a source task is selected from a

different domain, we may be able to select source tasks that take orders of mag-

nitude less training time, potentially improving the total training time even more

significantly.

The Knight Joust task, introduced in Section 3.5, is less similar to 4 vs.

3 Keepaway than 3 vs. 2 Keepaway is. There are many fewer state variables, a

less similar transition function, a fully observable state, the learner’s actions are

deterministic, and the reward structure is very different. Experiments in this section

show that Value Function Transfer can successfully transfer between the Knight

Joust task in the gridworld domain and 4 vs. 3 Keepaway in the RoboCup Soccer

domain. Table 4.11 describes the inter-task mappings used to transfer between

Knight Joust and 4 vs. 3 Keepaway. Our hypothesis was that the Knight Joust

player would learn Q-values to represent behaviors like “move North when possible,”
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χ
X

: 4 vs. 3 to Knight Joust

4 vs. 3 state variable Knight Joust state variable

dist(K1, T1) dist(P,O)
Min(ang(K2,K1, T1), ang(K2,K1, T2), ang(K2,K1, T3)) ang(West)
Min(ang(K3,K1, T1), ang(K3,K1, T2), ang(K3,K1, T3)) ang(East)
Min(ang(K4,K1, T1), ang(K4,K1, T2), ang(K4,K1, T3)) ang(East)
All other Keepaway variables ø

χ
A
: 4 vs. 3 to Knight Joust

4 vs. 3 action Knight Joust action

Hold ball Forward

Pass to closest teammate JumpWest

Pass to second closest teammate JumpEast

Pass to third closest teammate JumpEast

Table 4.11: This table describes the mapping between state variables and actions
from 4 vs. 3 to Knight Joust. Note that the we have made Jump West in the Knight
Joust correspond to passing to K2 and Jump East correspond to passing to K3,
but these options are symmetrically equivalent, as long as the state variables and
actions are consistent.

and “jump to the side when necessary,” which could be similar to holding the ball

in Keepaway when possible and passing when necessary.

We use a variant of ρCMAC , which we designate ρtabular,CMAC , to transfer

the learned weights because Knight Joust is learned with a tabular function ap-

proximator rather than a CMAC. This representation choice results in changes to

the syntax of the transfer functional, described in Algorithm 8. Note that this new

variant of the transfer functional is not necessitated by the novel source task. If

Knight Joust were learned with a CMAC, the original ρCMAC would be sufficient

for transfer between Knight Joust and 4 vs. 3.

The results in Table 4.12 report the average results from experiments with

30 independent trials each. The time spent learning 4 vs. 3 after transfer from

25,000 or 50,000 episodes of Knight Joust are statistically different from learning

without transfer (determined via Student’s t-tests). Recall that the wall-clock time

of the Knight Joust simulator is negligible when compared to the either wall-clock
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Algorithm 8 ρtabular,CMAC

1: nsource ← number of variables in source task
2: for each non-zero Q-value, qi, in the source task’s Q-table do
3: asource ← action corresponding to qi
4: for each state variable, xsource, in source task do
5: for each value xtarget such that χX(xtarget) = xsource do
6: for each value atarget such that χA(atarget) = asource do
7: j ← the tile in the target CMAC activated by xtarget, atarget

8: wj ← (qi/nsource)
9: wAverage ← average value of all non-zero weights in the target CMAC

10: for each weight wj in the target CMAC do
11: if wj = 0 then
12: wj ← wAverage

Transfer from Knight Joust into 4 vs. 3
# of Knight Joust Episodes Ave. 4 vs. 3 Time Standard Deviation

0 30.84 4.72
25,000 24.24 16.18
50,000 18.90 13.20

Table 4.12: Results from using Knight Joust to speed up learning in 4 vs. 3 Keep-
away. Knight Joust is learned with Q-learning and tabular function approximation
and Keepaway players are learned using Sarsa with CMAC function approximation.
The results in Row 1 are from Table 4.3. Both transfer times are significantly less
than learning without transfer, as determined via Student’s t-tests (p < 0.05).

or simulator time and thus, in practice, the 4 vs. 3 time is roughly the same as the

total time.

The reader may notice that the number of source task episodes used in these

experiments is much larger than other experiments in this chapter. The reason for

this is two-fold. First, Knight Joust is learned with tabular function approximation,

which is significantly slower to learn than a CMAC because there is no generalization.

Secondly, because the wall-clock time requirements for this domain were so small,

we felt justified in allowing the source task learners run until learning plateaued

(which takes roughly 50,000 episodes).

The main importance of these results is that it shows that Value Function
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Transfer can succeed between tasks with very different dynamics. Keepaway has

stochastic actions, is partially observable, and uses a continuous state space. In

contrast, Knight Joust has no stochasticity in the player’s actions, is fully observable,

and has a discrete state space.

4.3.5 Variants on 3 vs. 2 Keepaway: Negative Transfer

In this section we introduce two novel variants of the 3 vs. 2 Keepaway task to show

how Value Function Transfer with ρCMAC can fail to improve performance relative

to learning without transfer. Results in this section provide a cautionary tail: if

source and target tasks are not very similar, transfer can fail to decrease, or can

even increase, learning times.

3 vs. 2 is first modified so that the reward is defined as +1 for each ac-

tion, rather than +1 for each timestep. Players in the novel 3 vs. 2 Flat Re-

ward [Taylor et al., 2007a] task can still learn to increase the average episode time.

We hypothesized that the changes in reward structure would hinder Value Function

Transfer into 4 vs. 3 because the different reward structures would not only produce

a different optimal policy, but the returns predicted by the action-value function

would be less similar to correct predictions in 4 vs. 3 Keepaway.

3 vs. 2 is next modified so that the reward is defined to be -1 for each

timestep. The novel task of 3 vs. 2 Giveaway [Taylor et al., 2007a] is, in some

sense, the opposite of Keepaway. Given the available actions, the optimal action is

always for the player closest to the takers to hold the ball until the takers captures

it. We hypothesized that using Value Function Transfer from Giveaway to 4 vs. 3

Keepaway would produce negative transfer, where the required target task training

time is increased by using transfer.

Table 4.13 shows the results of using these two 3 vs. 2 variants as source

tasks. The table also compares these transfer results to using the standard 3 vs.
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Transfer into 4 vs. 3 with ρCMAC : Different Source Tasks
Source Task # of 3 vs. 2 Episodes Ave. 4 vs. 3 Time Ave. Total Time Std. Dev.

none 0 30.84 30.84 4.72
Keepaway 1000 16.95 19.70 5.5
Keepaway 3000 9.12 18.79 2.73

Flat Reward 1000 25.11 27.62 6.31
Flat Reward 3000 19.42 28.03 8.62
Giveaway 1000 27.05 28.58 10.71
Giveaway 3000 32.94 37.10 8.96

Table 4.13: Results compare transferring from three different source tasks. Each
row is an average of 30 independent trials. The 3 vs. 2 Flat Reward task improves
performance relative to learning without transfer, but less than when transferring
from Keepaway. The 3 vs. 2 Giveaway task can decrease 4 vs. 3 performance when
it is used as a source task. Rows 1–3 are replicated from Table 4.3.

2 task for transfer, and learning without transfer. Transfer from the Flat Reward

tasks gives a benefit relative to learning without transfer, but not nearly as much as

transferring from 3 vs. 2 Keepaway. Student’s t-tests determine that transfer after

3,000 episodes of Giveaway is significantly slower than learning without transfer.

4.3.6 Larger Keepaway Tasks and Multi-Step Transfer

Sections 4.3.1–4.3.5 considered experiments that use variants of 3 vs. 2 as a source

task (with the notable exception of Knight Joust) and variants of 4 vs. 3 as a target

task. This section explores how well Value Function Transfer scales by testing it on

increasingly complex tasks. As discussed in Chapter 1, one of the potential benefits

of transfer is to make learning on large problems tractable. With this goal in mind,

experiments in this section consider 5 vs. 4, 6 vs. 5 and 7 vs. 6 Keepaway. In addition

to showing that one-step transfer is possible, as was done in previous sections, we

also investigate multi-step transfer and show that in some cases it is superior to

one-step transfer.

5 vs. 4 Keepaway is harder than 4 vs. 3 Keepaway, as discussed in Sec-

tion 3.3.1. In 5 vs. 4, a set of five keepers using CMAC function approximators

require an average of 59.9 hours (roughly 24,000 episodes) to learn to maintain pos-
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session of the ball for 11.5 seconds when training without transfer. We first show

that our TL method can be used to speed up the 5 vs. 4 Keepaway task, which pro-

vides evidence for scalability to larger tasks. In addition to using 4 vs. 3 to speed

up learning in 5 vs. 4, we show that Value Function Transfer can be applied twice

to learn the 3 vs. 2, 4 vs. 3, and 5 vs. 4 tasks in succession.

Results in Table 4.14 demonstrate that Value Function Transfer scales to the

5 vs. 4 Keepaway task. The 5 vs. 4 task has been successfully learned when the 5

keepers are able to possess the ball for an average of 9.0 seconds over 1,000 episodes.

ρCMAC can be formulated by extending χX and χA so that they can transfer the

action-value function from 4 vs. 3 to 5 vs. 4, analogous to the way it transfers values

from 3 vs. 2 to 4 vs. 3. These results are shown in rows 2 and 3 of Table 4.14.

Recall that χX and χA can also be formulated so that Value Function Trans-

fer can transfer from 3 vs. 2 to 5 vs. 4 (Section 4.1.1). Table 4.14, rows 4 and 5,

show that this mapping formulation is successful. In fact, there is more benefit than

transferring from 4 vs. 3. We posit that this is because it is easier to learn more

in the simpler source task, outweighing the fact that 5 vs. 4 is less related to 3 vs.

2 than it is to 4 vs. 3. Another way to understand this result is that in a fixed

amount of experience, players in 3 vs. 2 are able to update more weights than 4

vs. 3, measured as a percentage of the total possible number of weights used in the

task.

We may also use multi-step transfer, a two-step application of Value Function

Transfer, to learn 5 vs. 4. The learned action-value function from 3 vs. 2 is used to

initialize the action-value function in 4 vs. 3 after applying ρCMAC . After training,

the final 4 vs. 3 action-value function is then used to initialize the action-value

function for 5 vs. 4. Using this procedure we find that the time to learn 5 vs. 4

is reduced to roughly 27% of learning without transfer (Table 4.14, bottom row).

A t-test confirms that the differences between all 5 vs. 4 training times shown are
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CMAC Learning Results in 5 vs. 4 Keepaway
# of 3 vs. 2 # of 4 vs. 3 Ave. 5 vs. 4 Ave. Total Standard

Episodes Episodes Time Time Deviation

0 0 22.58 22.58 3.46
0 500 13.44 14.60 7.82
0 1000 9.66 12.02 4.50

500 0 6.76 8.18 1.90
1000 0 6.70 9.66 2.12
500 500 6.19 8.86 1.26

Table 4.14: Results showing that learning Keepaway with a CMAC and applying
Value Function Transfer can reduce training time (in simulator hours) for CMAC
players in 5 vs. 4 with a target performance of 9.0 seconds. All numbers are averaged
over at least 25 independent trials.

statistically significant (p < 3.6×10−7) when compared to learning without transfer.

These results show that Value Function Transfer allows 5 vs. 4 Keepaway to

be learned faster after training on 4 vs. 3 and/or 3 vs. 2. They also suggest that

a multi-step process, where tasks are made incrementally more challenging, may

produce faster learning times than a single application of Value Function Transfer.

A similar χX , χA, and ρCMAC can be constructed to significantly speed up learning

in 6 vs. 5 as well (also taking place on a 25m× 25m field), as shown in Table 4.15.

Figure 4.8 shows that Value Function Transfer also scales to the more difficult

task of 7 vs 6 Keepaway. This experiment uses the latest version of the RoboCup

Soccer Server (version 11.1.2) and RBF function approximation, and thus is not

directly comparable to the previous CMAC experiments. Agents learning without

transfer are able to improve their performance, but learning is much slower than

in simpler Keepaway tasks. The “Transfer from 6 vs. 5” trails show that learning

6 vs. 5 for 4,000 episodes and then using Value Function Transfer can successfully

speed up learning in 7 vs. 6. In fact, the initial performance in 7 vs. 6 immediately

after transfer in not attained by the non-transfer learners within 70 simulator hours.

(The trails transferring from 6 vs. 5 begin with a performance of 7.7 ± 0.2 seconds

per episode at 8.7 simulator hours, whereas the trials that do not use transfer only
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Transfer in 6 vs. 5 with CMAC Function Approximation
# of 5 vs. 4 Episodes Ave. 6 vs. 5 Time Ave Total Time Standard Deviation

0 22.85 22.85 1.71
1000 9.38 11.53 2.38

Table 4.15: 10 independent trials are averaged for learning 6 vs. 5 with and without
transfer from 5 vs. 4. The threshold performance time is 8.0 seconds. A Student’s
t-test confirms that the difference is statistically significant (p < 2.2× 10−11).

attain a performance of 7.2 ± 0.4 seconds per episode after 70.0 simulator hours.)

The “Multistep Transfer” learning curve shows the results of learning 3 vs. 2, 4

vs. 3, 5 vs. 4, and 6 vs. 5 for 1,000 episodes each (using Value Function Transfer

between each sequential pair of tasks) and then transferring into 7 vs. 6. Unlike the

experiment in 5 vs. 4, this experiment does not show a significant improvement by

multi-step transfer, but multi-step transfer does still show a significant improvement

over no transfer.

4.4 On the Applicability of Value Function Transfer

The methods and results in this chapter constitute the core contribution of this

dissertation. In particular, the results presented in this chapter serve as an existence

proof that Value Function Transfer can be effectively used with inter-task mappings

to speed up learning in a target task after training in a source task.

It is important to recognize the domain knowledge contained in χX and

χA that assists in generating an effective ρ. As experiments show, simply copying

weights without respecting the inter-task mapping is not a viable method of transfer,

as our function approximator representations necessarily differ between the two tasks

due to changes in S and A. Simply putting the average value of the 3 vs. 2 weights

into the 4 vs. 3 function approximator does not give nearly as much benefit as

using a ρ which explicitly handles the different state and action values. Likewise,

when we used ρmodified (introduced in Section 4.3.2), which copied the values for

the weights corresponding to the some of the state variables incorrectly, learning
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time spent in the source task(s). Error bars show the standard deviation and each
learning curve averages 15 independent learning trials.

in 4 vs. 3 was significantly slower. These results suggest that a ρ which is able to

leverage inter-task similarities will outperform more simple ρs.

At this point, the reader may reasonably ask, “even if a correct inter-task

mapping is provided, in what situations is Value Function Transfer guaranteed to

work?” As discussed in Chapter 8, no TL methods for RL tasks currently provide

guarantees for transfer efficacy in the general case, although we discuss some possi-

bilities for such proofs in the future work section of this dissertation (Section 9.3).

Instead, the current state of the art relies on heuristics to decide when transfer may

be effective and which types of source tasks may be effectively used for a given target

task. When considering a scenario that has a human in the loop, such assumptions
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are reasonable; in our experience human intuition has been an effective guide for

TL methods. Selecting a source task or determining an inter-task mapping may

be thought of as another way to bias the agent, such as when a researcher selects

state variables, a function approximator, a particular learning method, or a shaping

reward.

It is still important to attempt to qualify where a given TL method will and

will not be useful. Value Function Transfer relies on an inter-task mapping between

similar states and actions. In order to be effective, the mapping should identify state

variables and actions that have similar effects on the long-term discounted reward.

If, for instance, the Keepaway task were changed so that instead of receiving a reward

of +1 at every time step, the agent received a +10, the ρ could be trivially modified

so that all the weights were multiplied by 10. However, if the reward structure is

more significantly changed to that of Giveaway, ρ would need to be dramatically

changed, if it could be effectively formulated at all.9

We hypothesize that the main requirement for successful Value Function

Transfer is that at least one of the following is true, on average:

1. The actions with the highest return inQ(source,final )(
χX(starget ), ·) are among

the best actions in the target task’s optimal policy at that state: π⋆(starget ).

2. The average Q-values learned in the source task’s action-value function are

of the same magnitude as Q-values in the trained target task’s action-value

function.

The first condition will work to bias the learner so that the best actions in the target

task are chosen more often, even if these actions’ Q-values are incorrect. The second

9The “obvious” solution of multiplying all weights by −1 would not work. In Keepaway a keeper
typically learns to hold the ball until a taker comes within roughly 6m. Thus, if all weights from
this policy were multiplied by −1, the keepers would continually pass the ball until a taker came
within 6m. These Giveaway episodes would last much longer than simply forcing the first keeper
to the ball to always hold, which is very easily learned.
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condition will make learning faster because smaller adjustments to the function

approximators’ weights will be needed to reach their optimal values, relative to not

using transfer, even if the optimal actions are not initially chosen.10 In this chapter,

an example of the first condition being met is that a keeper learns to hold the ball

in the source task until forced to pass. Hold ball is often the correct action in both

3 vs. 2 Keepaway and 4 vs. 3 Keepaway when the takers are far away from the ball.

The second condition is also met between 3 vs. 2 and 4 vs. 3 by virtue of similar

reward structures and roughly similar episode lengths. If either of these conditions

were not true, the transfer functional we employed would have to account for the

differences (or suffer from reduced transfer efficacy). In Section 4.3.5, our transfer

experiment from the 3 vs. 2 Flat Reward task to the 4 vs. 3 Keepaway task showed

reduced transfer efficacy (compared to transfer from the standard 3 vs. 2 Keepaway

task) because the first condition did not always hold and the second condition was

violated. Transfer from 3 vs. 2 Giveaway into 4 vs. 3 Keepaway showed negative

transfer because both of the above assumptions were violated.

This chapter has also set up a number of questions that will be addressed in

the following chapters. Specifically:

1. Can other types of knowledge be transferred between learners effectively, other

than an action-value function? (Yes, as discussed in Chapters 5 and 6.)

2. If an agent has a selection of source tasks, can it determine which task is more

likely to be useful for transfer into a given target? (Yes, but there are no

guarantees, as discussed in Section 6.1.)

3. Can inter-task mappings be learned, rather than hand-coded? (Yes, but they

are not always as effective as hand-coded mappings — see Chapter 7.)

10This condition is most important for incremental learners, but does not necessarily apply to
batch learners. For instance, suppose that Q-values transferred to the target task allowed the agent
to follow the optimal policy because the relative values of actions were correct (a best-case scenario
for the first condition). When the agent acts in the target task, it will collect samples following this
optimal policy. Then, when it updates its action-value function, it can compute a more accurate
Q-value function, regardless of the magnitude of the transferred Q-values.
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Chapter 5

Extending Transfer via

Inter-Task Mappings

The previous chapter introduced inter-task mappings and empirically demonstrated

that Value Function Transfer could use such mappings to significantly improve the

speed of RL. This chapter presents two additional transfer methods that concep-

tually build upon the Value Function Transfer method and also utilize inter-task

mappings.

Section 5.1 introduces Q-Value Reuse [Taylor et al., 2007a], which allows

agents to directly reuse a learned action-value from a source task in a target task.

The primary benefit of this method is that it allows TD learners in the source task

and target task to used different function approximators by saving the source task

agent’s final action-value function and leveraging it, without modification, in the

target task.

Policy Transfer [Taylor et al., 2007b] is discussed in Section 5.2. Both Value

Function Transfer and Q-Value Reuse require that agents in the source task and

target task utilize action-value function learning methods. In some tasks, direct

policy search methods may outperform TD methods (c.f. Taylor et al. [2006]). Policy
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Transfer is a method that can effectively transfer neural network action selectors (i.e.,

policies) between a source task and a target task. Again, inter-task mappings can

be used to enable transfer if the tasks have different state variables and/or actions.

5.1 Q-Value Reuse

The three transfer functionals introduced for value-function transfer (see Sections 4.2.1

and 4.2.2) are specific to particular function approximators. In this section we in-

troduce a more flexible approach, Q-Value Reuse, to transfer between tasks. Rather

than initializing a function approximator in the target task with values learned in

the source task, we reuse the entire learned source task’s action-value function. One

potential benefit is increased flexibility: an agent in the target task may train using

a function approximator different from that used by the source task agent.1 A sec-

ond benefit is that no explicit transfer step to copy weights is needed. As we will see

later (Section 5.1.1), this is important when the target task function approximator

has a much larger number of weights than the source task function approximator.

The insight behind Q-Value Reuse is that a copy of the source task’s function

approximator can be retained and used to calculate the source task’s Q-values for

state, action pairs (Qsource : Ssource × Asource 7→ R) (see Figure 5.1). When com-

puting Q-values for the target task, the target task agent first maps the state and

actions via inter-task mappings. The computed Q-value in the target task agent is

a combination of the output of the source task’s saved (and unchanging) function

approximator applied to the transformed (s, a), and the target task’s modifiable

function approximator applied to the target task states and actions:

Q(s, a) = QsourceFA(χX(s), χA(a)) +QlearningFA(s, a) (5.1)

1If the task is discrete, the agent may also use a tabular representation, which can be treated as
a type of function approximator.
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Figure 5.1: In Q-Value Reuse, the source task function approximator is saved after
being learned in the source task. An agent in the target task then uses the saved
function approximator, in conjunction with inter-task mappings, to evaluate states
and actions. To learn, a target task agent modifies a separate target task Q-value
function approximator, leaving the transferred source task function approximator
unchanged.

Sarsa updates in the target task are computed as normal, but only the target

function approximator’s weights (QlearningFA) are eligible for updates. Q-Value

Reuse is similar to reward shaping [Colombetti and Dorigo, 1993, Mataric, 1994] in

that we directly use the predicted rewards from the source task to bias the learner

in the target task. Note that if χX(s) or χA(a) were undefined for an (s, a) pair in

the target task, Q(s, a) would simply equal QlearningFA(s, a).

Potential drawbacks of this transfer method include an increased lookup

time and larger memory requirements, relative to Value Function Transfer. Such

requirements will grow linearly in the number of transfer steps; while they are not

substantial with a single source task, they may become prohibitive when using

multiple source tasks or when performing multi-step transfer (e.g., Section 4.3.6).

Table 5.1 summarizes the Q-Value Reuse experiments presented in the next two

sections.
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Method Name: Q-Value Reuse

Scenario: Applicable when the source and target task agents use TD learning.
Agents are not required to use the same function approximator. This method is
not as effective as Value Function Transfer and may require extra memory due to
requiring multiple function approximators, but it is more flexible because agents
may use different function approximators. All experiments use Sarsa learning.

Source Task Target Task Function Approximator Section

Standard 2D Standard 3D
CMAC 5.1.1

Mountain Car Mountain Car

3 vs. 2 4 vs. 3
CMAC 5.1.2

Keepaway Keepaway

Table 5.1: This table summarizes the primary Q-Value Reuse experiments in this
section of the dissertation.

5.1.1 Q-value Reuse Results: Mountain Car

After learning the Standard 2D Mountain Car task with a CMAC (as discussed

in Section 3.1.1) for 100 episodes, there are an average of 2,400 weights set in

the CMAC. If we then used Value Function Transfer to initialize a learner in the

Standard 3D Mountain Car task, there would a total of 459,300 weights because all

tiles in the 4D CMAC would be initialized.2 If a CMAC trains in the Standard 3D

Mountain Car task for 10,000 episodes, only 208,200 weights are used, on average.

One of the motivations of using Q-Value Reuse is to avoid such an overhead due to

initializing weights which will likely not be used by the target task agent.

When Q-Value Reuse is used to transfer between the Standard 2D Moun-

tain Car task and the Standard 3D Mountain Car task, the agent first saves its

2D CMAC after training on the source task with Sarsa. Second, in the target

task, the agent modifies the weights of a 4D CMAC when learning. When com-

puting the action-value for an (starget, atarget) pair, the agent also uses the saved

2D CMAC to evaluate the current position. Conceptually, Q(starget, atarget) =

2There are 94 weights (i.e., tiles) per 4D tiling. There are 14 tilings and 5 actions, leading to
459,270 weights that would be initialized (2394×94×14×5). Our Sarsa implementation of Mountain
Car from the RL-Glue Task Library is currently not able to handle this number of weights, making
Q-Value Reuse preferable to Value Function Transfer.
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Q2DCMAC(χX(starget), χA(atarget))+Q4DCMAC(starget, atarget). The inter-task map-

pings for 3D to 2D Mountain Car are defined in Table 5.2. Actions that accelerate

the car towards the goal are mapped together, while actions that accelerate the car

away from the goal are mapped together. State variables are mapped from the target

to the source so that they are consistent with the action mapping (e.g., minimizing

x in both the target task and the source task moves the agent closer to the goal).

Notice that the state variable inter-task mapping is many-to-one. Because

of this, when calculating the contribution from the source task CMAC, the target

task state must be used twice3:

Q(starget, atarget) = Q2dCMAC(χX(xtarget), χX(ẋtarget), χA(atarget))+

Q2dCMAC(χX(ytarget), χX(ẏtarget), χA(atarget))+

Q4dCMAC(xtarget, ytarget, ẋtarget, ẏtarget, atarget)

While learning the 3D task, the target task agent’s CMAC weights are modified by

Sarsa(λ) and will allow for an accurate approximation of the action-value function,

even though the transferred source CMAC will not necessarily produce a significant

jumpstart in the target task.

Figure 5.2 shows learning curves in 3D Mountain Car, each averaged over

25 independent trials. After each episode we evaluate the policy off-line without

exploration. To graph the learning curve we average all 25 learning curves with a

10 episode window.

The line labeled “Transfer: Hand-Coded Mapping” shows the performance

of agents in the 3D task that transfer an action-value function learned during 100

episodes of training on the 2D task. Student’s t-tests show that transfer using hand-

3This also has the effect of initially increasing the expected return for every (s, a) pair in the
target task. While this is appropriate for 3D Mountain Car (because the target task is significantly
harder than the source and the car needs many more steps to reach the goal), in other domains it
may be preferable to re-scale the output from Qsource based on the number of times it is called for
a single (s, a) target task pair.
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3D to 2D Mountain Car Inter-Task Mappings

Action Mapping State Variable Mapping
χA(Neutral) = Neutral χX(x) = x
χA(North) = Right χX(ẋ) = ẋ
χA(East) = Right or
χA(South) = Left χX(y) = x
χA(West) = Left χX(ẏ) = ẋ

Table 5.2: This table describes the mapping used transfer between the Standard 2D
and Standard 3D Mountain Car tasks.

coded inter-task mappings (χX and χA) significantly outperform learners that do

not use transfer. The “Transfer: Averaged Mapping” shows the performance of

agents that again transfer an action-value function learned during 100 source task

episodes, but use a different inter-task mapping. Instead of using χX and χA as

defined in Table 5.2, these learners call into the saved Q2dCMAC multiple times and

average over all possible mappings. This is equivalent to a mapping that assigns

a uniform prior from all actions in the target task to all actions in the source task

(and likewise for state variables). The poor performance of these learners emphasizes

that haphazardly transferring without reasonable inter-task mappings can lead to

negative transfer.

5.1.2 Q-Value Reuse Results: Keepaway

In this section we use Value Function Transfer with Q-Value Reuse to transfer be-

tween CMAC players in 3 vs. 2 Keepaway and 4 vs. 3 Keepaway. We utilize the

same inter-task mappings as in Value Function Transfer (Section 4.1.1). When cal-

culating Q(starget, atarget), the source task CMAC effectively ignores state variables

that pertain to the novel players (the 4th keeper and 3rd taker), and will evaluate the

actions Pass2 and Pass3 as the same value. Similar to Value Function Transfer, we

do not expect the initial performance in the target task to be near-optimal because

of these inaccuracies. However, we do expect that learning the novel target task
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Figure 5.2: This graph shows learning curves for learning without transfer, learn-
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averaged mapping. Each learning curve averages 25 independent trials.

CMAC will be fast, relative to learning without transfer.

Table 5.3 shows the results of using Q-Value Reuse in Keepaway. Each

transfer experiment shows the average of 30 independent trials. Both the target task

times and the total times are statistically different from learning without transfer

(p < 0.05, via Student’s t-tests). As when using ρCMAC for Value Function Transfer

(Table 4.3), spending more time learning 3 vs. 2 correlates with a decrease in the

time required for 4 vs. 3 players to reach an 11.5 second threshold performance.

Q-Value Reuse is not as effective as Value Function Transfer (see Figure 5.3) due

to the averaging step in ρCMAC . As we showed previously (Chapter 4.3.2), this

averaging step has an impact on the target task learning times. However, in Q-

Value Reuse we treat the source task function approximator as a “black box” and

thus do not permute its values, nor use it to set the initial values of the target task’s
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Q-Value Reuse between CMAC Keepaway players
# of 3 vs. 2 Ave. Ave. Standard

Episodes 4 vs. 3 Time Total Time Deviation

0 30.84 30.84 4.72
10 28.18 28.21 5.04
50 28.0 28.13 5.18
100 26.8 27.06 5.88
250 24.02 24.69 6.53
500 22.94 24.39 4.36

1,000 22.21 24.05 4.52
3,000 17.82 27.39 3.67

Table 5.3: Results from learning 3 vs. 2 with CMAC players for different numbers
of episodes and then utilizing the learned 3 vs. 2 CMAC directly while learning 4
vs. 3. Minimum learning times for reaching an 11.5 second threshold are bold.
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from Table 4.3 in Section 4.3.1 and Q-Value Reuse results are from Table 5.3.
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function approximator. These results suggest that if the source and target function

approximators are different, or if value-function transfer would require the copying

of an infeasible number of weights, Q-Value Reuse may be appropriate. However,

if memory is limited, running time is critical, and/or multiple transfer steps are

involved, then using Value Function Transfer may be preferable.

5.2 Policy Transfer

This dissertation has only considered transfer between temporal difference RL agents

up to this point. Since policy search methods, which directly search the space of

policies without learning value functions, can outperform TD methods on some tasks

(c.f., Stanley and Miikkulainen [2002] and Taylor et al. [2006]) extending transfer

learning to policy search methods is an important goal. Policy Transfer is one such

TL method: it transfers policies, represented as neural network action selectors,

from a source task to a target task by leveraging inter-task mappings.

In this section, we first describe Policy Transfer and then empirically evaluate

it in Server Job Scheduling (SJS) (described in Section 3.2) and Keepaway. Results

show successful reduction in both target task training time and total training time,

relative to learning without transfer.

Policy Transfer enables policies represented as neural network action selectors

to be transferred between tasks (see Figure 5.4). We choose neural network action se-

lectors because of their past successes in policy search (e.g., Stanley and Miikkulainen

[2002], Taylor et al. [2006], Whiteson and Stone [2006b]). Although we restrict the

experiments to neural network action selectors (which, the reader may recall from

Section 2.2.3, are direct functions from states to actions) in this dissertation, there

are no apparent obstacles to applying Policy Transfer to other policy search learners.

We now discuss how to construct a functional, ρπ, for Policy Transfer such

that the initial policy (or policies) in the target task can be initialized by policies
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learned in the source task. To perform transfer with a neural network action selector,

we must convert networks trained in the source task into networks suitable for

training in the target task. We cannot simply copy the policy description unaltered

because, in the general case, the state and action spaces may differ between tasks,

and therefore the policy function’s inputs and outputs may differ.

To construct ρπ, we use an algorithm very similar to ρANN (introduced in

Section 4.2.2). Rather than transferring a single neural network that represents a

value function, ρπ transfers one or more neural network action selectors. We again

assume that two inter-task mappings are provided, χX and χA. Given χX , χA,

and a trained network πsource, our goal is to create a new network πtarget that can

function in the target task. Initially, we define πtarget as a neural network with no
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links, one input node for each state variable in the target task, one output node for

each action in the target task, and the same number of hidden nodes as in πsource.

We use the function ψ from Section 4.2.2 to map target task nodes to nodes

in the source task action selector:

ψ(n) =



















χX(n), if node n is an input

χA(n), if node n is an output

δ(n), if node n is a hidden node

where a function δ again represents a mapping between hidden nodes. Using ψ, we

can now generate πtarget by copying the links that connect the corresponding nodes

in πsource. For every pair of nodes ni, nj in πtarget, if a link exists between ψ(ni) and

ψ(nj) in πsource, a new link with the same weight is created between ni and nj.
4 By

applying ρπ to source task policies, we can initialize target task policies. All target

task policies thus have structure and weights learned from the source task and we

expect this knowledge to bias policies so that policy search methods can master the

target task more quickly. Algorithm 9 summarizes this domain-independent process

and Policy Transfer experiments are summarized in Table 5.4.

5.2.1 Server Job Scheduling Results

In this section we demonstrate that Policy Transfer can successfully transfer between

2-job-type and 4-job-type scheduling (discussed in Section 3.2). Server Job Schedul-

ing is quickly mastered with policy search learning, but is difficult for TD methods.5

4Alternatively, link weights could be set such that the target network’s activation for every output
a, given s1 . . . sk, is the same as the source network’s activation for χA(a), given χX(s1) . . . χX(sk).
However, informal results suggest this approach is less effective than directly copying weights.

5After testing a number of different Sarsa implementations, we hypothesize that TD methods
have difficultly learning an action-value function for SJS. Considering each state variable indepen-
dently does not provide enough information to the learner to accurately predict the return for the
16 different actions: although the agent shows initial learning progress, performance plateaus far
below that of NEAT. If the state variables are considered conjunctively, the state space becomes
quite large and the agent fails to learn at all (the 16 state variables which have integral values
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Algorithm 9 ρπ: Policy Transfer with NEAT

1: for each network πsource in source task population do
2: Construct a network πtarget where # of input and output nodes are determined

by the target task
3: Add the same number of hidden nodes to πtarget as πsource

4: for each pair of nodes ni, nj in πtarget do
5: if link(ψ(ni), ψ(nj)) in πsource exists then
6: Add link(ni, nj) to πtarget with weight identical to link(ψ(ni), ψ(nj))

Method Name: Policy Transfer

Scenario: Policy Transfer is applicable when the source and target task agents
use direct policy search with ANN action selectors. All experiments use NEAT.

Source Task Target Task Function Approximator Section

2-job-type SJS 4-job-type SJS ANN 5.2.1, 5.2.3

3 vs. 2 4 vs. 3
ANN 5.2.2, 5.2.3

Keepaway Keepaway

Table 5.4: This table summarizes the primary Policy Transfer experiments in this
section of the dissertation. Experiments are first conducted with full inter-task
mappings and then repeated in Section 5.2.3 with partial inter-task mappings.

Thus Value Function Transfer is not applicable for SJS, but Policy Transfer is.

To define the inter-task mappings used for SJS (detailed in Table 5.5) we

utilize a similar methodology as for Keepaway: we map target task job types 1 and

3 to source job type 1, and map target task job types 2 and 4 to source job type 2,

exploiting similarities in utility curves (see Figure 5.5, a reproduction of Figure 3.7

from Section 3.2).

After training a population of policies in 2-job-type SJS, we transfer the

entire population6 into 4-job-type SJS via Policy Transfer using ρπ. These initial

of [0,50]). A second difficulty is that the return directly depends on the current timestep in the
episode. Explicitly adding time as a state variable to the learner’s state representation failed to
increase performance, likely due to the added challenge of temporal generalization.

6Transferring the entire trained population instead of a single policy allows search to begin in
the target task from a variety of locations in policy space, increasing the chances of finding a good
starting point for learning. Informal results suggested that this approach was more beneficial than
transferring the champion policy, or a few of the best policies.
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χX Mapping 4-job-type SJS to 2-job-type SJS
4-job-type state variable 2-job-type state variable

Count1,1 Count1,1

Count1,2 Count1,2

Count1,3 Count1,3

Count1,4 Count1,4

Count2,1 Count2,1

Count2,2 Count2,2

Count2,3 Count2,3

Count2,4 Count2,4

Count3,1 Count1,1

Count3,2 Count1,2

Count3,3 Count1,3

Count3,4 Count1,4

Count4,1 Count2,1

Count4,2 Count2,2

Count4,3 Count2,3

Count4,4 Count2,4

Table 5.5: This table describes the state variable mapping between the 4-job-type Server
Job Scheduling task and the 2-job-type Server Job Scheduling task. State variables count
the number of jobs of a particular type in different time ranges. Count2,1 represents the
number of jobs of type two that have an age of 1-50 time-steps. The action mapping is
analogous to the state variable mapping. For instance, the target task action “Process the
oldest job of type four in the first bin” is mapped to the source task action “Process the
oldest job of type two in the first bin” (Process4,1 is mapped to Process2,1, just as Count4,1

is mapped to Count2,1).
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Figure 5.5: This graph shows the four utility functions used in SJS experiments.

policies in the 4-job-type population will not be optimal, but should enable NEAT

to more rapidly discover good policies in the target task than when learning without

transfer.

During initial experiments we found that a small modification to Algorithm 9

improves transfer performance on SJS. The number of links in the target task net-

work is double that of the source network due to different numbers of input and

output nodes in the two networks. When copying weights from the source task net-

work, we divided all values in half, significantly improving the initial performance

in the target task, as well as the time to threshold, relative to using the source task

weights without modification.

To test Policy Transfer in Server Job Scheduling, we first learn 2-job-type

(source) task for 5 or 10 generations and save the learned population of policies at

the end of training. We then learn the 4-job-type (target) task without transfer, and

with Policy Transfer from each set of populations. Figure 5.6 shows the performance

of the three sets of learning experiments vs. the number of target task generations.

Transfer from 5 generations outperforms learning without transfer until generation

29 and transfer from 10 generations outperforms learning without transfer until
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generation 33, as determined by Student’s t-tests (p < 0.05). Transfer from 10

generations initially performs slightly better than transfer from 5 generations, but

the majority of differences are not statistically significant. Figure 5.7 shows the

same data as Figure 5.6, but shows the total number of training generations. When

accounting for source task training, transferring from 5 source task generations

is better than transferring from 10. Transfer from 5 source task generations is

statistically different from the no-transfer learning curve until generation 22 (p <

0.05) when accounting for the total learning time.

To better analyze the effect of Policy Transfer, we also consider a range of

threshold values rather than a single value. By graphing multiple thresholds we can

visualize how much experience a learner needs to reach a number of preset target

levels and compare transfer to non-transfer learners. Additionally, performing this

analysis supports our claim (in Section 2.4) that the particular target task perfor-

mance threshold do not greatly affect the evaluation of different transfer algorithms.

Figure 5.8 shows such a graph for target task training time in SJS. The x-

axis shows threshold performance values, and the y-axis shows how many target

task generations were needed to achieve that performance. Each curve averages

the performance of 100 independent trials and continue until one or more of the

trials fails to reach the target performance (i.e., 1 of the 100 non-transfer learning

curves failed to ever achieve a performance of -8,000 and the non-transfer learning

curve is graphed on the range [-8750,-8050]). The no transfer learning curve is much

higher than the two transfer learning curves, which equates to requiring many more

generations to achieve the same performance as the transfer learners. Differences

between the number of target task episodes are significant at the 95% level for

transfer and non-transfer curves for all thresholds graphed.

Figure 5.9 shows the same data, but now the y-axis accounts for the total

number of training generations. This has the effect of shifting the transfer learning
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curves up by the number of source task episodes. Transfer from 5 generations sig-

nificantly outperforms learning without transfer for all points graphed (p < 0.05).

Transfer from 10 generations outperforms learning without transfer for threshold

performances greater than -8,350. Transfer from 5 generations significantly outper-

forms transfer from 10 generations for all plotted performances less than -8,050.

These results show that Policy transfer can significantly improve both the

target task training time and total training time. The significant benefits are possible

in part because of qualitative similarities in the source and target tasks, despite

differing in S, A, and relative complexity. Commonalities between tasks can make

it easier to reduce (1) target task training time, but they will not necessarily make it

easier to reduce (2) total training time, and may even make it harder. In the extreme

case, the source could be identical to the target task, making the first transfer goal

trivial but the second impossible. The fact that Policy Transfer meets both transfer

learning goals is an important confirmation of this transfer method’s effectiveness.

Reducing the total time is possible, in part, because the source tasks are similar to,

but easier to learn than, their respective target tasks.

5.2.2 Keepaway Results

Experiments in the last section showed that Policy Transfer could significantly im-

prove the speed of learning in Server Job Scheduling. In this section we compare

learning times in Keepaway when learning with transfer using ρπ to learning without

transfer. We train a population of policies in 3 vs. 2 with NEAT, use ρπ to modify

the policies, and then begin learning 4 vs. 3 with these modified policies. After

learning finished in 4 vs. 3 we evaluated the champion policy of each generation for

1,000 episodes to generate more accurate graphs. If no policies reach the threshold

value within 500 simulator hours in a given trial, that trial was assigned a learning

time of 500 hours.
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performance (the average reward per episode) is successfully reduced via Policy
Transfer.
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Figure 5.10: Policy Transfer successfully reduces the average training time needed
to reach a given performance level, relative to learning without transfer.

Figure 5.10 shows the amount of training each method needed to reach

threshold performances of 7.0 through 8.5 seconds. Three learning curves were

generated by averaging over 10 independent runs: learning without transfer, using

ρπ after training for 5 generations of 3 vs. 2, and using ρπ after training for 10

generations of 3 vs. 2. Student’s t-tests confirm that both differences between the

transfer curves and the non-transfer curve are statistically significant at the 95%

level for all points graphed. These results clearly show that, in Keepaway, Policy

Transfer can significantly reduce learning times in the target task.

When considering the total training time, learning curves in Figure 5.10

which use transfer are shifted up by the amount of time spent training in the source

task. The differences between the total training times with transfer and without

transfer are statistically significant for roughly half of the target threshold times
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shown in Figure 5.10; the benefit from transfer was greater for higher target thresh-

olds.

We hypothesize that transfer from 5 source task generations outperforms

transfer from 10 source task generations in both domains primarily due to two

factors. First, source task networks trained for 10 generations have more links and

nodes than those trained for 5 generations, and more complex networks are likely

to train more slowly than simple networks. Second, training for more time in the

source task may lead to overfitting, causing a target task learner to have to spend

more time learning to perform well in the target task.7

It is difficult to directly compare these Policy Transfer results with the Value

Function Transfer results because the players plateau at different levels (the major-

ity of 4 vs. 3 NEAT players reach a performance of 8.5 seconds, while the majority of

4 vs. 3 CMAC players reach a performance of 11.5 seconds). We therefore compare

the relative improvements in total performance for the highest thresholds that each

set of players consistently achieved.8 Table 5.6 compares the two transfer methods

and shows that the percentage of total time saved by using each transfer method

is roughly equal. While this comparison is inexact, it does suggest that these two

TL algorithms, which use the same inter-task mappings but different base RL algo-

rithms, have similar efficiency.

7One way to test this hypothesis would be to freeze the source task network topology while
training, which would help distinguish between learning by changing weights and learning by adding
nodes to the network. If the weights are being overfit, transfer after 10 source task generations
would be worse than transfer after 5 source task generations, even if the topology was frozen. If
the topology was growing too quickly in the source task, freezing the source task topology would
improve the performance of the players transferring from 10 source task generations, relative to
those transferring from 5 source task generations.

8It is unreasonable to test the 4 vs. 3 CMAC players with a threshold performance of 8.5 seconds
because many of the transfer trials begin learning with a performance higher than 8.5.
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4 vs. 3 Keepaway Comparison: Value Function Transfer and Policy Transfer
Base RL Threshold Time Training Time Training Total Percentage
Method Performance in 3 vs. 2 in 4 vs. 3 Time Reduction

Sarsa
11.5

0 30.8 30.8
57%

with CMAC 0.7 17.0 17.7

NEAT 8.5
0 417 417

52%
76 142 218

Table 5.6: This table compares the total time needed to learn 4 vs. 3 Keepaway,
with and without transfer, for Sarsa and NEAT learners. The rightmost column
shows the percentage reduction in total time achieved by Value Function Transfer
and Policy Transfer. The threshold performance is in simulator seconds and the
training times are in simulator hours.

5.2.3 Partial Mapping Results

In some situations, the agent may not have access to a full inter-task mapping. One

possible simplification is to assume a partial inter-task mapping, which may also be

easier for a human to intuit or machine to learn. Furthermore, if the target task

has actions or state variables that have no correspondence in the source task, a full

mapping may be inappropriate. In this section we define partial mappings for the

SJS and Keepaway domains and empirically demonstrate that they may be used for

successful transfer in conjunction with Policy Transfer.

The full inter-task mapping from the 4-job-type task to the 2-job-type task

mapped each target task job type to a source task job type. The incomplete inter-

task mappings are defined so that job types 1 and 2 in the target task are mapped to

job types 1 and 2 in the source task. The target task’s novel job types, 3 and 4, are

not assigned any mapping to the source task. Using this mapping, we can construct

χP,A and χP,A, where the P subscript denotes “partial.” When these incomplete

mappings are used for Policy Transfer, the weights in the target task corresponding

to the two mapped job types are set via transfer, but nodes corresponding to the

two unmapped job types in the target task are initially only connected by links with

randomized weights.
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When transferring from 3 vs. 2 to 4 vs. 3 Keepaway, we define χP,X to be the

same as before (see Table 4.1), except for the mapping from novel state variables

in 4 vs. 3, which are undefined. For example, Distance to second closest keeper in

4 vs. 3 still maps to Distance to second closest keeper in 3 vs. 2, but χP,X(Distance

to third closest keeper) is undefined. Likewise, χP,A is the same as χA, the full

inter-task mapping, except that χP,A (Pass to third closest keeper) is undefined.

The partial inter-task mappings in the SJS and Keepaway domains can now

be used to construct ψP and ρP , as was done in the previous section with the full

mappings. Figure 5.11 shows the target time results in the SJS domain. Using

partial mappings to transfer from 5 source task generations successfully reduces the

target task learning time, relative to learning without transfer, for threshold perfor-

mances less than -8,150 (Student’s t-tests: p < 0.05). Using the partial mappings

also reduces the total time for threshold performances less than -8,250 (not shown).

Figure 5.12 shows results from Keepaway. Over half of the target task time

differences between the no transfer and transfer from 5 generations using partial

mappings are significant (p < 0.05). In both domains, using the partial mappings

to transfer from 5 source task episodes does not perform as well as using the full

mappings, but Policy Transfer with the partial mappings does outperform learning

without transfer.

Taken as a whole, these results show that Policy Transfer can successfully

transfer knowledge so that both the target task training time and total training

time are reduced. Transfer with partial mappings enables faster learning in the

target task than when training without transfer in both domains, but the full inter-

task mappings are even more beneficial. This result suggests it is most effective to

formulate a full transfer functional between all state variables and actions in the two

tasks, but when one is not available, partial inter-task mappings can still successfully

improve learning.
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Figure 5.11: The average number of generations in SJS needed to attain a target
performance level (the average reward per episode) is successfully reduced via Policy
Transfer. Using partial mappings (after learning for 5 source task generations)
outperforms learning without transfer, but underperforms using the full inter-task
mappings. The No Transfer curve and the transfer with the full mappings from 5
and 10 source task generations curves are replicated from Table 5.8.

5.3 Chapter Summary

This chapter has introduced two methods which utilize inter-task mappings to trans-

fer between tasks with different state variables and actions. Q-Value Reuse directly

copies over a learned action-value function and allows a target task learner to read

from it, but not write values into it. Policy transfer shows that a source task popu-

lation of policies can be modified so that they are a good starting point for a target

task learner. In the following chapter we introduce three transfer methods which

allow the source task agent and target task agent to use entirely different learning

methods, which is not possible when using the TL methods presented thus far.
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Chapter 6

Transfer between Different

Reinforcement Learning

Methods

The previous two chapters introduced three different methods that use inter-task

mappings to transfer between tasks with different state variables and actions, but

all methods required agents in the source task and target task to use the same type

of underlying RL method.

1. Value Function Transfer (Section 4.2) used an action-value function learned in

the source task to initialize an action-value function in the target task, with

the requirement that both source and target task agents use value-function

learning, such as Q-Learning or Sarsa.

2. Q-Value Reuse (Section 5.1) also required TD learners in the source and target

task, but copied an entire Q-value function, rather than using it to initialize a

target task’s action-value function. Thus the target task agent must use value

function learning.
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3. Policy transfer (Section 5.2) transfers between policy search methods which

use neural network action selectors.

In this chapter, we introduce three additional transfer methods which do

not require the source and target tasks to be learned by the same type of RL

algorithm. Previous work (c.f., Taylor et al. [2006]) has shown that characteristics

of a particular task may favor one type of RL algorithm over another. If one can

determine what type of RL algorithm would be best for a given target task, a TL

method would, ideally, be flexible enough to reuse knowledge from a source task,

even were that source task learned by a different type of algorithm.

Section 6.1 introduces timbrel [Taylor et al., 2008b], a method that trans-

fers observed instances between tasks. (Recall that we use instance to refer to an

experienced 〈s, a, r, s′〉 tuple.) This method utilizes inter-task mappings to directly

transfer experienced instances between tasks. The instances are used to construct

an initial model of T and R (the transition and reward functions) in the target

task, which can significantly reduce the amount of experience needed to learn in the

target task. Although our experiments use an instance-based RL algorithm in both

the source task and target task (Fitted R-max, as discussed in Section 2.3.3), any

RL algorithm (such as Sarsa or NEAT) could gather instances in the source task to

enable beneficial transfer.

Next, Rule Transfer [Taylor and Stone, 2007b] is introduced in Section 6.2.

The key difference between this method and others in this dissertation is that a

higher-level abstraction is transferred between tasks, rather than recorded instances,

full policies, or action-value functions. After the source task is learned using some

RL algorithm, the agent records instances in the source task. It then uses a rule-

learning algorithm to extract rules which describe the policy (i.e., “If the state is s,

then take action a”). These rules are used in the target task to increase the speed

of learning with Sarsa, relative to not using transfer. As in timbrel, instances are
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used, but now higher-level rules are the information transferred. Additionally, the

transferred rules are used directly as an initial control policy, whereas when instances

are directly transferred, they are used to help improve learning speed instead of to

direct the actions of the target task agent.

Section 6.3 discusses two types of representation transfer [Taylor and Stone,

2007a]. The goal of representation transfer is broader than other transfer algorithms

in this dissertation. In addition to transfer between tasks, the goals of representation

transfer are also to enable transfer between different:

• Function approximator parameterizations (e.g., adding or removing state vari-

ables from a CMAC)

• Function approximators (e.g., change from an ANN to a RBF)

• Learning methods (e.g., change from Sarsa to policy search)

In all of these cases, the goal of representation transfer is to reuse knowledge between

representations, so that the target representation can be learned faster, relative to

not using transfer.

Lastly, Section 6.4 summarizes the six TL methods in this dissertation, all of

which can utilize the same inter-task mappings. In addition to providing guidelines

about when each method would be most appropriate, we provide a chart summa-

rizing the experiments, RL algorithms, and function approximators used.

6.1 TIMBREL: Instance-based Transfer

Model-free algorithms such as Q-Learning and Sarsa learn to predict the utility of

each action in different situations, but they do not learn the effects of actions. In con-

trast, model-based (or model-learning) methods, such as Dyna-Q [Sutton and Barto,

1998], PEGASUS [Ng and Jordan, 2000], R-max [Brafman and Tennenholtz, 2002],
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and Fitted R-max [Jong and Stone, 2007], use their experience to learn an internal

model of how the actions affect the agent and its environment, an approach empiri-

cally shown to often be more sample efficient. Such a model can be used in conjunc-

tion with dynamic programming [Bellman, 1957] to perform off-line planning, often

enabling performance superior to model-free methods because better performance

can be achieved with fewer environmental samples. Building these models may be

computationally intensive, but using CPU cycles to reduce data collection time is a

highly favorable tradeoff in many domains, such as in physically embodied agents.

In order to further reduce sample complexity, this section introduces Transferring

Instances for Model-Based REinforcement Learning (timbrel), a novel approach

to combining TL with model-based RL.

The key insight behind timbrel is that data gathered in a source task can

be used to build beneficial models in a target task. Data is first recorded in a

source task, transformed so that it applies to a target task, and then used by the

target task learner as it builds its model. In this section we utilize Fitted R-max,

an instance based model-learning algorithm, and show how timbrel can help learn

a target task model by using source task data. timbrel combines the benefits of

transfer with those of model-based learning to reduce sample complexity. We fully

implement and test our method in a set of Mountain Car tasks, demonstrating that

transfer can significantly reduce the sample complexity of learning.

In principle, the core timbrel algorithm (Section 6.1) could be used with

multiple instance-based model-learning algorithms, but we leave such extensions

to future work. Compact, parameterized models can also be learned by some RL

methods; it should be possible to transfer such a model (such as a regression model)

directly between tasks, but timbrel does not directly address this. The experi-

ments use timbrel by applying it to Fitted R-max (detailed in Section 6.1.2), as

it can both learn in continuous state spaces and has had significant empirical suc-
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cess [Jong and Stone, 2007]. Results demonstrate that timbrel works in continuous

state spaces, as well as between tasks with different state variables and action spaces.

6.1.1 Model Transfer

This section provides an overview of timbrel. In order to transfer a model, our

method takes the novel approach of transferring observed instances from the source

task. The tuples, in the form (s, a, r, s′), describe experience the source task agent

gathered while interacting with its environment. One advantage of this approach,

compared to transferring an action-value function or a full environmental model

(e.g., the transition function), is that the source task agent is not tied to a particular

learning algorithm or representation: whatever RL algorithm that learns in the

target task will necessarily have to interact with the task and collect experience.

This flexibility allows a source task algorithm to be selected based on characteristics

of the task, rather than on demands of the transfer algorithm.

To translate a source task tuple into an appropriate target task tuple we again

utilize inter-task mappings. When learning in the target task, timbrel specifies

when to use source task instances to help construct a model of the target task.

Briefly, when insufficient target task data exists to estimate the effect of a particular

(x, a) pair, instances from the source task are transformed via an inter-task mapping,

and are then treated as a previously observed transition in the target task model.

The timbrel method is summarized in Algorithm 10.

Notice that timbrel performs the translation of data from the source task

to the target task (line 10) on-line while learning the target task. In Section 6.1.2

we detail how the current state x that is being approximated will affect how the

source task sample is translated in our particular task domain. By only transferring

instances that will be immediately used in the target task, the amount of computa-

tion needed is limited. Furthermore, this method minimizes the number of source
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Algorithm 10 TIMBREL

1: Learn in the source task, recording (s, a, r, s′) transitions.
2: Provide recorded transitions to the target task agent.
3: while training in the target task do
4: if the model-based RL algorithm is unable to accurately estimate some T (x, a) or

R(x, a) then
5: while T (x, a) or R(x, a) does not have sufficient data do
6: Locate 1 or more saved instances that, according to the inter-task mappings, are

near the current x, a to be estimated.
7: if no such unused source task instances exist then
8: exit the inner while loop
9: Use x, a, the saved source task instance, and the inter-task mappings to translate

the saved instance into one appropriate to the target task.
10: Add the transformed instance to the current model for x, a.

instances that must be reasoned over in the target task model by only transferring

necessary source task data.

6.1.2 Implementing TIMBREL in Mountain Car

In this section we detail how timbrel is used to transfer between tasks in the

Mountain Car domain when using Fitted R-max as the base RL algorithm. The

core result of using timbrel in this dissertation is to demonstrate transfer between

the Low Power 2D Mountain Car task and the Low Power 3D Mountain Car task.

Experiments are summarized in Table 6.1. After learning the 2D task, timbrel

must be provided an inter-task mapping between the two tasks. We use the same

inter-task mappings for Mountain Car as when testing Q-Value Reuse (see Sec-

tion 5.1.1 and Table 5.2). Note that the state variable mapping is defined so that

either the target task state variables (x and ẋ) or (y and ẏ) are mapped into the

source task. As we will discuss, the unmapped target task state variables are set by

the state variables’ values in the state x that we wish to approximate.

As discussed in Section 2.3.3, Fitted R-max approximates transitions from

a set of sample states x ∈ X for all actions. When the agent initially encounters

the target task, no target task instances are available to approximate T . Without
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Method Name: timbrel

Scenario: This TL method is applicable whenever the target task agent uses
instance-based RL. The source task agent may use any RL method, but in our
experiments we learn with Fitted R-max in both the source task and target task.

Source Task Target Task Function Approximator Section

Low Power 2D Low Power 3D
Instances 6.1.3

Mountain Car Mountain Car

High Power 2D Low Power 3D
Instances 6.1.3

Mountain Car Mountain Car

No Goal 2D Low Power 3D
Instances 6.1.3

Mountain Car Mountain Car

Table 6.1: This table summarizes the timbrel experiments in this section of the
dissertation.

transfer, Fitted R-max would be unable to approximate T (xtarget, atarget) for any

x and would set the value of Q(starget, atarget) to an optimistic value (Rmax) to

encourage exploration. Instead, timbrel is used to transfer instances from the

source task to help approximate T (xtarget, atarget).

timbrel is given a set of source task instances and inter-task mappings as

inputs, and must construct one or more target task tuples, (starget, atarget, r, s
′
target),

to help approximate T (xtarget, atarget). The goal of transfer is to find some source

task tuple (ssource, asource, r, s
′
source) where asource = χA(atarget) and ssource is “near”

χX(starget) (line 6 in Algorithm 10). Once we identify such a source task tuple, we

can then use χ−1 to convert the tuple into a transition appropriate for the target

task (line 9), and add it to the data approximating T (line 10).

As an illustrative example, consider the case when the agent wants to ap-

proximate T (xtarget, atarget), where

xtarget = 〈xtarget, ytarget, ẋtarget, ẏtarget〉 = 〈−0.6,−0.2, 0, 0.1〉

and atarget = East. timbrel considers source task transitions that contain the
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action Right (i.e., χA(East)). χS is defined so that either the x or y state variables

can be mapped from the target task to the source task, which means that we should

consider two transitions selected from the source task instances. The first tuple is

selected to minimize the Euclidean distances

√

(xtarget − xsource)2 − (ẋtarget − ẋsource)2,

where each state variable is scaled by its range. The second tuple is chosen to

minimize
√

(ytarget − xsource)2 − (ẏtarget − ẋsource)2.

Continuing the example, suppose that the first source task tuple selected was

(〈−0.61, 0.01〉,Right,−1, 〈−0.59, 0.02〉).

If the inter-task mapping defined mappings for the x and y state variables simulta-

neously, the inverse inter-task mapping could be used to convert the tuple into

(〈−0.61,−0.61, 0.01, 0.01〉, East,−1, 〈−0.59,−0.59, 0.02, 0.02〉).

However, this point is not near the current xtarget we wish to approximate. Instead,

we recognize that this sample was selected from the source task to be near to xtarget

and ẋtarget, and transform the tuple, assuming that ytarget and ẏtarget are kept

constant. With this assumption, we form the target task tuple

(〈−0.61, ytarget, 0.01, ẏtarget〉, East,−1, 〈−0.59, ytarget, 0.2, ẏtarget〉) =

(〈−0.61,−0.2, 0.01, 0〉, East,−1, 〈−0.59,−0.2, 0.02, 0〉).

The analogous step is then performed for the second selected source task tuple; we
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transform the source task tuple with χ while assuming that xtarget and ẋtarget are

held constant. Finally, both transferred instances are added to the approximation

of T (x, a).

timbrel thus transfers pairs of source task instances to help approximate the

transition function. Other model-learning methods may need constructed trajecto-

ries instead of individual instances, but timbrel is able to generate trajectories as

well. Over time, the learner will approximate T (xtarget, atarget) for different values

of (x, a) in order to construct a model for the target task environment. Any model

produced via this transfer may be incorrect, depending on how representative the

saved source task instances are of the target task (as modified by χ). However, our

experiments demonstrate that using transferred data may allow a model learner to

produce a model that is more accurate than if the source data were ignored.

As discussed in Section 2.3.3, Fitted R-max uses the distance between in-

stances and x to calculate instance weights. When an instance is used to approx-

imate x, that instance’s weight is added to the total weight of the approximation.

If the total weight for an approximation does not reach a threshold value of 1.0,

an optimistic value (Rmax) is used because not enough data exists for an accurate

approximation. When using timbrel, the same calculation is performed, but now

instances from both the source task and target task can be used.

As the agent interacts with the target task, more transitions are recorded

and the approximations of the transition function at different (x, a) pairs need to

be recalculated based on the new information. Each time an approximation needs

to be recomputed, Fitted R-max first attempts to use only target task data. If the

number of instances available (where instances are weighted by their distance from

x) does not exceed the total weight threshold, source task data is transferred to

allow an approximation of T (xtarget, atarget). This process is equivalent to removing

transferred source task data from the model as more target task data is observed,
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allowing the model’s accuracy to improve over time. Again, if the total weight from

source task and target tasks instances for an approximated x does not reach 1.0,

Rmax is assigned to the model as the reward for reaching x.

As a final implementation note, consider what happens when some x maps to

an ssource that is not near any experienced source task data. If there are no source

task transitions near ssource, it is possible that using all available source task data

will not produce an accurate approximation (recall that instance weights are pro-

portional to the square of the distance from the instance to x). To avoid a significant

increase in computation complexity with limited improvement in approximating T ,

we imposed a limit of 20 source task tuples when approximating a particular point

(line 5). This threshold serves a similar purpose as the 10% cumulative weight

threshold (the “minimum fraction” parameter) discussed in Section 2.3.3.

6.1.3 TIMBREL Transfer Experiments

In order to test the efficacy of transfer, first we conducted an experiment to mea-

sure the learning speed of Fitted R-max in the Mountain Car domain both with

and without timbrel. Roughly 50 different sets of Fitted R-max parameters were

used in preliminary experiments to select the best settings for learning the 3D task

without transfer (as discussed in Section 2.3.3). We ran 12 trials for 4,000 episodes

and found that 10 out of 12 trials were able to converge to a policy that found the

goal area. Recall that Fitted R-max is not guaranteed to converge to an optimal

policy because it depends on approximation in a continuous state space.

To transfer from the Low Power 2D Mountain Car task into the more complex

Low Power 3D Mountain Car, we first allow 12 Fitted R-max agents to train for

100 episodes each in the 2D task while recording all observed (s, a, r, s′) transitions.1

1We experimented with roughly 10 different parameter settings for Fitted R-max in the Low
Power 2D task. Every episode lasts 500 time steps if the goal is not found and the 2D goal state
can be reached in roughly 150 time steps. When learning Low Power 2D Mountain Car, the agent
experienced an average of 24,480 source task transitions during the 100 source task episodes.
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We then used timbrel to train agents in the target task for 1,000 episodes. 12 out

of 12 trials converged to a policy that found the goal area.

After learning, we averaged over all non-transfer and transfer learning trials.

For clarity, we also smoothed the curves by averaging over a 10 episode window.

Figure 6.1(a) shows the first 1000 episodes of training (running the experiments

longer than 1,000 episodes did not significantly improve the policy, as suggested by

Figure 3.6). Student’s t-tests determined that all the differences in the averages were

statistically significant (p < 0.05), with the exception of the first data point (episode

9). This result confirms that transfer can significantly improve the performance of

agents in the 3D Mountain Car task.

We hypothesize that the U-shaped transfer learning curve is caused by a

group of agents that find an initial path to the goal, spend some number of episodes

exploring to find a faster path to the goal, and ultimately return to the original policy

(see Figure 6.1(b)). In addition to improved initial performance, the asymptotic

performance is improved, in part because some of the non-transfer tasks failed to

successfully locate the goal. The difference in success rates (10 of 12 trials reaching

the goal vs. 12 of 12) suggests that transfer may make difficult problems more

tractable.

timbrel, and its implementation, were designed to minimize sample com-

plexity. However, it is worth noting that there is a significant difference in the

computational complexity of the transfer and non-transfer methods. Every time

the transfer agent needs to use source task data to estimate T , it must locate the

most relevant data and then insert it into the model. Additionally, the transfer agent

has much more data available initially and adding additional data to the model is

significantly slower than the non-transfer agent. These factors cause the transfer

learning trials to take roughly twice as much wall clock time as the non-transfer

trials. While further code optimizations could be added, using the additional trans-
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Figure 6.1: (a) timbrel significantly improves the speed of Fitted R-max on the
3D Mountain Car task. The average performance is plotted every 10 episodes along
with the standard error. (b) Two example Fitted R-max learning curves show that
the on-line performance can vary significantly, sometimes resulting in a U-shaped
learning curve, visible in (a) when multiple trials are averaged.

ferred data will always slow down the agent’s computation, relative to an agent that

is not using transfer, but executes the same number of actions.

Our second experiment examines how the amount of recorded source task

data affects transfer. One hypothesis was that more tuples in the source task would

equate to higher performance in the target task, because the target task agent would

have more data to draw from, and thus would be better able to approximate any

given T (x, a).

Our second experiment trained source task agents in the Low Power 2D

task for 5, 10, and 20 episodes. Figure 6.2 shows that transfer from 20 source task

episodes is similar to using 100 source task episodes and performs statistically better

than no transfer at the 95% level for 98 of the 100 points graphed. While transfer

performance degrades for trials that use 10 and 5 source task episodes, both trials

do show a statistically significant boost to the agents’ initial learning performance.

This result demonstrates that a significant amount of information can be learned

in just a few source task episodes; the source task is less complex than the target
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Figure 6.2: This graph shows the effect of different amounts of source task training.
Each learning curve is the average of 12 independent trials.

task and thus a short amount of time spent learning in the source may have a large

impact on the target task performance.

Recall the Mountain Car has a reward of −1 on each time step. The agent

learns to reach the goal area because transitioning into this area ends the episode

and the steady stream of negative reward. The third experiment uses the No Goal

2D task (introduced in Section 3.1.1) as a source task to examine how changing

the reward function in the source task affects transfer. When training in the source

task, every episode lasted 500 time steps (the maximum number of steps). After

learning for 100 episodes in the source task, we transferred into the target task

and found that 9 of the 12 trials successfully discovered policies to reach the goal

area. Figure 6.3 suggests that transfer from a source task policy with a different
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reward structure can be initially useful (t-tests confirm that transfer outperforms

non-transfer for four of the first five points graphed), but the relative performance

of the non-transfer trials soon outperform that of learning with transfer.

Our fourth experiment uses the High Power 2D task as a source task. We

again record 100 episodes worth of data with source task learners and use timbrel

to transfer into Low Power 3D Mountain Car. However, because the source task

uses a car with a motor more than twice as powerful as in the 3D task, the tran-

sition function learned in the source task is less useful to the agent in the target

task than when transferring from the Low Power 2D task. 9 of the 12 target task

trials successfully converged to a policy that reached the goal. Figure 6.3 shows

that the average performance of a transfer learner using the High Power 2D task

as a source performs worse than when transferring from the Low Power 2D task

(shown in Figures 6.1(a) and 6.2). Although t-tests show that there is a statistically

significant improvement at the beginning of learning, the transfer and non-transfer

curves quickly become statistically indistinct with more target task training.

Figure 6.3 highlights an important drawback of transfer learning. Transfer

efficacy is often affected by the similarity of source tasks and target tasks, and in

some circumstances transfer may not help the learner. Indeed, if T or R in the

source and target tasks are too dissimilar, transfer may actually cause the learner to

learn more slowly than if it had not used transfer. While there is not yet a general

solution to avoiding negative transfer, other recent results (Section 7.2) suggest that

the “relatedness” of tasks may be measured empirically, and may guide learners

when deciding whether or not to transfer.

6.1.4 TIMBREL Summary

This section has introduced timbrel, a transfer method compatible with model-

based reinforcement learning. We demonstrate that when learning 3D Mountain
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Figure 6.3: Transfer from a 2D Mountain Car task that has no goal state or from
a 2D Mountain Car with significantly stronger acceleration produces statistically
significant improvements at the beginning of learning when compare to learning
without transfer. However, this relative advantage is lost as agents in the target
Low Power 3D task gain more experience.

Car with Fitted R-max, timbrel can significantly reduce the sample complexity.

Furthermore, experiments demonstrate how transfer is affected by changes to the

learned source task’s reward and transfer functions as they become less similar to

the target task’s reward and transfer functions.

6.2 Transfer via Rules

This section introduces Rule Transfer, a novel domain-independent RL transfer

method. Similar to timbrel, Rule Transfer records instance in a source task to

learn a target task faster. However, rather than transferring the instance directly,
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we first learn production rules (henceforth rules) to summarize the source task

policy. Rule Transfer then uses inter-task mappings to transform the rules so that

they can apply to the target task, even when the target task agent has a different

internal representation from the source task agent. Thus one agent may train very

quickly with a simple internal representation in the source task, but a second, more

complex agent in the target task can still benefit from transfer.

After the Rule Transfer algorithm is described, Section 6.2.1 evaluates three

different possible rule utilization schemes for Rule Transfer in Keepaway. We then

empirically show that cross-domain transfer can effectively improve the speed of

learning on tasks drawn from different domains in Section 6.2.2 (namely, transfer

from Ringworld to Keepaway and from Knight Joust to Keepaway). The last ex-

periment (Section 6.2.3) uses Rule Transfer to learn 4 vs. 3 Keepaway using rules

learned in 3 vs. 2 Keepaway. Section 6.2.4 concludes the discussion of Rule Transfer.

Figure 6.4 and the following list of steps describe Rule Transfer:

1. Learn a policy (π : S 7→ A) in the source task. After training has

finished, or during the final training episodes, the agent records some number

of interactions with the environment in the form of (s, a) pairs while following

the learned policy.

2. Learn a decision list (Ds : S 7→ A) that summarizes the source policy.

After the data is collected, a rule learner is used to summarize s, a pairs. These

rules can be directly used to control a source task agent with approximately

the same policy as was learned in the source task.

3. Modify the decision list for use in the the target task (Translate(Ds)→

Dt). To allow the learned decision list to be applied by an agent in a target

task (that has different state variables and actions from the source task), the

decision list must be translated with inter-task mappings before it can be used.
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Figure 6.4: Rule Transfer has four main steps. First, after learning, the source
task agent saves a number of experienced instances. Second, propositional rules are
learned to summarize saved source task instances. Third, the rules are transformed
via inter-task mappings. Fourth, the rules are used in the target task to speed up
learning.

4. Use Dt to learn a policy in the target task. Section 6.2.1 discusses

three different ways to use the transferred rules in the target task to improve

learning.

The primary difference between this transfer method and previous TL meth-

ods in this dissertation is that we leverage rules to provide an abstract representation

of a source task policy that is usable in the target task. We choose rules for this

representation because rule learning is fast and well understood, and the produced

rules are human readable. By using rules as an intermediate representation, we de-

couple the particular learning techniques used in the two tasks. Other intermediate

representations, such as neural networks, are possible in principle. As long as rules

may be abstracted from the source agent’s behavior and leveraged by the target

agent, agents in the two tasks may use different internal representations, as best
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Method Name: Rule Transfer

Scenario: Rule Transfer is applicable when the target task agent uses value
function learning. Rules allow agents to transfer between different RL
algorithms and function approximators. All experiments use Sarsa in the
source task and in the target task.

Source Task Target Task Function Approximator Section

3 vs. 2 3 vs. 2
RBF 6.2.1

Keepaway Keepaway

Ringworld
3 vs. 2

Tabular and RBF 6.2.2
Keepaway

Knight Joust
3 vs. 2

Tabular and RBF 6.2.2
Keepaway

Knight Joust
4 vs. 3

Tabular and CMAC 6.2.2
Keepaway

3 vs. 2 4 vs. 3
CMAC 6.2.3

Keepaway Keepaway

Table 6.2: This table summarizes the Rule Transfer experiments in this section of
the dissertation.

suits their particular task.

Rule Transfer experiments are summarized in Table 6.2.

6.2.1 Rule Utilization Schemes

If the target task has different state variables or actions than the source task, or they

have different semantic meanings in the two tasks, an agent could not directly apply

a learned decision list from the source task because the preconditions for the rules

and/or actions recommended would be inapplicable. The function Translate()

(step #3 above) procedurally modifies the source task decision list via inter-task

mappings so that it can apply to a given target task. If source task state variables

or actions had no correspondence in the target task (i.e., only partial inter-task

mappings existed), the affected preconditions or rules would be removed from the

translated decision list.
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If the production rules were strictly followed by the target task agent, the

agent may receive an initial benefit, relative to not using transfer. However, no

learning would be possible unless the agent could deviate from the transferred rules.

To make Rule Transfer effective, we thus treat the translated decision list as advice.

The agent may receive an initial jumpstart by strictly following the decision list,

but then should refine its policy as it gathers more experience in the target task.

This section introduces three advice utilization schemes (summarized in Figure 6.5).

The first method applies only if the target task learner is using a value-function

approximation method, but the second and third may be used in conjunction with

other RL learning methods, possibly with minor modifications.

The Value Bonus rule utilization scheme uses the transferred decision list,

Dt, to determine which target task action the decision list would recommend in

the current state. The computed Q-value of this recommended action then receives

a “bonus” so that it is increased by some constant (which is set empirically, as

described in the next section). Actions recommended by Dt are initially more likely

to be selected, but the bonus can be overridden through learning. Note that this

scheme is similar to adding a shaping reward to actions selected by the translated

decision list.

Extra Action adds an action to the target task. When the target task agent

selects this pseudo-action, the agent executes the action recommended by Dt in

the “true” MDP. The learner treats this pseudo-action no differently than other

actions when learning. To bias the learner towards this action, the agent is forced

to execute the pseudo-action for a constant number of episodes at the beginning of

training in the target task. Afterward (assuming the agent does not use optimistic

initialization) the pseudo-action will have higher Q-values than all other actions,

which causes the agent to initially perform recommended actions. Over time the

agent can learn to override this bias. For instance, in regions of the state space in
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Figure 6.5: This figure shows the three different rule utilization schemes described
in the text by using an example MDP with two state variables and 3 actions. At
top are hypothetical Q-values in a state s when the transferred rules are ignored.
Suppose that a transferred decision list suggested that action a2 should be taken.
Value Bonus adds some constant to the action-value of action a2. Extra Action adds
an extra action, a4, to the MDP. If the agent chooses this action, it will execute the
action suggested by the decision list (which is a2 in this example). Extra Variable
adds a state variable, x3, which takes on the action index suggested by the decision
list (which would make x3 = 2 in this example because action 2 is suggested).

which the advice is appropriate, the agent will learn to select the pseudo-action,

while in other regions of the state space where the advice is non-optimal, the agent

must learn to intelligently choose between all the actions.

Extra Variable adds an extra state variable to the target task’s state descrip-

tion, creating an augmented MDP, different from that created by the Extra Action

method. The extra variable takes on the value of the index for the action recom-

mended by Dt. To assist the agent in learning the importance of this variable, we

again initially force the agent to choose the action recommended by Dt. An agent

quickly learns the importance of this state variable, but it can still learn to ignore

the state variable when the advice is sub-optimal.
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Testing Rule Utilization in Keepaway

To determine reasonable settings for the different rule utilization methods outlined

in Section 6.2.1, we analyze Rule Transfer by using 25m × 25m 3 vs. 2 Keepaway

as the source and target task.2 We first train in 3 vs. 2 for five simulator hours

(roughly 1,300 episodes). Next, JRip, an implementation of RIPPER [Cohen, 1995]

included in Weka [Witten and Frank, 2005], learns a decision list summarizing the

source task policy.3 Lastly, we utilize the decision list in a new instance of Keepaway.

Figure 6.6 shows the performance averaged over 10 learning trials for learning

without transfer with a 1000 episode sliding window. A second learning curve shows

the performance when always utilizing the rules (“Always Use Rules”). Additionally,

the three rule utilization methods are shown. Table 6.3 details the results, which

show that while transfer is affected by the relevant rule utilization parameters, each

rule utilization method has a wide range of effective parameters. All three methods

significantly improve the three measured TL metrics.

6.2.2 Cross-Domain Rule Transfer Results

As discussed earlier in Section 4.3.4, cross-domain transfer has been a long-term goal

of transfer learning because it could allow transfer between significantly less similar

tasks. While the majority of transfer work has focused on reducing training time

by transferring from a simple to complex task in a single domain, a (potentially)

more powerful way of simplifying a task is to formulate it as an abstraction in a

different domain. In this section we show that source tasks drawn from the gridworld

domain can significantly improve learning in Keepaway, even though learning in the

gridworld tasks take orders of magnitude less wall clock time than learning Keepaway

2In practice, this would not be a useful TL procedure in and of itself. By transferring from a
task into the same task, we are able to better study possible parameter settings.

3RIPPER is a simple propositional rule learner that can learn a decision list. If additional
representational power were needed, an ILP rule learner like Aleph [Srinivasan, 2001] could be
used, but we found the additional complexity unnecessary.

164



Rule Transfer from 3 vs. 2 Keepaway to 3 vs. 2 Keepaway
Initial Asymptotic Accumulated

Performance Performance Reward

No Transfer 7.0 ± 0.7 19.4 ± 2.0 688.4 ± 68.7

Value Bonus: Added Constant

1 12.3 ± 1.7 17.1 ± 1.7 630.1 ± 61.3
5 12.7 ± 1.9 18.2 ± 1.8 666.0 ± 66.4
10 13.0 ± 1.8 18.4 ± 2.2 686.4 ± 77.5
20 12.6 ± 1.7 16.6 ± 1.7 611.9 ± 65.3
50 12.8 ± 1.9 13.9 ± 1.9 534.2 ± 73.8

Extra Action: Initial Episodes

0 7.6 ± 1.7 19.0 ± 2.1 648.2 ± 72.1
50 13.8 ± 2.1 18.3 ± 2.0 676.1 ± 75.4
100 14.0 ± 2.4 18.5 ± 2.0 688.2 ± 75.7
250 13.9 ± 2.3 18.4 ± 1.9 675.3 ± 69.0
500 13.7 ± 2.2 18.1 ± 1.9 678.8 ± 72.2
1000 13.4 ± 2.0 17.9 ± 2.1 648.2 ± 72.1

Extra Variable: Initial Episodes

0 7.0 ± 0.7 20.0 ± 2.0 691.4 ± 68.8
50 13.6 ± 2.0 19.9 ± 2.0 715.9 ± 70.2
100 14.0 ± 2.3 20.1 ± 2.1 726.0 ± 72.4
250 13.7 ± 2.1 19.9 ± 2.1 717.6 ± 74.6
500 13.6 ± 2.2 20.2 ± 2.0 729.2 ± 73.8
1000 13.7 ± 2.4 17.4 ± 6.3 637.4 ± 207.6

Table 6.3: Results compare three different rule utilization schemes where each row
represents 10 independent tests. The three TL metrics are shown in columns 2–4.
Initial Performance and Asymptotic Performance are measured in simulator seconds.
Accumulated Reward shows the total reward accumulated by a particular trial at
every hour:

∑40
t=0(average reward at time t). The first column contains the constant

added to the recommended action in Value Bonus, or the number of episodes the
agent is initially forced to select the recommended action for Extra Action and Extra
Variable. The settings for each of the rule utilization schemes that produced the
highest accumulated reward are in bold.
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Figure 6.6: This graph shows the average of 10 independent learning trials for learn-
ing without transfer and for using rules after learning for five simulator hours (the
source task learning time is not shown): without further learning, with a Value
Bonus of +10, with Extra Action after 100 episodes, and with Extra Variable af-
ter 100 episodes. Learning without transfer and using rules without learning have
standard error bars in 5 hour increments (which are not shown on all lines for visual
clarity). These results were collected using version 0.6 of the Keepaway benchmark
players.

tasks.

In the previous section we determined appropriate advice utilization settings

via three transfer metrics. In this section we apply those same settings while using

Ringworld and Knight Joust as source tasks and Keepaway as the target. This

section demonstrates that transfer from Ringworld is able to significantly improve

all three transfer metrics, that the Rule Transfer settings are not particularly brittle

when transferring from Ringworld, and that transfer from Knight Joust is able

to significantly improve jumpstart in Keepaway, even though the tasks are quite
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different. As discussed in Section 3.4, Ringworld is a fully observable task with a

discrete state space and stochastic actions. Knight Joust (Section 3.5), is a fully

observable task with a discrete state space and deterministic player actions. In

contrast, Keepaway is partially observable, has a continuous state space, stochastic

actions, and has multiple learning agents.

Rule Transfer: Ringworld to 3 vs. 2 Keepaway

In this section we first detail how Rule Transfer between Ringworld and 25m× 25m

3 vs. 2 Keepaway was performed. We then compare the results from using the three

different advice utilization schemes and show that Extra Action is superior. Lastly,

we perform a set of experiments to show that Rule Transfer, while it has multiple

parameters, is not particularly sensitive to these parameters’ settings.

Agents learn for 25,000 episodes in Ringworld and then record 20,000 (s, a)

pairs, which takes less than 1,000 episodes. After JRip learns a decision list, the

rules are transformed via Translate() and the inter-task mappings (Table 6.4).

Lastly, the decision list is utilized to learn Keepaway.

Table 6.5 shows one of the main results of this section: all three rule uti-

lization methods can significantly increase all three transfer metrics. Furthermore,

the asymptotic performance is not adversely affected by Rule Transfer for the best

parameter settings when compared to learning without transfer. We conclude that

the advice, provided as rules to the learner, can be successfully augmented over

time to improve performance. Further, these results show that the Extra Action

rule utilization method is slightly superior to the other two methods, and confirm

that cross-domain transfer can be effective at increasing the speed of learning in

Keepaway. Figure 6.8 shows learning in Keepaway without transfer and when using

Extra Action Rule Transfer from Ringworld.

Note that in this study we ran all Keepaway experiments for 40 simulator
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Inter-Task Mappings for Keepaway to Ringworld
Keepaway Ringworld

χ
A

Hold Ball Stay
Pass1: Pass to K2 RunNear

Pass2: Pass to K3 RunFar

χ
X

dist(K1, T1) dist(P,O)
dist(K1,K2) dist(P, Target1)
Min(dist(K2, T1), dist(K2, T2)) dist(Target1, O)
Min(ang(K2,K1, T1) ang(O,P, Target1)
ang(K2,K1, T2))

dist(K1,K3) dist(P, Target2)
Min(dist(K3, T1), dist(K3, T2)) dist(Target2, O)
Min(ang(K3,K1, T1), ang(O,P, Target2)
ang(K3,K1, T2))

Table 6.4: This table describes the inter-task mappings from 3 vs. 2 Keepaway to
Ringworld. These two mappings are used by Translate() to modify a decision list
learned in Ringworld so that it can apply to Keepaway.

Rule Transfer: Ringworld to 3 vs. 2 Keepaway
Initial Asymptotic Accumulated

Performance Performance Reward

Without Transfer
7.8 ± 0.1 21.6 ± 0.8 756.7 ± 21.8

Added
Constant Value Bonus

5 11.1 ± 1.4 19.8 ± 0.6 722.3 ± 24.3
10 11.5 ± 1.7 22.2 ± 0.8 813.7 ± 23.6

Initial
Episodes Extra Action

100 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
250 11.8 ± 1.9 23.0 ± 0.8 827.4 ± 33.0

Initial
Episodes Extra Variable

100 11.8 ± 1.9 21.9 ± 0.9 784.8 ± 27.0
250 11.7 ± 1.8 22.4 ± 0.8 793.5 ± 22.2

Table 6.5: A comparison of three rule utilization schemes to learning Keepaway
without transfer. Each row is the average of 20 independent trials and shows the
standard error (note that the top row uses the same settings as learning without
transfer in Table 6.3 but with more trials). Numbers in bold are statistically better
than learning without transfer at the 95% level, as determined via a Student’s t-test.
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hours. However, in informal experiments, it appeared that learning continued to

improve policies after 40 hours (albeit slowly). Although the term “Final Perfor-

mance” may be more appropriate, we use “Asymptotic Performance,” and note that

our metrics are only approximate. Given that many learning methods and function

approximators are not guaranteed to converge, the Asymptotic Performance metric

will often be an approximation.

As an example of the type of knowledge transferred from Ringworld to Keep-

away, consider the transformed rule in Figure 6.7 as observed in one trial. This rule

demonstrates that the agent has learned that it should pass if a taker is close, there

is not a taker very close to the target teammate, and the passing angle indicates

that the teammate is open.

To further investigate the robustness of transfer from Ringworld to Keep-

away, we perform a series of additional studies, as shown in Table 6.6, to determine

the sensitivity of Rule Transfer to various parameter settings. First we try learning

for different amounts of time in Ringworld. When reducing the number of source

task learning episodes to 20,000, the Ringworld agent has not yet plateaued; it is

not surprising that the initial performance in Keepaway is slightly reduced (rela-

tive to learning for 25,000 episodes). Learning more after the Ringworld learner

has plateaued (i.e., for 30,000 episodes) does not hurt performance. When using

different ring diameters in Ringworld, the source task becomes less similar to 3 vs.

2 Keepaway, but all diameters do successfully improve one or more transfer metrics

relative to learning without transfer.

We also performed experiments that examined the robustness of rule learning

for transfer. In the first experiment we recorded different amounts of Ringworld data;

less data would force more generalization while more data may cause overfitting.

The last sensitivity analysis varied the parameters of JRip, again showing that

the performance of the 4 metrics is not particularly sensitive to the rule learning
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IF ((dist(K1,T1) <= 4) AND
(Min(dist(K3, T1), dist(K3, T2)) >= 12.8) AND
(ang(K3,K1, T ) >= 36))
THEN Pass to K3

Figure 6.7: An example transformed rule from Ringworld that would be difficult for
a human to generate from domain knowledge alone.

settings, as they all outperform learning without transfer. The JRip parameter N

is the minimum number of instances a rule must cover (JRip default = 2) and O is

the number of optimization runs to increase generality (JRip default = 2). Thus,

while there are a number of parameters tuned during Rule Transfer, the parameters

proved easy to set in practice and were not critical to the method’s success.

Rule Transfer: Knight Joust to Keepaway

In this section we present the results for transferring from Knight Joust to Keepaway

using the inter-task mappings in Table 6.7.4 Briefly, the intuition for these mappings

is that the forward action is similar to the hold ball action because the player

should take it whenever practical (i.e., executing the action does not soon end the

episode). Note that the we have made West in the Knight Joust correspond to K2

and East correspond to K3, but either is reasonable, as long as the state variables

and actions are consistent. When it is “too dangerous,” the player instead jumps

to the West or East, similar to passing the ball to K2 or K3. We first train the

Knight Joust players for 50,000 episodes, as initial experiments showed that learners

generally stopped learning after roughly this many episodes. The advice is utilized

by Extra Action Rule Transfer in Keepaway (informal experiments showed that

4As mentioned in Section 3.5, the Knight Joust task in this set of experiments uses an older
version of the task than was used for Value Function Transfer. In this task formulation, the rewards
are +20 for taking the forward action, +20 for reaching the goal line, and +0 for any other action.
In the Value Function Transfer experiments (Section 4.3.4) the rewards were +5, +50, and +0,
respectively.
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Ringworld Sensitivity Analysis
Param Initial Asymptotic Accumulated

Performance Performance Reward

Learning Without Transfer
7.8 ± 0.1 21.6 ± 0.8 756.7 ± 21.8

Episodes of Ringworld Training before Recording Data
20,000 10.1 ± 1.7 21.8 ± 1.3 762.5 ± 44.1
25,000 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
30,000 12.0 ± 1.7 20.7 ± 5.0 793.9 ± 47.8

Ringworld’s Ring Diameter (m)
7.5 14.8 ± 2.4 20.0 ± 1.5 748.2 ± 53.6
8.5 13.5 ± 1.5 21.1 ± 1.2 776.8 ± 45.2
9.5 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
10.5 9.4 ± 1.0 21.5 ± 1.3 757.7 ± 42.4
11.5 8.2 ± 1.3 20.1 ± 1.6 705.0 ± 41.6

Amount of recorded Ringworld Data
5,000 12.2 ± 1.2 20.6 ± 4.9 765.1 ± 59.4

20,000 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
40,000 11.2 ± 1.3 21.4 ± 1.3 776.4 ± 46.6

JRip Settings
N=2, O=2 13.7 ± 1.7 20.9 ± 1.3 767.3 ± 44.3

N=100, O=2 10.7 ± 1.5 21.6 ± 1.2 784.3 ± 49.9
N=100, O=10 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9

N=2, O=10 14.0 ± 1.8 20.9 ± 1.3 763.3 ± 44.7

Table 6.6: This table shows Ringworld transfer with Extra Action rule usage after
forcing the action advised by Dt for 100 episodes. The settings used previously
(in Table 6.5) are shown in bold for comparison, each row is the average over 20
independent trials, and the standard error is shown.

171



Inter-Task Mappings for Keepaway to Knight Joust
Keepaway Knight Joust

χ
A

Hold Ball Forward
Pass to closest keeper JumpWest

Pass to furthest keeper JumpEast

χ
X

dist(K1, T1) dist(P,O)
Min(ang(K2,K1, T1) ang(West)
ang(K2,K1, T2))

Min(ang(K3,K1, T1), ang(East)
ang(K3,K1, T2))

Table 6.7: This table describes the inter-task mapping used by Translate() to
modify a decision list learned in the Knight Joust so that it can apply to Keepaway.
It is very similar to the inter-task mapping introduced earlier in Section 4.3.4, Ta-
ble 4.11, used to transfer from Knight Joust to 4 vs. 3 Keepaway with Value Function
Transfer.

Value Bonus and Extra Variable under-performed Extra Action, as in Ringworld)

and other parameters are unchanged from the previous section. The results from

these experiments are presented in Table 6.8 and Figure 6.8.

The Knight Joust task is less similar to 3 vs. 2 Keepaway than Ringworld is

to 3 vs. 2. There are many fewer state variables, a less similar transition function,

and a very different reward structure. However, information from Knight Joust can

significantly improve the initial performance of Keepaway players because very basic

information, such as that it is desirable to maximize the distance to the opponent,

will initially cause the players to perform better than acting randomly. The other two

measured transfer metrics are not improved by transfer, however. We hypothesize

that this is because the transferred knowledge, while allowing the agents to perform

better than acting randomly, does not bias the learner towards an optimal policy

and thus the rules are less helpful after learning in the target task. In informal

experiments, after 40 hours of training in Keepaway, agents that had transferred

advice from Ringworld were following the advice for 90% of the actions, while agents
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Figure 6.8: Learning curves in 3 vs. 2 Keepaway, averaged over 20 trials, showing
learning without transfer, learning with Extra Action from Ringworld after 100
episodes of following the rule-suggested actions, and learning with Extra Action
from Knight Joust after 100 episodes of following the rule-suggested actions. These
results were collected using version 0.6 of the Keepaway benchmark players.

that transferred advice from Knight Joust were following the advice for only 85%

of the actions, indicating that the Ringworld advice was more useful in Keepaway

than Knight Joust advice.

To attempt to directly compare Value Function Transfer with Rule Transfer,

we also replicated the experiment from Section 4.3.4. Knight Joust5 is first learned

for 50,000 episodes. Value Function Transfer uses ρ and the inter-task mappings

defined in Table 4.11 in Section 4.3.4 to initialize 4 vs. 3 Keepaway learners and

then learns using Sarsa and CMAC function approximation. Rule Transfer uses JRip

to learn rules summarizing the Knight Joust agent’s policy, follow the rules for 100

5To compare with Value Function Transfer, we use rewards of +5 for executing the forward
action and +50 for reaching the goal line.
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Rule Transfer: Knight Joust to 3 vs. 2 Keepaway
Param Initial Asymptotic Accumulated

Performance Performance Reward

Without Transfer

7.8 ± 0.1 21.6 ± 0.8 756.7 ± 21.8

Extra Action

100 13.8 ± 1.1 21.8 ± 1.2 758.5 ± 29.3
250 13.5 ± 0.9 21.6 ± 0.9 747.9 ± 25.3

Table 6.8: Transferring from Knight Joust to Keepaway significantly improves the
initial performance, but the other two metrics are not improved. All results are
averaged over 20 independent trials and the standard error is shown. Numbers in
bold are statistically different from learning without transfer at the 95% level, as
determined via a Student’s t-test.

episodes in 4 vs. 3, and then learn in 4 vs. 3 with the Extra Action utilization scheme.

However, as shown in Figure 6.9, results using Rule Transfer were significantly worse

than using Value Function Transfer or learning without transfer.

When visually examining the initial policies in 4 vs. 3, it appears that the

transferred decision list consistently held the ball too long, causing it to be quickly

lost to the takers. The resulting learning curves suggest that it takes significant

experience to learn to compensate for this initial behavior, and is an example of

negative transfer, which will be discussed further in the future work section of this

dissertation. These results suggest that this version of Knight Joust is unsuitable

for Rule Transfer with a 4 vs. 3 target task, although the action-value function

produced can be used to learn 4 vs. 3 Keepaway. To better compare Rule Transfer

with Value Function transfer, the next section returns to transfer between 3 vs. 2

and 4 vs. 3 Keepaway.

6.2.3 Rule Transfer: 3 vs. 2 Keepaway to 4 vs. 3 Keepaway

In order to directly compare Rule Transfer with Value Function Transfer, we test

both methods on 4 vs. 3 Keepaway using Sarsa learners with CMAC function ap-

proximation. Agents in 3 vs. 2 first train for 1,000 episodes. Value Function Transfer
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Figure 6.9: This graph shows representative learning curves for CMAC Sarsa players
in 4 vs. 3. Transfer from Knight Joust with Value Function Transfer shows significant
improvement over learning without transfer (see Section 4.3.4). However, using
Rule Transfer after learning Knight Joust decreases performance, suggesting that
although the formulation of Knight Joust used for the Value Function Transfer
experiments learns a reasonable action-value function for 4 vs. 3 Keepaway, the
policy learned is not (as an be seen by the negative jumpstart when using Rule
Transfer).

uses the saved action-value function in conjunction with ρCMAC to initialize 4 vs.

3 players. Rule Transfer records 10,0006 actions from the trained 3 vs. 2 players,

forces the players to follow the transferred decision list for 100 episodes, and then

learns in 4 vs. 3 using the Extra Action rule utilization method. Figure 6.10 shows

the target task performance of all three sets of learners.

Rule Transfer has a significant jumpstart over both Value Function Transfer

and No Transfer (p < 0.05). The total reward, calculated as the sum of the average

610,000 actions take roughly 1 simulator hour of source task time, or 300 episodes.
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performance at each hour, is 1016, 991, and 901 for Value Function Transfer, Rule

Transfer, and No Transfer, respectively. While both transfer methods are improve-

ments over not using transfer, Value Function Transfer provides a significant benefit

to the total reward accumulated over Rule Transfer (p < 0.05). This result suggests

that if both Value Function Transfer and Rule Transfer are applicable, Value Func-

tion Transfer should be preferred (unless the initial performance in the target task

were critical).

6.2.4 Rule Transfer Summary

This section of the dissertation has introduced Rule Transfer along with three dif-

ferent advice utilization methods. We conduced experiments to demonstrate that

Rule Transfer is effective for cross-domain transfer, showing that both Ringworld

and Knight Joust could improve learning in 3 vs. 2 Keepaway. The Ringworld task

was constructed directly from data gathered in the target task while the Knight

Joust task was chosen as intuitively related to Keepaway. Additionally, we com-

pare Rule Transfer to Value Function Transfer in Keepaway, showing that although

Rule Transfer can have higher initial performance in the target task, Value Function

Transfer yields higher total reward.

The cross-domain transfer experiments in this section begin to demonstrate

the flexibility of Rule Transfer; unlike TL methods presented in previous chapters,

agents were able to transfer knowledge successfully irrespective of the underlying

function approximator’s representation. This flexibility is particularly noticeable

when learning Ringworld and Knight Joust, as they are simple tasks which can be

learned very quickly with tabular function approximator. Lastly, because rules are

learned that summarize the source task policy, the relative magnitude of the rewards

in the source and target task do not affect transfer, potentially allowing for more

flexibility when selecting pairs of tasks to transfer between.
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Figure 6.10: This graph shows the average performance of CMAC Sarsa players in
4 vs. 3. Both transfer methods are significant improvements over No Transfer. Rule
Transfer has a higher jumpstart than Value Function Transfer, but Value Function
Transfer has a higher total reward. Each curve is averaged over 15 independent
trials and bars show the standard error. These results were collected using version
0.6 of the Keepaway benchmark players.

In the next section we discuss Representation Transfer, a method designed

to be even more flexible than Rule Transfer, in terms of learning methods, function

approximators, and scenarios where it is applicable.

6.3 Representation Transfer

A key component of any RL algorithm is the underlying representation used by

the agent for learning (e.g., its function approximator or learning algorithm). TL

approaches, including those presented thus far in this dissertation, generally assume

that the agent will use a similar (or even the same) representation to learn the target

task as it used to learn the source. However, this assumption may not be necessary
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or desirable. This section considers a different question: is it possible, and desirable,

for agents to use different representations in the target and source? The TL methods

presented thus far can successfully transfer knowledge between different tasks, while

this section defines and provides algorithms for this novel problem of representation

transfer and contrasts it with the more typical task transfer.

The motivation for transferring knowledge between tasks is clear: it may

enable quicker and/or better learning on the target task after having learned on the

source. Our motivations for representation transfer are similar, though perhaps a

bit more subtle.

The first motivation for equipping an agent with the flexibility to learn with

different representations is procedural. Suppose an agent has already trained on

a source task with a certain learning method and function approximator, but the

performance is poor. A different representation could allow the agent to achieve

higher performance. If experience is expensive (e.g., wear on the robot, data collec-

tion time, or cost of poor decisions), it is preferable to leverage the agent’s existing

knowledge to improve learning with the new representation and minimize sample

complexity.

A second motivating factor is learning speed: changing representations part-

way through learning may allow agents to achieve better performance in less time.

SOAR [Laird et al., 1987] can use multiple descriptions of planning problems and

search problems, generated by a human user, for just this reason. We will show in

this section that it is advantageous to change internal representation while learn-

ing in some RL tasks, as opposed to using a fixed representation, to achieve higher

performance more quickly.

The final motivation for representation transfer is human psychological ex-

periments. Agents’ representations are typically fixed when prototyped, but studies

show (c.f. Simon [1975]) that humans may change their representation of a problem
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as they gain more experience in a particular domain. While our system does not al-

low for automatic generation of a learned representation, this method addresses the

necessary first step of being able to transfer knowledge between two representations.

Using multiple representations to solve a problem is not a new idea. For

instance, Kaplan’s production system [Kaplan, 1989] was able to simulate the rep-

resentation shift that humans often undergo when solving the mutilated checker-

board [McCarthy, 1964] problem. Other work [Fink, 1999] used libraries of problem

solving and “problem description improvement” algorithms to automatically change

representations in planning problems. Implicit imitation [Price and Boutilier, 2003]

allows an RL agent to train while watching a mentor with similar actions, but this

method does not directly address internal representation differences. Additionally,

all training is done on-line; agents using imitation do not initially perform better

than learning without transfer. Our method of training offline from saved experi-

ence is more similar to the idea of replayed TD [Mahadevan and Connell, 1991], a

method to improve the rate of learning by reusing experience in a single agent.

None of these methods directly address the problem of transferring knowl-

edge between different representations in an RL setting. By using Representation

Transfer, different representations can be leveraged so that better performance can

be more quickly learned, possibly in conjunction with existing RL speedup methods.

This section’s main contributions are to introduce representation transfer,

to provide a set of algorithms for tackling representation transfer problems, and

to empirically demonstrate the efficacy of these algorithms in Keepaway. In order

to test Representation Transfer, we train on the same tasks with different learning

algorithms, functions approximators, and parameterizations of these function ap-

proximators, and then demonstrate that transferring the learned knowledge among

the representations is both possible and beneficial. Lastly, we show that the al-

gorithms can be used for successful task transfer, underscoring the relatedness of
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representation and task transfer.

In this section we present two algorithms for addressing representation trans-

fer problems, where the source and target representations differ. We define an

agent’s representation as the learning method used, the function approximator used,

and the function approximator’s parameterization.7 As an example, suppose a

source agent uses Q-Learning with a neural network function approximator that

has 20 hidden nodes. The first algorithm, Complexification, is used to:

1. Transfer between different parameterizations (e.g., change to 30 hidden nodes)

The second, Offline Representation Transfer, may be used for:

2. Transfer between different function approximators (e.g., change to a radial

basis function function approximator)

3. Transfer between different learning methods (e.g., change to direct policy

search learning)

4. Transfer between tasks with different actions and state variables (i.e., task

transfer)

We refer to scenarios 1 and 2 as intra-policy-class transfer because the policy repre-

sentation remains constant. Scenario 3 is a type of inter-policy-class transfer, and

Scenario 4 is task transfer, as discussed in all previously introduced TL methods.

The Representation Transfer method encompasses a number of different al-

gorithms, which will be detailed later. However, it is important to remember that all

are similar in that they use knowledge learned in a source representation to improve

learning in a target representation, and that they may be combined with inter-task

mappings.

7It is more common to consider an agent’s representation as the state variables it observes when
interacting with the world and possibly the actions it can execute. In this dissertation we expand
the definition to point out that the learning method used, the function approximator, and the
function approximator’s parameterization all affect what knowledge is learned or how it is stored,
and thus a candidate for transfer.
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6.3.1 Complexification

Complexification is a type of Representation Transfer where the function approx-

imator is changed over time to allow for more representational power. Consider,

for instance, the decision of whether to represent state variables conjunctively or

independently. A linear interpolation of different state variables may be faster to

learn, but a conjunctive representation has more descriptive power. Using Complex-

ification, the agent can learn with a simple representation initially and then switch

to a more complex representation later. Thus the agent can reap the benefits of fast

initial training without suffering decreased asymptotic performance.

Algorithm 11 describes the process for transferring between value function

representations with different parameterizations of state variables, e.g., function ap-

proximators with different dimensionalities. We abbreviate function approximator

as “FA” for readability. The weights (parameters) of a learned function approxima-

tor are used as needed when the agent learns a target value function representation.

If the target representation must calculate Q(s, a) using a weight which is set to the

default value rather than a learned one, the agent uses the source representation to

set the weight. Using this process, a single weight from the source representation

can be used to set multiple weights in the target representation.

Complexification is similar to Value Function Transfer in that it directly

transfers weights from a source to a target and is similar to Q-Value Reuse because

it performs this transfer on-line, rather than as a step between learning the source

and target. The idea of Complexification is also related to Incremental Feature-Set

Augmentation (IFSA) Ahmadi et al. [2007], which is designed to add state vari-

ables over time, rather than to transfer between different function approximator

parameterizations.

Note that this algorithm makes the most sense when used for function ap-

proximators that exhibit locality : line 5 in Algorithm 11 would execute once and
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Algorithm 11 Complexification
1: Train with a source representation and save the learned FAsource

2: while target agent trains on a task with FAtarget do
3: if Q(s, a) needs to use at least one uninitialized weight in FAtarget then
4: Find the set of weights W that would be used to calculate Q(s, a) with FAsource

5: Set any remaining uninitialized weight(s) in FAtarget needed to calculate Q(s, a)
to the average of W

initialize all weights when using a fully connected neural network. Thus we employ

Algorithm 11 when using a function approximator which has many weights but in

which only a subset are used to calculate each Q(s, a) (such as in a CMAC). Also,

note that line 5 is similar to the averaging step in the ρCMAC for Value Function

Transfer in Section 4.3.2.

We will utilize Complexification on a task which requires a conjunctive repre-

sentation for optimal performance. This provides an existence proof that Complex-

ification can be effective at reducing both the target representation training time

and the total training time.

6.3.2 Offline Representation Transfer

The key insight behind Offline Representation Transfer (ORT) is that an agent using

a source representation can record some information about its experience using the

learned policy as was done in timbrel and Rule Transfer. The agent may record s,

the perceived state; a, the action taken; r, the immediate reward; and/or Q(s, a),

the long-term expected return. Then the agent can learn to mimic this behavior in

the target representation through off-line training (i.e., without more interactions

with the environment). The agent is then able to learn better performance faster

than if it had learned the target representation without transfer. We consider three

distinct scenarios where ORT algorithms could be utilized:

1. Intra-policy-class Representation Transfer (Algorithm 12): The representation

differs by function approximator.
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2. Inter-policy-class Representation Transfer (Algorithms 13 & 14): The repre-

sentation changes from a value function learner to a policy search learner, or

vice versa.

3. Task transfer (Algorithm 15): The representation remains constant but the

tasks differ.

Note that this is not an exhaustive list; it contains only the variants which we have

implemented and tested. (For instance, intra-policy-class Representation Transfer

for policy learners is similar to Algorithm 12, and task transfer combined with inter-

policy-class transfer is likewise a straightforward extension of the ORT method.)

The ORT algorithms presented are necessarily dependant on the details of the rep-

resentation used. Thus ORT may be appropriately thought of as a meta-algorithm

and we will show later how it may be instantiated for specific learning methods and

specific function approximators.

Algorithm 12 describes intra-policy-class transfer for value function methods

with different function approximators. The agent saves n (state, action, Q-value)

tuples and then trains offline with the target representation to predict those saved

Q-values, given the corresponding state. Here offline training still utilizes a TD up-

date, but the target Q-values are set by the recorded experience. When considering

inter-policy-class transfer between a value function and a policy search method, the

primary challenge to overcome is that the learned function approximators represent

different concepts: a value function by definition contains more information because

it represents not only the best action, but also its expected value.

Inter-policy-class transfer from a policy to a value function (Algorithm 13)

works by recording n (s, a, r) and then training a TD learner offline by (in effect)

replaying the learned agent’s experience, similar to Algorithm 12. Line 4 uses the

history to calculate qi. In the undiscounted episodic case, the optimal predicted

return from time ti, qi, is
∑

ti<t≤tEpisodeEnd
rt, and can thus be found by summing
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Algorithm 12 Offline Representation Transfer: Value Functions
1: Train with a source representation
2: Record n (s, a, q(si, ai)) tuples while the agent acts
3: for all n tuples do
4: Train offline with target representation, learning to predict Qtarget(si, ai) = q(si, ai)

for all a ∈ A
5: Train on-line using the target representation

Algorithm 13 Offline Representation Transfer: Policies to Value Functions
1: Train with a source representation
2: Record n (s, a, r) tuples while the agent acts
3: for all n tuples do
4: Use history to calculate the return, qi, from si

5: Train offline with target representation, learning to predict Qtarget(si, ai) = qi
6: for all aj ∈ A s.t. aj 6= ai do
7: if Qtarget(aj) > Qtarget(ai) then
8: Train to predict Qtarget(aj) = c× qi
9: Train on-line using the target representation

recorded rewards until the end of the episode is reached (i.e., the Monte Carlo

return). Similarly, the discounted non-episodic case would sum rewards, multiplied

by a discount factor. Line 8 is used to generate some initial Q-values for actions not

taken. If an action was not taken, we know that its Q-value was lower, but cannot

know its exact value since the source policy learner does not estimate Q-values. A

parameter c, in the range of (0,1), determines how much to penalize actions not

selected.

Inter-policy-class transfer between a value function and a policy search learner

(Algorithm 14) first records n (s, a) tuples and then trains a direct policy search

learner offline so that πtarget can behave similarly to the source learner. Here, offline

training simply means using the base learning algorithm to learn a policy that will

take the same action from a given state as was taken in the saved experience.

Lastly, we present an algorithm for inter-task transfer using a value function

approximator (Algorithm 15). Specifically, we assume that we have a pair of tasks

that have different action and state variable spaces, but are related by two inter-
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Algorithm 14 Offline Representation Transfer: Value Functions to Policies
1: Train with a source representation
2: Record n (s, a) tuples while the agent acts
3: for all n tuples do
4: Train offline with target representation, learning πtarget(si) = ai

5: Train on-line using the target representation

Algorithm 15 Offline Representation Transfer: Task Transfer for Value Functions
1: Train on a source task
2: Record n (s, a, q(s, a)) tuples while the agent acts
3: for all n tuples do
4: Construct starget such that for each state variable xi ∈ starget, xi has the value of

state variable χX(xi) in s
5: Train offline in target task, learning to predict Qtarget(starget, atarget) = q(s, a) for all

atarget where χA(a) = atarget

6: Train on-line using the target task

task mappings. This algorithm is similar to Q-Value Reuse, but it uses saved data

to train a new function approximator offline rather than reusing an old function

approximator.

6.3.3 Overview of Representation Transfer Results

This section presents empirical results showing that Complexification and the four

variations of ORT can successfully transfer knowledge. Because Representation

Transfer encompasses a number of algorithms, all of which are fundamentally the

same because they can be combined with inter-task mappings and are designed to

effective re-use knowledge, there are many possible tests that could be performed.

We select a set of representative experiments to test each Representation Transfer

method (Algorithms 11–15) on Keepaway tasks using RL algorithms and function

approximators from previous chapters. While this list of experiments does not ex-

haust the scenarios where Representation Transfer could be used, these experiments

provide a set of examples that support the claim that Representation Transfer can

be effectively used to improve learning. Specifically, we test:
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1. Complexification in XOR Keepaway with a Sarsa learner utilizing a CMAC

function approximator

2. ORT for Value Functions in 3 vs. 2 Keepaway between RBF and neural network

Sarsa learners

3. ORT for Value Functions in 3 vs. 2 Keepaway between neural network and

RBF Sarsa learners

4. ORT for Policies to Value Functions in 3 vs. 2 Keepaway between NEAT and

Sarsa learners

5. ORT for Value Functions to Policies in 3 vs. 2 Keepaway between Sarsa and

NEAT learners

6. ORT for Task Transfer with Value Functions between 3 vs. 2 and 4 vs. 3

Keepaway

The experiments that test these six scenarios are summarized in Table 6.9.

We consider two related goals for both representation and task transfer prob-

lems. We first show that all of the representation transfer methods presented can

reduce the training time in the target task. Additionally, experiments 1, 5, and 6

show that the total training time may also be reduced, a significantly more difficult

transfer goal. For representation transfer, that means that an agent can improve

performance on a single task by switching internal representations partway through

learning, rather than using a single representation for an equivalent amount of time.

All learning curves presented in this section each average ten independent

trials. The x-axis shows the number of Soccer Server simulator hours. The y-axis

shows the average performance of the keepers by showing the average episode length

in simulator seconds. Error bars show one standard deviation. (Note that we only

show error bars on alternating curves for readability.) All parameters chosen in this

section were selected via experimentation with a small set of initial test experiments.
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Method Name: Representation Transfer: Complexification

Scenario: Complexification is applicable when the parameterization of a
function approximator can change over time and the function approximator
exhibits locality.

Task
Source Target Algorithm

Section
Representation Representation Tested

XOR Sarsa, CMAC, Sarsa, CMAC
11 6.3.4

Keepaway individually tiled conjunctively tiled

Method Name: Representation Transfer: Offline Representation Transfer

Scenario: Offline Representation Transfer is applicable when the representation
changes in a task, or for inter-task transfer. Offline Representation Transfer is
composed of a set of very flexible methods to enable transfer between a number
of different learning representations.

Task
Source Target Algorithm

Section
Representation Representation Tested

3 vs. 2
Sarsa, ANN Sarsa, RBF 12 6.3.5

Keepaway

3 vs. 2
Sarsa, RBF Sarsa, ANN 12 6.3.5

Keepaway

3 vs. 2
NEAT, ANN Sarsa, RBF 13 6.3.5

Keepaway

3 vs. 2
Sarsa, RBF NEAT, ANN 14 6.3.5

Keepaway

Task
Sarsa, RBF Sarsa, RBF 15 6.3.6

Transfer∗

Table 6.9: This table summarizes the Representation Transfer experiments in this
section of the dissertation. The final experiment, marked with ∗, uses Offline Rep-
resentation Transfer to transfer between 3 vs. 2 Keepaway and 4 vs. 3 Keepaway.
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6.3.4 Complexification in XOR Keepaway

This section demonstrates that Complexification (Algorithm 11) can improve perfor-

mance on a Keepaway task, relative to learning with a single representation. XOR

Keepaway was designed so that the agent’s internal representation must be capable

of learning an “exclusive or” to achieve top performance (see Section 3.3.2), and is

thus a prime candidate for Complexification.8

To master the XOR Keepaway task we use Sarsa to learn with CMAC func-

tion approximators, with both independent and conjunctively tiled parameteriza-

tions. The independently tiled players use 13 separate CMACs, one for each state

variable. The conjunctively tiled players use 10 separate CMACs, 9 of which in-

dependently tile state variables. The tenth CMAC is a conjunctive tiling of the

remaining 4 state variables: d(K1, T1), d(K2, T ), ang(K2), and d(K1,K2). We train

the independently tiled players for 20 simulator hours and then save the weights

in their CMAC function approximators. To get a small performance improvement,

we set all zero weights to the average weight value, a method previously shown (see

Section 4.3.2) to improve CMAC performance. We then train the conjunctively tiled

CMAC players, using the previously learned weights as needed, as per Algorithm 11.

Agents learn best when the four relevant state variables are conjunctively

tiled: Figure 6.11 shows that players learning with conjunctive function approxima-

tors outperform the players using independently tiled function approximators. How-

ever, agents using independently tiled state variables are initially able to learn faster.

Agents trained with independent CMACs for 20 hours can transfer to a conjunctive

representation via Algorithm 11, significantly outperforming players that only use

the independent representation. A Student’s t-test confirms that this performance

increase is statistically different from learning without transfer with independently

8In informal experiments, Complexification did not improve 3 vs. 2 Keepaway performance, likely
because it can be learned well when all state variables are considered independently Stone et al.
[2005].
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Figure 6.11: Learning with Complexification outperforms learning with individually
tiled CMACs without transfer and partially conjunctive CMACs without transfer.
Complexification is used to transition from an individually tiled representation to a
conjunctively tiled representation after learning for 20 simulator hours.

tiled CMACs after 40 hours of training.

Additionally, the total training time required is decreased by Complexifica-

tion relative to learning only the conjunctive tiling. Even when source agent training

time is also taken into account, Complexification significantly outperforms learning

without transfer with the conjunctive representation until 55 hours of training time

has elapsed. Examined differently, learning without transfer with a conjunctive

tiling takes 55 hours to reach a 6.0 second average episode length, while an agent

using both source and target representations take a total of only 45 hours, an 18%

reduction in learning time.

This results shows that in the XOR Keepaway task, using Complexification
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to transfer knowledge between two different representations can outperform using

either representation alone for the equivalent amount of training time.

6.3.5 Offline Representation Transfer in 3 vs. 2 Keepaway

When learning 3 vs. 2 Keepaway, ORT algorithms may be used to transfer knowledge

between different function approximators and between different policy representa-

tions. We first show that if a source representation has been learned and a target

representation utilizes a different function approximator, ORT can successfully re-

duce the target’s training time. We next demonstrate that the source and target

may differ both by function approximator and by type of learning method and still

utilize ORT. In all experiments, the target’s training is improved. One experiment

also shows transfer benefit in both learning scenarios: both the target training and

the total training are improved.

Intra-policy Offline Representation Transfer

This section uses Algorithm 12 to transfer between Sarsa players with different

function approximators, allowing the agents to effectively reuse knowledge. To

demonstrate intra-policy transfer, we first train Sarsa players using a neural net-

work on 3 vs. 2 Keepaway for 20 simulator hours and then record 20,000 (s, a)

tuples, which took roughly 1.0 simulator hour. TD-RBF players are then trained

offline by iterating over all tuples 5 times and updating Q(si, a), where a ∈ A, via

Sarsa with a learning rate of 0.001 (set after trying 4 different common parameter

values). The agent is then able to learn in the new representation by replaying

data gathered when training with the old representation. Using Algorithm 12, this

process takes roughly 8 minutes of wall clock time. Figure 6.12 shows that repre-

sentation transfer from neural network players outperforms RBF players learning

without transfer. Differences graphed are statistically significant for times less than
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Figure 6.12: RBF players utilize ORT from neural networks to outperform RBF
players without transfer.

11 simulator hours.

The complimentary experiment trains RBF players for 20 simulator hours

and then saves 20,000 tuples. We then train the neural network players offline

by iterating over all tuples five times. We found that updating Q(s, ai) for ai 6=

a was not as efficient as updating only the Q-value for the action selected in a

state. This effect is likely because of the non-locality effect of neural networks

where changing a single weight may affect all output values. Figure 6.13 shows

how representation transfer helps improve the performance of the neural network

players. The differences are statistically significant for times less than 8 simulator

hours and the offline representation transfer training took less than 1 minute of wall

clock time.
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Figure 6.13: Neural network players utilize ORT from RBF players to outperform
neural network players without transfer.

Inter-policy Offline Representation Transfer

This section uses Algorithms 13 and 14 to transfer between TD and policy search

learners. One result will show that past knowledge can be effectively reused (the

target task time scenario), and the second result will show that learning with two

representations outperforms learning with either representation alone (representing

success in both the target task time and total time scenarios).

To demonstrate transfer from policy to an action-value function, we first

train NEAT keepers for 500 simulator hours in the 3 vs. 2 Keepaway task and then

use representation transfer to initialize RBF players via offline Sarsa training. We

found that the value-function learners needed to learn a more complex representation

and used 50,000 tuples (which takes roughly 2.6 simulator hours to record). If

Q(si, a
′) > Q(si, ai), where a′ was an action not chosen by the source agent, we

set a target value of Q(si, a
′) = 0.9 × Q(si, ai).

9 The offline training, as described

9Recall that the only information we have regarding the value of non-chosen actions are that
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previously, takes roughly 4 minutes of wall clock time.

Figure 6.14 shows that the RBF players using representation transfer from

learned NEAT representations initially have a much higher performance. Training

causes an initial drop in performance as the Q-values, and therefore the current

policy, are changed to more accurately describe the task. However, performance of

the players using representation transfer is statistically better than those learning

without transfer until 7 simulator hours of training has occurred. After 7 simulator

hours, the performance difference between using representation transfer and learning

without transfer is not significant. This result shows that if one has trained policies,

it is advantageous to use them to initialize TD agents, particularly if the training

time in the target representation is short or if the on-line reward is critical.

The reverse experiment trains 3 vs. 2 Keepaway using the value function RBF

players for 20 simulator hours. After learning, one of the keepers saves 1,000 tuples,

and we use inter-policy representation transfer to initialize a population of 100

policies offline. NEAT trains offline for 100 generations with a fitness function that

sums the number of times the action predicted by NEAT from a given state matches

that action that had been recorded. After the target representation keepers have

finished learning, we evaluate the champion from each generation for 1,000 episodes

to more accurately graph the learned policy performances. Figure 6.15 shows that

NEAT players utilizing representation transfer outperform NEAT players learning

without transfer. This result is particularly dramatic because TD-RBF players

initially train much faster than NEAT players. The 20 hours of simulator time

spent training the RBF players and the roughly 0.1 simulator hours to collect the

1,000 tuples are not reflected in this graph.

The difference between learning with and without representation transfer is

they should be lower valued than than selected actions. However, setting those values too low may
disrupt the function approximator so that it does not generalize well to unseen states. c = 0.9 was
chosen after initial tests were run on three different parameter values.
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Figure 6.14: RBF players using ORT from NEAT players outperform RBF players
without transfer.

statistically significant for all points graphed in Figure 6.15 (except for 490 simulator

hours) and the total training time needed to reach a pre-determined performance

threshold in the target task has been successfully reduced. For instance, if the goal

is to train a set of agents to possess the ball in 3 vs. 2 Keepaway for 14.0 seconds via

NEAT, it takes approximately 700 simulator hours to learn without transfer (not

shown). The total simulator time needed to reach the same threshold using ORT is

less than 100 simulator hours. Additionally, the best learned average performance

of 15.0 seconds is better than the best performance achieved by NEAT learning

without transfer in 1000 simulator hours [Taylor et al., 2006].

These experiments focus on sample complexity under the assumption that

agents operating in a physical world are most affected by slow sample gathering.

If computational complexity were taken into account, representation transfer would

still show significant improvement. Although we did not optimize for it, the wall

clock time for representation transfer’s offline training when transferring from TD-
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Figure 6.15: ORT can initialize NEAT players from RBF players to significantly
outperforms learning without transfer.

RBF players to NEAT players was only 4.3 hours per trial. Therefore, representation

transfer would still successfully improve performance if our goal had been to mini-

mize wall clock time.

6.3.6 Offline Representation Transfer for Task Transfer

In this section, an experiment demonstrates that ORT is able to meet both transfer

scenario goals (reducing the target task learning time and the total learning time)

when transferring between 3 vs. 2 and 4 vs. 3 Keepaway, successfully performing task

transfer. This result suggests both that ORT is a general algorithm that may be ap-

plied to both representation transfer and task transfer and that other representation

transfer algorithms may work for both types of transfer.
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To transfer between 3 vs. 2 and 4 vs. 3, we use χX and χA as defined pre-

viously (Section 4.1.1, Table 4.1). 3 vs. 2 players learning with Sarsa and RBF

function approximators are trained for 5 simulator hours. The final 20,000 tuples

are saved at the end of training (taking roughly 2 simulator hours). 4 vs. 3 players,

also using Sarsa and RBF function approximators, are initialized by training offline

using Algorithm 15, where the inter-task mappings are used to transform the ex-

perience from 3 vs. 2 so that the states and actions are applicable in 4 vs. 3. The

batch training over all tuples is repeated 5 times.

Figure 6.16 shows that ORT reduces the target task training time, meeting

the goal of transfer in the first scenario. The performance of the learners using

ORT is better than that of learning without transfer until a time of 31 simulator

hours. Furthermore, the total time is reduced when accounting for the 5 hours of

training in 3 vs. 2. In this case, the ORT agents statistically outperform agents

training without transfer during hours 10 – 25. Put another way, it will take agents

learning without transfer an average of 26 simulator hours to reach a hold time of

7.0 seconds, but agents using ORT will use a total time of only 17 simulator hours

to reach the same performance level.

When the Complexification algorithm is used for task transfer between 3

vs. 2 and 4 vs. 3, it can make use of ρX and ρA similar to how Value Function

Transfer uses the inter-task mappings. The main difference between this approach

and Value Function Transfer is that Complexification transfers the weights on-line

while the agent interacts with the target task, whereas Value Function Transfer

copies weights after learning the source but before learning the target task. Thus

experiments demonstrating Complexification for task transfer are unnecessary.
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Figure 6.16: ORT successfully reduces training time for task transfer between 3 vs.
2 and 4 vs. 3 Keepaway.

6.3.7 Representation Transfer Summary

This section has formulated the problem of representation transfer, a related, but

distinct, problem from task transfer. We have presented two algorithms for represen-

tation transfer to transfer knowledge between internal representations. Five different

experiments give positive examples of situations where representation transfer can

improve agent performance relative to learning without transfer. Two of these ex-

periments show that transfer can significantly reduce the total training time as well;

in these two cases, it is better to learn with two representations in series than either

of the representations individually. Additionally, we demonstrate that representa-

tion transfer algorithms can be used to reduce both target and total training times

for task transfer. Experiments were conducted in 3 vs. 2 Keepaway, XOR Keepaway,
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and 4 vs. 3 Keepaway, using Sarsa and NEAT as representative learning algorithms

and CMAC, RBFs, and neural networks as representative function approximators.

Of the transfer algorithms presented in this dissertation, the representation trans-

fer methods are my far the most flexible in terms of source and target task agent

requirements.

6.4 Comparison of Presented Transfer Methods

Chapters 4–6 introduced six different TL methods. In this section, we summarize

the method’s differences, their relative advantages, and experiments conducted. Ta-

ble 6.10 can thus be considered a high-level summary of the last three chapters,

which have assumed that inter-task mappings have been provided to the agent.

While this dissertation has introduced many different transfer algorithms,

they all share the same fundamental insight: inter-task mappings can be used to

reuse knowledge in a novel task with different state variables and actions. Value

Function Transfer can be considered the core TL algorithm of this dissertation as

it is studied the most thoroughly. Subsequent algorithms are introduced in order

to expand the applicability of transfer by allowing transfer between additional base

RL methods.

With the exception of timbrel, all TL methods in this dissertation have

been applied to tasks within the Keepaway domain, and many use additional do-

mains which show the methods’ broad applicability. (timbrel was not able to learn

Keepaway because Fitted R-max, the base RL algorithm used, is not yet able to

scale to such difficult tasks.) By sharing a common domain, we can draw some

conclusions about the relative efficacy of each method, but the primary difference

between TL methods is the situations in which they apply. In many cases, the

base RL algorithms chosen for a particular set of tasks will dictate the type of TL

algorithm to use.
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These last three chapters have shown that inter-task mappings can:

1. successfully enable transfer between tasks with different state variables and

actions,

2. be used as the core of multiple TL methods, which enable transfer over different

base RL algorithms and function approximators,

3. be used by TL methods to reduce the target task training time and the total

training time,

4. apply to many different tasks in multiple domains.

Up to this point in the dissertation, we have assumed that all inter-task

mappings are provided to the agent, and are correct. In the following chapter,

we will introduce a pair of methods that are able to learn inter-task mappings, a

necessary step for autonomous transfer. We then provide empirical evidence that

the mappings learned by both methods are able to successfully increase the speed

of learning in a target task.
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Method: Value Function Transfer, Algorithms 6–8, Sections 4.2–4.4
Scenario: Value Function Transfer is only applicable when both the source task
agent and target task agent use TD learning, and both use the same type of
function approximation. Results suggest that it improves learning speed in the
target task more effectively than other TL methods for TD RL agents.
Tasks: 3 vs. 2 Keepaway, . . . , 7 vs. 6 Keepaway, 3 vs. 2 Flat Reward, 3 vs. 2
Giveaway, and Knight Joust
Learners: Sarsa
Function Approximators: Tabular, CMAC, RBF, and ANN

Method: Q-Value Reuse, Equation 5.1, Section 5.1
Scenario: Applicable when the source and target task agents use TD learning.
Agents are not required to use the same function approximator. This method is
not as effective as Value Function Transfer and may require extra memory due to
requiring multiple function approximators, but it is more flexible because agents
may use different function approximators.
Tasks: Standard 2D Mountain Car, Standard 3D Mountain Car, 3 vs. 2
Keepaway, and 4 vs. 3 Keepaway
Learners: Sarsa
Function Approximators: CMAC

Method: Policy Transfer, Algorithm 9, Section 5.2
Scenario: Applicable when the source and target task agents use direct policy
search with ANN action selectors.
Tasks: 2-job-type SJS, 4-job-type SJS, 3 vs. 2 Keepaway, and 4 vs. 3 Keepaway
Learners: NEAT
Function Approximators: ANN

Method: timbrel, Algorithm 10, Section 6.1
Scenario: Applicable when the target task agent uses instance-based RL. The
source task agent may use any RL method. A sufficient number of instances
must be recorded in the source task to approximate a model, which may require
a significant amount of memory. This method uses source task instances to
learn a target task model as the agent acts, likely increasing the
computational requirements of the target task agent.
Tasks: Low Power 2D Mountain Car, No Goal 2D Mountain Car, High Power
2D Mountain Car, Low Power 3D Mountain Car, 3 vs. 2 Keepaway, and 4 vs. 3
Keepaway
Learners: Fitted R-max

Function Approximators: Instance based

Table continued on next page. . .
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Method: Rule Transfer, Section 6.2
Scenario: Applicable when the target task agent uses value function learning.
Rules allow agents to transfer between different RL algorithms and function
approximators. Empirically, Value Function Transfer appears to outperform
Rule Transfer when both methods are applicable.
Tasks: Ringworld, Knight Joust, 3 vs. 2 Keepaway, and 4 vs. 3 Keepaway
Learners: Sarsa
Function Approximators: Tabular, CMAC, and RBF

Method: Representation Transfer: Complexification,
Algorithm 11, Section 6.3

Scenario: Complexification is applicable when the parameterization of a
function approximator can change over time and the function approximator
exhibits locality (such as in a CMAC or RBF).
Tasks: XOR Keepaway
Learners: Sarsa
Function Approximators: CMAC

Method: Representation Transfer: Offline Representation Transfer,
Algorithms 12–15, Section 6.3

Scenario: Offline Representation Transfer is applicable when the representation
changes in a task, or for inter-task transfer. Offline Representation transfer is a
very flexible method, but computation between learning the source and target
representation is required (although relatively small in practice).
Tasks: 3 vs. 2 Keepaway and 4 vs. 3 Keepaway
Learners: Sarsa and NEAT
Function Approximators: ANN, CMAC, and RBF

Table 6.10: This table summarizes the six TL methods introduced
in this dissertation, along with references to the relevant sections.
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Chapter 7

Learning Inter-Task Mappings

Chapter 4 introduced inter-task mappings and Value Function Transfer. The subse-

quent two chapters introduced a series of TL methods with different characteristics,

all of which use the same inter-task mapping formulation. In addition to using full

inter-task mappings, partial inter-task mappings were successfully used for transfer

(Section 5.2.3). Up to this point in the dissertation, all inter-task mappings have

been provided as input to TL algorithms. However, some domains may be complex

enough that it is difficult to intuit such inter-task mappings. Furthermore, an agent

acting autonomously could not be provided such information, but would have to

discover it.

This chapter introduces a pair of methods to learn inter-task mappings. The

first, Mapping Learning via Classification [Taylor et al., 2007b], requires domain

knowledge to correctly partition state variables into different objects. It then uses

a classification algorithm on data gathered in both tasks to determine which ob-

jects in the source task and target task are most similar, creating an inter-task

mapping. The second, Modeling Approximated State Transitions by Exploiting Re-

gression [Taylor et al., 2008c] (master), does not need to be provided such domain

knowledge. Instead, it creates an approximate transition model and tests differ-
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ent mappings offline against data gathered in both tasks, finding an appropriate

inter-task mapping.

7.1 Learning Inter-Task Mappings via Classification

This section introduces Mapping Learning via Classification. To discover appro-

priate inter-task mappings, the agent first observes its transitions in the source

and target tasks. Given groupings of state variables plus gathered experience from

source and target tasks, supervised learning methods then autonomously identify

similarities between state variables and actions in the two tasks (see Figure 7.1).

The primary assumption of this method is that state variables can be arranged into

task-independent groupings, and that such background knowledge is provided as

input.

First, consider the task of finding a mappings between actions in the target

task and the source task. The intuition for this mapping-learning method is that

the essence of an action is its effect on the state variables, as determined by the

unknown transition function (and possibly the immediate reward, as determined

by the unknown reward function). By gathering data in a task, we can learn to

classify different actions by how they affect state transitions. The question then

becomes how to use such a classifier, given that the state variables and actions can

be different in the two tasks.

When learning in the source task, an agent records data samples of the form

(ssource, asource, r, s
′
source), where r is the immediate reward. ssource and s′source are

the state of the world (both vectors of k state variables) before and after the agent

executes action asource. These samples are used to train classifiers that predict the

index of a particular state variable or action, given the rest of the data in the sample.

For example, given a state, reward, and next state, classifier CA predicts the action
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Figure 7.1: Mapping Learning via Classification has four main steps. First, data is
collected from the source task. Second, object and action classifier(s) are trained.
Third, data is collected from the target task. Fourth, target task data is classified
into source task objects and actions, creating an inter-task mapping.

taken:

CA(ssource, r, s
′
source) = asource.

Such a classifier may be used to define a learned inter-task mapping between actions.

If the target task had the same state variables as the source task, a sample gathered

in the target task, (starget, atarget, r, s
′
target), could classified by CA:

CA(starget, r, s
′
target) = asource

and then asource would correspond to atarget (i.e., χA(atarget) = asource).

However, because starget and s′target may have different state variables than

ssource and s′source, we cannot use target task states as inputs to a classifier trained
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on source task states. To address this problem, we leverage domain knowledge and

do not train classifiers on the full state, but on subsets of state variables that define

a particular object. Specifically, rather than training an action classifier with 2k+1

inputs, we will train multiple action classifiers, one per object type.

Suppose that there are T object types that define groups of state variables

in a domain. For example, a logistics domain might have two object types: T =

{truck, location}. If there are two trucks and two locations in the source task, then

each state variable can be associated with a particular object in {truckA, truckB ,

locA, locB}. Instead of learning a single action classifier, CA, we learn a separate

CA,t for each t ∈ T :

CA,t(si,source, r, s
′
i,source) = asource

where si,source contains the state variables associated with object i of type t in

the source task. Thus the inputs for CA,truck will be state variables associated with

either truckA or truckB . Each recorded data tuple (s, a, r, s′) thus produces multiple

training examples, one for each object described by the state.

Once trained, such classifiers can be used to define χA. Each object j of type

t in each sample gathered in the target task is input to the relevant CA,t:

CA,t(sj,target, r, s
′
j,target) = asource.

Each classifier’s output is interpreted as a “vote” for a correspondence between

atarget and asource; χA(atarget) is set to be the action in the source task with the

most votes. Continuing our example, a state in the target task can be partitioned

so that the state variables sj,target and s′j,target that describe truckA in the target

task are classified by CA,truck, which counts as a vote for an asource similar to the

observed atarget. Likewise, the state variables corresponding to truckB are classified

by CA,truck to produce a second vote.
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We define a similar mapping between state variables, χX , by training classi-

fiers to predict which object i is described in the input. Hence, we learn a separate

CX,t for each of the t object types:

CX,t(si,source, r, s
′
i,source) = i.

Once trained, these classifiers can be used to define χX . Each object j of type t in

each sample gathered in the target task is input to the relevant CX,t:

CX,t(sj,target, r, s
′
j,target) = i.

Again, each classifier’s output is interpreted as a “vote” for a correspondence be-

tween object j in the target task and object i in the source task, and χX(sj,target) is

defined by winner-take-all voting. In the logistics example, this could correspond to

a vote to classify the target task object TruckC as the source task object TruckA.

Note that if an appropriate action mapping were already known, each CX,t

could utilize χA to classify data in the form:

CX,t(sj,target, r, s
′
j,target, χA(atarget)) = i.

Likewise, a given χX could be leveraged to learn χA. If one of the two classification

tasks prove easier to learn, or one of the mappings is given but not the other, one

inter-task mapping can be bootstrapped to learn the other.

Notice that this learning method, and the resulting inter-task mapping, are

independent of the particular base RL algorithm used and are compatible with

all TL algorithms introduced in this dissertation. This mapping-learning method

instead relies on the assumption of task-independent state variable groupings, the

agent’s ability to collect experience in both tasks, and an appropriate classification

technique to find similarities.
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7.1.1 Learning Keepaway Inter-Task Mappings

As discussed in Section 7.1, when learning an inter-task mapping, domain knowledge

is used to define how the state space should be semantically partitioned (i.e., how a

given state variable should be assigned to some object). In Keepaway, it is natural

to break the state space into keepers, with four state variables each, and takers,

defined by two state variables (see Table 7.1), similar to previous transfer research

in this domain [Soni and Singh, 2006]. We define the state before an action to be

the state perceived by the keeper with the ball (the only agent learning at any given

time), and the next state to be the state of the world as perceived from that same

keeper after the action has successfully finished (i.e., the next time any keeper can

select a macro-action).

To learn the inter-task mapping we train three classifiers using JRip, an im-

plementation of RIPPER [Cohen, 1995] included in Weka [Witten and Frank, 2005].

We selected JRip because it learns quickly and produces human understandable

rules, but other classification methods in Weka had comparable results in informal

experiments. The three classifiers learned are:

1. Ckeeper(sk, r, s
′
k) = Source Keeper

2. Ctaker(st, r, s
′
t) = Source Taker

3. Caction(s3vs2, r, s
′
3vs2) = Source Action

where sk and s′k are the subsets of state variables used to represent a single keeper

(an object of type keeper) before and after an action has executed; st and s′t describe

a taker (an object of type taker); s3vs2 and s′3vs2 describe an entire 3 vs. 2 Keepaway

state (three keeper objects and two taker objects); and r is the Keepaway reward

accrued between actions (the number of timesteps elapsed).

Consider using a single (s3vs2, r, a, s
′
3vs2) tuple recorded in 3 vs. 2 used to
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Keepaway State Variable Assignments

Keeper State Variables

dist(Kn,K1)
dist(Kn, C)
Min(dist(Kn, T1), dist(K2, T2)
Min(ang(Kn,K1, T1), ang(Kn,K1, T2)

Taker State Variables

dist(Tn,K1)
dist(Tn, C)

Table 7.1: The Keepaway state is partitioned into individual keepers and takers.

train these three classifiers. This tuple yields two data points1 for training Ckeeper:

• (sk2
, r, s′k2

), label = 2

• (sk3
, r, s′k3

), label = 3

where sk2
and sk3

are the state variables corresponding to keepers 2 and 3. Similarly,

this tuple will produce two training examples for Ctaker (one per taker) and one

example for for Caction which includes the action that was executed.

Once trained, the classifiers are able to process data gathered from agents

and label which keeper, taker, or action in the source task it is most similar to.

Data recorded from 3 vs. 2 is split into training and test sets to verify correctness of

the classifiers on the source task. The three classifiers were able to correctly classify

source players and actions, as tested with cross-validation. We then utilize these

classifiers to learn a mapping by applying them to data gathered in the target task.

In the target task we again assume that the state variables associated with

keepers and takers can be identified. Each (s4vs3, r, a, s
′
4vs3) tuple recorded in the

target task produces data for 3 keepers and 3 takers (again, assuming that K1

is trivially identified). Ckeeper classifies sets of keeper state variables and Ctaker

1We assume that the state variables corresponding to K1, the keeper with the ball, are known,
as the majority of distances are measured relative to it. Learning this keeper would be simple, but
complicates the exposition. Likewise, we assume that the hold action is known; it is easy to classify
as it is the only action that lasts a single timestep.
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classifies the taker state variables, constructing χX . As in was done previously in

χX for Keepaway (Table 4.1 in Section 4.1), two 4 vs. 3 keepers map to a single 3

vs. 2 keeper and two 4 vs. 3 takers map to a single 3 vs. 2 taker.

Using χX , the full state in the target task can be reformulated so that only

information that was present in the source task is considered by Caction. In the

target task, each tuple recorded produces four examples for classification because

s4vs3 may generate four2 distinct s3vs2’s. χA is then constructed by classifying target

task data with Caction.

For our experiments, we collected 1,000 tuples (s3vs2, r, a3vs2, s
′
3vs2) from 3

vs. 2 Keepaway and 100 (s4vs3, r, a4vs3, s
′
4vs3) tuples from 4 vs. 3 Keepaway. Note

that collecting the tuples from the source task is “free,” assuming that at least that

many tuples were experienced during training. Recording the 100 tuples in 4 vs.

3 took about a minute of simulated time, which was negligible compared to the

hours later spent training. A representative confusion matrix for the target task

keepers is shown in Table 7.2. The learned transfer functional is constructed via a

winner-take-all scheme and the resulting mappings are shown in Table 7.3.

7.1.2 Learning Server Job Scheduling Inter-Task Mappings

In SJS, state variables are naturally grouped by job type. A classifier CJob takes as

input four state variables that specify job counts for a particular job type (that is,

for job type j, the number of jobs aged: 1-50 time steps, 51-100 time steps, 101-

150 time steps, and 151-200 time steps). s′ is defined to be the state of the world

immediately after a job has been removed but before the next job is added to the

processing queue. Thus the two classifiers to learn χX and χA are defined as:

2s3vs2 requires 3 objects of type keeper and 2 objects of type taker. K1 will always be included
in s3vs2, K4,target always maps to K3,source, and T1,target always maps to T1,source. However,
both K2,target and K3,target map to K2,source, and both T2,target and T3,target may to T2,source

in the learned χX (see Table 7.3). Thus the following formulations of s3vs2 are possible via χX :
(K1, K2, K4, T1, T2), (K1, K3, K4, T1, T2), (K1, K2, K4, T1, T3) and (K1, K3, K4, T1, T3).
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Applying a Trained Ckeeper to 4 vs. 3 Keepaway

Source K2 Source K3

Target K2 286 17
Target K3 234 69
Target K4 37 266

Table 7.2: A representative keeper confusion matrix demonstrates that Ckeeper has
been successfully learned and that it can reasonably classify 4 vs. 3 keepers. This
matrix represents an inter-task mapping that would map K2 and K3 in the target
task to K2 in the source task, and K4 in the target task to K3 in the source task.

1. CJob(sjob, r, s
′
job) = Source Job Type

2. CAction(sjob, r, jobTypesource, s
′
job) = Source Action

where jobType is the label of the source job type for sjob.

As in Keepaway (Section 7.1.1), we first learn χX by learning the state vari-

able correspondence between the source and target tasks. CJob is trained with source

task agent experience, where every recorded tuple produces two data, one for each

job type. Then data from the target task, four for each tuple, is used to map the

four target job types into the two source job types. CAction is trained on source

experience and two data are generated for each action taken. When using CAction

in the target task, since there are four job types, there are four data to classify

for each recorded action in the environment. Because actions in SJS are defined

as removing a job from a particular job type, we utilize χX when using CAction:

CAction(sjob, r, χX(jobType target), s
′
job) = Asource. Thus CAction is used to construct

χA.

In our experiments, when using 10,000 tuples from the source task and 10,000

tuples from the target task, the learned inter-task mappings for Server Job Schedul-

ing were identical to the hand-coded inter-task mappings (in Section 5.2.1), suggest-

ing that this approach to learning inter-task mappings is effective. On average, 50

episodes (one tenth of a generation) in the target tasks were used to collect data

to learn the mappings, which is short when compared to total training times in the
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Keepaway Inter-task Mappings: Hand-coded, Partial, and Learned
Target Task Object Hand-coded χX Partial χX Learned χX

K1 K1 K1 K1

K2 K2 K2 K2

K3 K3 K3 K2

K4 K3 none K3

T1 T1 T1 T1

T2 T2 T2 T2

T3 T2 none T2

Target Task Action Hand-coded χA Partial χA Learned χA

Hold Hold Hold Hold
Pass K2 Pass K2 Pass K2 Pass K2

Pass K3 Pass K3 Pass K3 Pass K2

Pass K4 Pass K3 none Pass K3

Table 7.3: This table enumerates three inter-task mappings for Keepaway. Hand-
coded inter-task mappings require the most information to construct, partial inter-
task mappings require less information (see Section 5.2.3), and the Learned map-
pings require only information about assignments from state variables to objects.
Items in bold differ from the hand-coded mapping.

target task (on the order of 10,000 episodes).

7.1.3 Learned Inter-task Mapping Results

In this section we compare NEAT learning times in Keepaway when learning with-

out transfer to using one of the three inter-task mappings in conjunction with Policy

Transfer (full, partial, or learned mappings, as listed in Table 7.3).3 There are two

possible conditions for success. One measure of success would be to learn a map-

ping that was identical, or very similar, to the hand-coded mapping. This would

suggest that the hand-coded inter-task mapping was well designed and that Map-

ping Learning via Classification can successfully learn appropriate mappings. A

second measure of success would be to learn a mapping that, when used for trans-

fer, achieved the similar (or perhaps better) performance than when a hand-coded

3Although any of the TL methods introduced in this dissertation could be used, we choose to test
Policy Transfer with NEAT so that the learned mappings can be compared to the partial-mappings
previously introduced (see Section 5.2.3).

211



mapping was used for transfer. This measure allows for sub-optimal hand-coded

mappings and considers the mapping learning a success if the inter-task mapping

produced performs well in practice. Experiments in this section show that the SJS

mappings learned are identical to the hand-coded mappings, satisfying both of the

above goals. The learned Keepaway mappings are not identical to the hand-coded

mappings, but are qualitatively similar and achieve similar transfer performance,

which also satisfies both of the above goals.

As done in Section 5.2, which introduced Policy Transfer, a population of

policies is first trained in 3 vs. 2 Keepaway. The entire population is then trans-

ferred into 4 vs. 3 via Policy Transfer in conjunction with one of the mappings.

To compare learning with and without transfer we set a target threshold perfor-

mance and measure how much experience the keepers require to reach the threshold

(following the experimental methodology in Section 5.2)

Figure 7.2 shows the training time each method required to reach threshold

performances of 7.0 to 8.5 seconds. Five learning curves were generated by averaging

over 10 independent runs using four learning methods: learning without transfer,

using a hand-coded mapping after training for 5 generations of 3 vs. 2 or 10 gener-

ations of 3 vs. 2, using partial mappings, and using learned mappings after training

for 5 generations of 3 vs. 2. The differences between transfer with learned mappings

and no transfer are statistically significant at over half of the points graphed.

When considering the total training time, learning curves in Figure 7.2 which

use transfer are shifted up by the amount of time spent training in the source

task. Figure 7.3 shows the target and total training times needed to reach a target

threshold of 8.5 seconds. The differences between the total training times and no

transfer for all four inter-task mappings are statistically significant for roughly half

of the target threshold times shown in Figure 7.2.

In Server Job Scheduling, the learned and hand inter-task mappings are
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Figure 7.2: Policy Transfer successfully reduces the average training time needed to
reach a given performance level relative to learning without transfer. This graph
is similar to Figure 5.12 in Section 5.2.3, but includes transfer results that transfer
from 5 source task generations with learned inter-task mappings.

identical. No new results need to be run, as the performance of the learned mappings

are the same as the performance of the hand-coded mappings (see Figure 5.8 in

Section 5.2.1).

In summary, these results show that Learning Mappings via Classification

can successfully learn inter-task mappings. In SJS, the learned and hand-coded

mappings were identical. In Keepaway, the learned mappings were very similar to

the hand-coded mappings: one keeper, one taker, and one action were mapped dif-

ferently than the hand-coded mapping, but they were mapped to source task objects

and actions that were similar to the hand-coded mapping (see Table 7.3). Further-

more, the learned Keepaway mapping was successfully used by Policy Transfer to

improve learning in the target task.
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Figure 7.3: This chart shows the average amount of 4 vs. 3 Keepaway (target)
training time and 3 vs. 2 Keepaway (source) training time needed to reach a target
performance of 8.5 seconds. Learning without transfer is compared to using Policy
Transfer with: hand-coded mappings after 5 and 10 source task generations, learned
mappings after 5 source task generations, and partial mappings after 5 source task
generations.

7.1.4 Discussion

In our experiments we found that learned inter-task mappings were able to out-

perform partial mappings because the learned transfer mappings were more similar

to the hand-coded functionals than the partial mappings were to the hand-coded

mappings. In domains where a complete inter-task mapping is unavailable, but

classification is able to leverage similarities between the two tasks to correctly clas-

sify objects (i.e., cross-validation on the source data shows that the classifiers are

correctly learning concepts), these results suggest that it is more beneficial to use
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learned inter-task mappings rather than relying on incomplete mappings. This is

significant because less domain knowledge is required when the inter-task mappings

are learned than when inter-task mappings are provided to the agent.

Mapping Learning via Classification is a significant step towards autonomous

transfer compared to existing mapping learning methods in the literature (as dis-

cussed later in Section 8.5). If the agent is acting in a domain where it knows the

appropriate state variable groupings, it can autonomously learn inter-task mappings

to enable transfer. However, if such knowledge is unavailable, Mapping Learning

via Classification will be unable to learn inter-task mappings if the state variables

are different in the source and target tasks. In the next section we present a method

capable of learning inter-task mappings without such domain knowledge, at the ex-

pense of higher computational complexity (relative to the method in this section).

7.2 MASTER: Learning inter-task mappings offline

In this section we introduce Modeling Approximated State Transitions by Exploiting

Regression (master), a method for learning an inter-task mapping without domain

knowledge. As in the case of Mapping Learning via Classification, the inter-task

mappings learned by master can be used in conjunction with any base RL method

or any of the TL methods presented in Chapters 4–6. master can successfully learn

both the action mapping, χA, and the state variable mapping, χX , from data col-

lected in the source and target tasks. This section focuses on a high-level description

while implementation-level details will be specified in Section 7.2.1 in the context

of specific transfer experiments.

Our domain-independent method for constructing inter-task mappings is

summarized in Algorithm 16. We consider five distinct phases (see Figure 7.4):

1. Lines 1–3 represent training in the source task. Any learning method can

be used that is capable of utilizing inter-task mappings for transfer (e.g.,
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Figure 7.4: master has five main steps. First, data is collected from the source
task. Second, a small amount of data is collected from the target task. Third, an
approximate regression model is learned from the target task data. Fourth, different
possible mappings are applied to the source task data offline and tested against the
model. Fifth, the state variable and action mappings that minimize the error on the
model are returned.

KBKR [Maclin et al., 2005], Sarsa, or NEAT). The type of knowledge saved

in the data structure Dsource will depend on which RL algorithm is used for

source task learning.

2. Lines 4–5 show the agent(s) exploring in the target task without learning.

Experiments suggest that only a relatively small amount of data is needed

(see Section 7.2.3).

3. A one-step transition model for the target task, Mtarget, is learned on line 6.

As discussed in Section 7.2.1, our experiments utilize neural network func-

tion approximation in the Weka machine learning package, but we expect
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other prediction methods to also perform well. Note that the error calculation

(Mtarget(s, a) − s
′) is a vector operation and is computed per state variable.

Such an error definition implicitly assumes that the state variables can be

scaled so that they are weighted equally, and that a Euclidean metric is an

appropriate measure of state similarity (for both discrete and continuous state

variables).

4. Lines 7–12 examine different ways of mapping the source task data into the

target task using inter-task mappings ϕX and ϕA.4 When considering target

tasks that have more state variables and/or actions than the source task, this

is typically a many-to-one mapping. Each possible mapping is tested and its

appropriateness is determined by how well it matches the learned model.

5. Lastly, the agent constructs the inter-task mapping from the tested mappings

(line 13). Note that the inter-task mapping maps target task data to source

task data, while the agent had been testing different mappings from source task

data into the target task. Details of this step will be discussed in Section 7.2.1,

but the intuition is that if a there is a single best mapping, it should be used.

If there are a number of candidate mappings that have very similar MSEs,

they can be combined in a mixture weighted by their inverse errors.

After master has determined the inter-task mappings, they can be leveraged in

conjunction with the saved knowledge (Line 3) to speed up learning in the target

task using one of the TL methods for RL tasks.

The key insight of this method is that master is able to propose all possible

methods and then score them by analyzing them offline (i.e., without requiring more

samples from the environment), similar to the approach taken by Mihalkova et al.

4The inter-task mappings may be, by definition, defined either from the target to source or from
the source to target. In this dissertation χ has been used to denote mappings from the target to
source, and thus we use ϕ when referring to state variable and mappings from the source task to
the target task.
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Algorithm 16 master

1: while training in the source task do
2: Agent(s) record observed (s, a, s′) tuples in Dsource

3: Save learned knowledge
4: for small number of episodes in the target task do
5: Agent(s) record observed (s, a, s′) tuples in Dtarget

6: Learn a one-step transition model, Mtarget(s, a) 7→ s′, that minimizes
∑

Dtarget
(Mtarget(s, a)− s

′)2

7: for every possible many-to-1 mapping from source task state variables to target
task state variables, ϕX do

8: for every possible many-to-1 mapping from source task actions to target task
actions, ϕA do

9: Use ϕX and ϕA to transform Dsource into D′
source

10: for every tuple (s, a, s′) ∈ D′
source do

11: Calculate the error: (Mtarget(s, a)− s
′)2

12: MSE(ϕX ,ϕA) ← average error

13: Use the recorded MSE values to construct χA and χX from some ϕ−1
A and ϕ−1

X

[2007] to map predicates between different relational domains. Such analysis, lines

7–12, is exponential in the number of state variables and actions. Scaling master

to tasks with a large number of state variables or actions would require some type

of heuristic. For instance, rather than an exhaustive search, a hill-climbing method

could be used to find a good mapping (e.g., a variant on Powell’s Method [Powell,

1964]). It is worth emphasizing that this search affects only computational com-

plexity. In this work we attempt to learn an inter-task mapping so that the sample

complexity of the target task is reduced – reducing the computational complexity

is not our primary concern, as CPU cycles are generally cheap when compared to

collecting data from a fielded agent.

There are a number of model-learning methods for RL tasks (e.g., KBRL

[Ormoneit and Sen, 2002]), but such methods do not generally scale to large tasks

with continuous state variables, which are of particular interest to agents acting

in real-world tasks. Such methods generally attempt to model a task in order to

perform dynamic programming offline. In master, we instead only need to learn
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an approximate model that allows us to find similarities between state variables

and actions in two tasks. Since we typically expect relatively large differences in

the transition model of an MDP when state variables and actions are changed, the

error due to poor modeling is less critical then when a model is used for dynamic

programming. This relaxed requirement allows us to use a simple regression method,

which may be used on tasks with continuous state variables and requires relatively

little data for model learning.5

7.2.1 MASTER: Empirical Validation

In this section we demonstrate how master can learn inter-task mappings from the

Standard 3D Mountain Car to the Standard 2D Mountain Car. We then discuss a

number of experiments that illustrate how master is able to achieve a significant

speed-up in the target task with limited source task data and compare the results

of our algorithm with Mapping Learning via Classification. Lastly, we demonstrate

how master can evaluate mappings between multiple source tasks and help to select

an appropriate source task for transfer.

Applying MASTER to Mountain Car

As discussed in Section 3.1.3, Mountain Car tasks can be learned with Sarsa and

CMAC function approximation. In this section we first use master to learn the

inter-task mappings between two mountain car tasks. We then use the learned

mappings to transfer between the Standard 2D Mountain Car and Standard 3D

Mountain Car tasks.

In order to use master to learn an inter-task mapping between Mountain

Car tasks, the agent first trained in Standard 2D Mountain Car for 100 episodes

5If a significant amount of data from the target task were needed to learn a transition model,
relative to the amount of data needed to learn the target task, the time spent gathering data to
learn an inter-task mapping could easily outweigh any savings gained by transfer.
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using Sarsa(λ) while saving the observed (ss, as, s
′
s) transitions (Algorithm 16, lines

1–3). The agent then executed actions randomly in Standard 3D Mountain Car for

50 episodes, recording the observed (st, at, s
′
t) transitions.

To learn the one-step transition model (Algorithm 16, line 6), we used the

Weka package (version 3.4.6) to train neural networks (i.e., multi-layer perceptrons).

While we experimented primarily with neural networks for building the 1-step model,

we expect that other function approximators could work equally well. After trying

four different parameter settings in informal experiments, we used Weka’s default

settings, except the number of hidden nodes is set to eight and the number of training

epochs is set to 5000. For each Standard 3D Mountain Car trail, we trained a

separate neural network for each (action, state variable) pair to learn an approximate

model of the transition function, resulting in a total of 20 trained neural networks.

Each network modeling the target task data for Standard 3D Mountain car had 4

inputs, one for each state variable, 8 hidden nodes, and a single output that would

predict a single state variable’s next value.

Once the models are learned, the agent iterates over all possible state vari-

able and action mappings. For instance, it would sequentially try mapping x in

the source task to each of {x, y, ẋ, ẏ} in the target task. Likewise, the source

action Left would be mapped to the target actions {Neutral, West, East, South,

North}. The agent then transforms the recorded 2D Mountain Car data using each

of these 240 mappings (16 state variable mappings × 15 action mappings). For

instance, consider a recorded source task tuple (x, ẋ, Left), the state variable map-

ping ϕX : xs 7→ {xt, yt}, ẋs 7→ {ẋt, ẏt}, and the action mapping ϕA : Lefts 7→ Westt,

Rights 7→ {Neutralt, Eastt, Southt, Northt}. Using these mappings, the tuple will be

transformed into (x, x, ẋ, ẋ, West). Each transformed tuple is used as input to the

neural networks for the relevant target task action. In the above example, the set of

four neural networks trained on the target task action West would predict the next
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state that the agent observes. The output from each neural network is compared

with the true next state the agent observed in the source task, and the error over

all the transformed source task data is used to calculate the MSE for the mapping.

Table 7.4 summarizes results of a representative trial when evaluating the 240

mappings. For this domain, one state variable mapping is significantly better than

all others, both when averaged across all action mappings, or when the best action

mapping is considered for each possible state variable mapping. This state variable

mapping is fairly intuitive: the position state variable in the Standard 2D Mountain

Car maps to both position variables in 3D Mountain Car, and the velocity state

variable in the Standard 2D Mountain Car maps to both velocity state variables in

the 3D Mountain Car.

In Table 7.5 we focus on the best state variable mapping and show the MSE

for each of the different possible action mappings. With the exception of Neutral,

each task action has two source task actions with very similar error. This effect

is caused by the doubling of state variables and actions when using Standard 2D

Mountain Car data as input to a Standard 3D Mountain Car model. When using the

state variable mapping described above, ẋs is mapped to both ẋt and ẏt. Consider

saved source task data for the action Right. Right in the source task will cause ẋs

to increase. East in the target task will likewise cause ẋt to increase, but will not

affect ẏt. Because ẋs has been mapped to both of these state variables, one value

will be modified as the target task model expects for the action East, but the other

value will not. Intuitively, an appropriate action mapping would map both Right

and Neutral from the source task to the action East in the target task. Because there

is no clear single best 1-1 mapping, we weight the different action mappings by the

inverse of their measured MSE. Such a method will allow us to map multiple actions

from the source task into the target task, weighted by their relative errors on our

model.
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State Variable Mappings Evaluated
x y ẋ ẏ Avg. MSE Best MSE

x x x x 0.0384 0.0348
x x x ẋ 0.0246 0.0228
x x ẋ x 0.0246 0.0227
x x ẋ ẋ 0.0107 0.0090
x ẋ x x 0.0451 0.0406
x ẋ x ẋ 0.0385 0.0350
x ẋ ẋ x 0.0312 0.0289
x ẋ ẋ ẋ 0.0245 0.0225
ẋ x x x 0.0451 0.0406
ẋ x x ẋ 0.0312 0.0290
ẋ x ẋ x 0.0384 0.0350
ẋ x ẋ ẋ 0.0245 0.0226
ẋ ẋ x x 0.0516 0.0463
ẋ ẋ x ẋ 0.0450 0.0407
ẋ ẋ ẋ x 0.0450 0.0407
ẋ ẋ ẋ ẋ 0.0383 0.0350

Table 7.4: This table shows the resulting MSE when using different state variable
mappings. Each row shows a different mapping where the source task variables in
the row are mapped to the target task variables at the head of the column (i.e.,
x, x, ẋ, ẋ maps variable xs to xt, xs to yt, ẋs to ẋt, and ẋs to ẏt). The Avg.
MSE column shows the MSE averaged over all possible action mappings for each
row’s state variable mapping. The Best MSE column shows the MSE for each row’s
state variable mapping when using the action mapping with the lowest MSE. Both
metrics show that the state variable mapping in bold is significantly better than all
other possible state variable mappings.

Once the agent learns the mappings ϕX and ϕA, master constructs the

inter-task mappings χX and χA by taking the inverse of these mappings. We

then use a transfer method which is very similar to that of Q-Value Reuse (Sec-

tion 5.1). In this transfer method, the agent saves the 2D CMAC after training

on the source task. In the target task, the agent modifies the weights in a 4D

CMAC when learning. However, when computing the action-value for a s, a pair,

the agent also uses the saved 2D CMAC to evaluate the current position. Con-

ceptually, Q(st, at) = Q4DCMAC(st, at) + Q2DCMAC(χX(st), χA(sa)). However, as
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Action Mappings Evaluated
Target Task Action Source Task Action MSE

Neutral Left 0.0118
Neutral Neutral 0.0079
Neutral Right 0.0103

West Left 0.0095
West Neutral 0.0088
West Right 0.0127

East Left 0.0144
East Neutral 0.0095
East Right 0.0089

South Left 0.0099
South Neutral 0.0093
South Right 0.0135

North Left 0.0136
North Neutral 0.0100
North Right 0.0100

Table 7.5: This table shows the MSE found when a source task action is mapped
into a target task action. All experiments in this table use the same state variable
mapping.

mentioned above, our action mapping is not one-to-one. Thus we iterate over all

source task actions, multiply each by the inverse of the action mapping’s recorded

MSE, and then renormalize (see Algorithm 17). The action mappings with the low-

est error have the most influence on the value contributed by the source task CMAC.

While learning, the target task CMAC’s weights are modified by Sarsa(λ) and will

allow for an accurate approximation of the action-value function, even though the

transferred source CMAC (which remains unchanged) will not be optimal in the

target task.

7.2.2 Transfer from 2D to 3D Mountain Car

Figure 7.5 shows learning curves in Standard 3D Mountain car, each averaged over

25 independent trails. For each trial, after each episode we evaluate the policy

offline without exploration. To graph the learning curve we average all 25 learning
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Algorithm 17 Q-Value Reuse in 3D Mountain Car

1: x, y, ẋ, ẏ ← agent’s current state
2: at ← action to evaluate
3: for each source task action as do
4: SUM += MSEat,as

5: for each source task action as do
6: Q(s, at) += Q2dCMAC(x, ẋ, as)× SUM/(MSEat,as)
7: Q(s, at) += Q2dCMAC(y, ẏ, as)× SUM/(MSEat,as)
8: Q(s, at) += Q4dCMAC(x, y, ẋ, ẏ, at)

curves for the previous 10 episodes and plot the mean. First, consider the lines

“Without transfer” and “Average Both.” The Average Both experiments transfer

by averaging over all action mappings and all state variable mappings. Such a

method can be considered a type of blind transfer – no time or samples are spent

learning an inter-task mapping, but the resulting learning curve is much worse than

learning without transfer. Evidently, transferring without any consideration to the

state and action variable mappings may be quite harmful to learning. However, as

is shown by the other transfer experiments, using master to learn these mappings

can enable transfer that is quite beneficial.

The line “Transfer: 1/MSE” is generated by transferring from 100 episodes

of Standard 2D Mountain Car where the action mapping is weighted by the inverse

of its observed MSE in the target task model. Using paired t-tests we find that

the 1/MSE transfer curve is statistically significantly better, at the 95% level, than

learning without transfer for episodes 2–473.6 Also included in the graph are three

other transfer mappings for comparison. “Hand Coded” uses hand-coded state

variable and action mappings based on our knowledge of the domains. We believe

that this learning curve represents the upper bound on transfer for 100 episodes

of Standard 2D Mountain Car. It is encouraging that the 1/MSE learning curve

6On the first episode, the agent with transferred knowledge has an average reward of -4640 while
the agent learning without transfer has an average reward of -5000, which is not different at the
95% confidence level.
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Figure 7.5: This graph compares transfer with a hand-coded inter-task mappings
to: transfer with learned state variable and action mappings, transfer using only a
learned state variable mapping, learning without transfer, and transfer with map-
pings that average over all possible mappings. Figure 7.6 zooms in on the beginning
of the same curves. Each learning curve averages 25 independent trials with a 10
episode sliding window.

quickly converges to the same asymptotic value as the hand coded transfer learner.

“Average Actions” performs transfer with the learned state variable mapping but

simply averages over all actions. This is equivalent to assuming that all the possible

action mappings having the same error, and indicates the importance of using an

action mapping is for efficient transfer. Figure 7.6 shows a magnified version of the

graph to better see differences between the different learning curves.

We also tested a final method for weighting the different action mappings.

Rather than using all action mappings and weighting by the inverse of the MSE,
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Figure 7.6: This graph shows the same learning curves as in Figure 7.5. The hand-
coded mapping performs slightly better than the fully learned mapping, which in
turn is better than using only the state variable mapping. To help visualize the
magnitude of the evaluation noise, the 1/MSE transfer curve shows error bars at
one standard deviation.

we selected only the one or two best actions. The learning curve resulting from this

method was qualitatively similar to the 1/MSE learning curve and is not shown.

7.2.3 Reducing the Total Sample Complexity

The results in Figure 7.5 show that learned source task knowledge can be effectively

used with a learned mapping. Thus, if an agent has already trained on Standard

2D Mountain Car and wants to learn Standard 3D Mountain Car, it likely makes

sense to use its past knowledge rather than to learn without it. However, consider

a situation where the agent has not trained on Standard 2D Mountain Car and is

faced with the Standard 3D Mountain Car task. Should it first train on the 2D task,

learn a mapping, and then transfer? Or should it directly tackle the more difficult

3D task?

To help answer the above question, we varied the amount of data used in
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the source and target task to learn a mapping, as well as how many episodes in

the source task used to learn the 2D CMAC’s weights. Earlier experiments showed

transfer after learning for 100 episodes in the source task, spending 50 episodes

collecting data in the target task, and then using master with transfer to learn the

target task. We tried using 100, 50, 25, and 10 episodes of source task training, as

well as 50, 25, and 10 episodes of target task training. We found that only when we

reduce the number of source task episodes to 10 does learning performance in the

target task degrade.

Figure 7.7 compares learning Standard 3D Mountain Car without transfer

to using transfer. The agent trains for 25 episodes in the source task, collects data

for 10 episodes in the target task, uses master to learn the inter-task mappings,

weights the action mappings by 1/MSE, and then learns in the target task. Note

that the transfer learning curve has been shifted by 35 episodes (the first graphed

point is at episode 45, instead of at episode 10) to account for the episodes spent

before learning in the target task. A series of paired t-tests show that the difference

between learning without transfer and learning with transfer while accounting for

all episodes used is statistically significantly different at the 95% level from learning

without transfer from episodes 36–474. We therefore conclude that for some tasks, it

may be in an agent’s interest to train first on a simple source task, learn a mapping,

and then learn on a target task, rather than learn on the target task directly.7

7.2.4 Comparison to Previous Work

We would like to compare our method with the previous mapping-learning method,

but the 2D and 3D Mountain Car tasks do not easily subdivide into groups of state

variables, as was done in Section 7.1. In Mountain Car there is no clear division

7The learning parameters for the Standard 3D Mountain Car task were tuned for learning
without transfer. In a different series of experiments, not shown, the transfer learning curves were
improved by re-tuning the learning parameters.
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Figure 7.7: This graph compares learning without transfer to transfer using learned
mappings. The transfer learning curve does not start at 0 episodes as it now reflects
the total number of episodes used to learn the mappings in the source and target
task. This result shows that the total number of episodes to learn a source task,
record target task data to learn an inter-task mapping, and then learn in a target
task with transfer may less than learning a target task directly. Each learning curve
averages 25 independent trials.

of “object types.” To enable a comparison, we group state variables into (position,

velocity) tuples. Our source task will thus have one object, (x, ẋ), and the target task

will have two objects, (x, ẋ) and (y, ẏ). A significant amount of information about

the relationship between the two tasks has already been encoded in this formulation.

We follow the procedure for Learning Mappings via Classification in the

previous section of this chapter. In the source task, we collect experience while

learning (xs, ẋs, as, r, x
′
s, ẋ

′
s), where the s subscript denotes the source task. After

learning, we use the data to train an action classifier: Caction(xs, ẋs, r, x
′
s, ẋs

′) 7→ as.

Then, in the target task, we collect data (xt, ẋt, yt, ẏt,at, r, x
′
t, ẋ

′
t, y

′
t, ẏt

′). After
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collecting the target task data, we use the action classifier to predict which similar

source task action was used for an observed target task tuple. For instance, the

output from the action classifier Caction(xt, ẋt, r, x
′
t, ẋt

′) would give some source task

action. The returned source task action is counted as a vote that the target task

action associated with this tuple, at, is the same as the action returned by the

classifier, as. Note that no state variable classifier is needed, as there is only one

object in the source task. Thus, (xt, ẋt) and (yt, ẏt) both get mapped to (xs, ẋs)

because of the knowledge we implicitly gave the agent in how we chose the state

variable grouping. χX has been provided by human knowledge, but the classifier is

responsible for learning χA.

We collected 50 episodes of data in Standard 2D Mountain Car and trained

a neural network action classifier with 5 inputs (four state variables and the current

reward) to predict the source task action that was taken. The neural network was

unable to learn to correctly classify the data until we changed the agent’s policy so

that the car took each action for 5 successive time steps. By grouping successive

states together (i.e., instead of using the state at times t and t+1, we used the state

at times t and t+5), the effects of actions outweighed the effects of gravity and we

were able to learn to accurately classify source task actions. The action mapping

learned is similar to the results of our method, as expected (see Table 7.6). If we use

this action mapping to learn in Standard 3D Mountain Car (not shown), weighting

the different actions by the number of “votes” each mapping received, we find that

the target task learning is very similar to our 1/MSE method using both the learned

state variable and action mappings described above. The main significance of this

result is that it confirms that master is able to find an action mapping similar to

that found by an existing learning method, even though significantly less knowledge

is required.
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Action Mappings via Classification
Left Neutral Right

Neutral 679 18910 154
West 8518 10554 184
East 285 10046 9177

South 8773 10730 186
North 375 10093 9540

Table 7.6: This table shows the confusion matrix when evaluating Standard 3D
Mountain Car data on an action classifier trained using Standard 2D Mountain Car
data. Each value in the matrix is the number of times a target action (row) was
classified as a source action (column), and each data can be considered a vote for
the action mapping.

7.2.5 Transfer in Hand Brake Mountain Car

In this section we examine transfer into the 3D Hand Brake Mountain Car task,

defined in Section 3.1. First, consider an agent that has previously trained for 500

episodes of 2D Hand Brake Mountain Car. Figure 7.8 compares learning without

transfer, learning after transferring only the state variable mapping, and learning

after transferring both the state variable and action mapping. This result confirms

that master can learn a useful inter-task mapping in this variant of Mountain Car.

Consider an agent that has previously trained on Standard 2D Mountain

Car, both with and without a hand brake action. If the agent is now tasked with

3D Hand Brake Mountain Car, it should be able to learn mappings for both tasks

and use the learned mappings to intelligently transfer from the source tasks. One

option would be to select the source task with learned mappings that had the lowest

MSE, which in this case would be Standard 2D Mountain Car with a hand brake

action (see Table 7.7). A second option would be to weight the mappings from

both tasks by the inverse of their recorded MSEs. Figure 7.9 shows both of these

methods outperform transferring only from the 2D Mountain Car without hand

brake, as well as outperforming learning the 3D hand brake task without transfer.

Interestingly, transferring from both source tasks appears better than transferring
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Figure 7.8: This graph shows that transfer using both learned mappings outper-
forms both learning without transfer and using only the learned state variable map-
pings. Each learning curve averages 25 independent trials.

from a single source task (although the differences are not statistically significant at

the 95% level).

This experiment shows that it is possible to leverage master’s evaluation of

different inter-task mappings to help determine task similarity. In our experiment,

the transition function of the two hand brake tasks was more similar than the 3D

hand brake task and the 2D non-hand brake task. While encouraging, such a metric

only accounts for the similarity of two tasks’ transition functions. If, for instance, the

target task’s goal state were moved from (0.5, 0.5) to (−1.2,−1.2), it is unlikely that

transferring from either Standard 2D Mountain Car task would improve learning. In

fact, when transferring from such mismatched tasks, it is possible that transfer would

hurt the learner’s performance, relative to learning without transfer. Insulating an

agent from the effects of such negative transfer is a difficult problem that we leave
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Action Mappings for 2 Source Tasks
Target Task Source Task MSE for 2D MSE for 2D Hand

Action Action as Source Task Brake as Source Task

Neutral Left 0.0196 0.0140
Neutral Neutral 0.0188 0.0113
Neutral Right 0.0244 0.0162
Neutral Hand Brake 0.0665

West Left 0.0180 0.0111
West Neutral 0.0226 0.0143
West Right 0.0320 0.0219
West Hand Brake 0.0678

East Left 0.0203 0.0162
East Neutral 0.0175 0.0118
East Right 0.0217 0.0136
East Hand Brake 0.0651

South Left 0.0170 0.0109
South Neutral 0.0195 0.0127
South Right 0.0271 0.0193
South Hand Brake 0.0663

North Left 0.0212 0.0170
North Neutral 0.0181 0.0125
North Right 0.0209 0.0137
North Hand Brake 0.0660

Hand Brake Left 0.1673 0.1284
Hand Brake Neutral 0.1706 0.1285
Hand Brake Right 0.1985 0.1360
Hand Brake Hand Brake 0.0097

Table 7.7: This table shows a representative MSE result when source task actions
from Standard 2D Mountain Car (with and without a hand brake action) are mapped
into a a 3D Hand Brake Mountain Car action. Note that the errors for the 2D hand
brake task are lower than the standard 2D task and that no source task action from
the standard 2D task maps well to the 3D hand brake action.
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to future work, along with refining this proposed task similarity metric to account

for differences in source and target tasks’ reward functions.

7.3 Chapter Summary

This chapter has introduced master, a method for automatically learning a map-

ping between tasks. We have empirically demonstrated the efficacy of this algorithm

on a series of tasks in the Mountain Car domain. These results show that a learned

task mappings can effectively increase the speed of learning in a novel target task

so that the sample complexity is reduced using transfer, relative to learning without

transfer. Additionally, we show an initial approach for leveraging learned inter-task

mappings to assist with the problem of appropriate source task selection.

The chapter also introduced Mapping Learning via Classification, which re-

quires relatively little computation to discover a mapping, but requires domain

knowledge. In situations where a full mapping is known, the full mapping should

be used. If a full mapping is not known but state variables can be partitioned into

different object types, or state variables do not change between the source task

and the target task, Mapping Learning via Classification should be used. Other-

wise, master may be used to select an inter-task mapping, although in the current

implementation, the computational complexity may be prohibitive for large tasks.

This concludes the technical contributions of this dissertation. We have in-

troduced inter-task mappings and demonstrated that they can be used for successful

transfer between tasks with different state variables and actions. These mappings

have been tested in multiple domains, using multiple base RL algorithms, with

different TL algorithms. This chapter has shown that inter-task mappings can be

learned autonomously. The next chapter introduces a framework to characterize dif-

ferent TL algorithms and review related work. Chapter 9 suggests future directions

for TL research and concludes.
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Chapter 8

Related Work

To situate the transfer methods in this dissertation in the context of the literature,

this chapter surveys existing TL algorithms and presents a framework to classify such

methods, including those introduced in this dissertation. As discussed in Chapter 1,

there is a significant amount of transfer work in machine learning (c.f., Caruana

[1995], Thrun [1996]) which we will not discuss, but instead focus on TL in rein-

forcement learning domains. Although techniques for transfer in classification, or

clustering tasks may help inform new RL transfer techniques, they are not directly

applicable to the problems studied in this dissertation.1

TL methods are differentiated according to a number of different criteria.

First, we explicitly separate transfer algorithms, as discussed in this dissertation,

from multi-task learning algorithms (Section 8.2). Second, we consider the types

of benefit a transfer algorithm may provide (e.g., Jumpstart, Asymptotic Perfor-

mance, Total Reward, Reward Area Ratio, and Time to Threshold, as discussed

in Section 2.4), as well as whether the authors test their algorithms in the target

task time scenario or the total time scenario (i.e., whether or not the experiments

1Transfer between regression problems would be directly applicable, as this is similar to transfer
between RL function approximators. However, transfer between regression tasks has thus far been
largely ignored by the community.
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consider source task learning time a sunk cost). Third, we categorize TL algorithms

along five additional dimensions, discussed in detail below: (I) what task difference

assumptions are allowed by the method, (II) how source tasks are selected, (III)

where task mappings come from (if mappings can used by the method), (IV) what

type of knowledge is transferred, and (V) what base RL learners are compatible

with the TL method. All of the methods are summarized in Table 8.1, which is a

concise summary of the methods presented in this chapter.

The five dimensions we use to help organize the work are defined as follows:

I Task difference assumptions: What assumptions does the TL method make

about how the source and target are allowed to differ? Examples of things

that can differ between the source and target tasks include different system

dynamics (i.e., the target task becomes harder to solve is some incremental

way), or different sets of possible actions at some states. Such assumptions

define the types of source and target tasks that the method can transfer be-

tween. Allowing transfer to occur between less similar source and target tasks

gives more flexibility to a human designer in the human-guided scenario. In

the fully autonomous scenario, more flexible methods are likely to be able to

successfully apply past knowledge to novel target tasks, relative to less flexible

TL methods.

TL methods can transfer between MDPs that have different transition func-

tions (denoted by t in Table 8.1), state spaces (s), start states (si), goal states

(sf ), state variables (v), reward functions (r), and/or action sets (a). For two

of the methods, the agent’s representation of the world (the agent space, de-

scribing physical sensors and actuators) remains the same, while the true state

variables and actions (the problem space, describing the task’s state variables

and macro-actions) can change (p in Table 8.1). There is also a branch of work

that focuses on transfer between tasks which are composed of some number of
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objects that may change between the source and the target task, such as when

learning with RRL (# in Table 8.1). When summarizing the allowed task dif-

ferences, we will concentrate on the most salient features. For instance, when

the source task and target task are allowed to have different state variables

and actions, the state space of the two tasks is different because the states are

described differently, and the transition function and reward function must

also change, but we only indicate “a” and “v.”

Consider the Standard 2D Mountain Car task (Section 3.1.1). The above

differences could be exhibited as:

• t: using a more powerful car motor or changing the surface friction of the

hill

• s: changing the range of the state variables

• si: changing where the car starts each episode

• sf : changing the goal state or goal region

• v: describing the agent’s state only by its velocity

• r: rather than a reward of −1 on every step, the reward could be a

function of the distance from the goal state

• a: the agent may have the Neutral action removed, or could have an

additional pull hand brake action added

• p: the agent could describe the state by using extra state variables, such

as the velocity on the previous timestep, but the agent only directly

measures its current position and velocity

• #: the agent may need to control two cars simultaneously on the hill

The TL methods presented in this dissertation, introduced in Chapters 4–6,

may handle changes to t, s, si, sf , v, r, and a.
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II Source task selection: In the simplest case, the agent assumes that a human

has performed source task selection (the human-guided scenario), and transfers

from one or more selected tasks. More complex methods allow the agent to

select a source task or set of source tasks. Such a selection mechanism may

additionally be designed to guard against negative transfer, where transfer

hurts the learner’s performance. The more robust the selection mechanism,

the more likely it is that transfer will be able to provide a benefit. While no

definitive answer to this problem exists, successful techniques will likely have to

account for specific target task characteristics. For instance, Carroll and Seppi

[2005] motivate the need for general task similarity metrics to enable robust

transfer, propose three different metrics, and then proceed to demonstrate

that none is always “best,” just as there is never a “best” inductive bias in a

learning algorithm.

The simplest method for selecting a source task for a given target task is to

assume that only a single source task has been learned and that a human has

picked it, assuring that the agent should transfer from it (h in Table 8.1).

Some TL algorithms allow the agent to learn multiple source tasks and then

use them all for transfer (all). More sophisticated algorithms build a library

of seen tasks and use only the most relevant for transfer (lib). Some methods

are able to automatically modify a single source task so that the knowledge

it gains from the modified task will likely be more useful in the target task

(mod). However, none of the existing TL algorithms for RL can guarantee

that the source tasks will be useful; a current open question is how to robustly

avoid negative transfer.

The TL methods in this dissertation primarily assume that a human has se-

lected an appropriate source task to train on (h), but results in Section 7.2.5

show that master may also be used to select the most relevant source task
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(lib) or weight different source tasks by their similarity (all).

III Task Mappings: Some methods require a mapping to transfer effectively: in

addition to knowing that a source task and target task are related, they need

to know how they are related. Inter-task mappings provide such a mechanism.

If a human is in the loop, the method can uses human-provided task mappings;

if the agent is expected to transfer autonomously, such mappings have to be

learned. Different methods use a variety of techniques to enable transfer, both

on-line (while learning the target task) and offline (after learning the source

task but before learning the target task). Such learning methods attempt to

minimize the number of samples needed and/or the computational complex-

ity of the learning method, while still learning a mapping to enable effective

transfer.

The majority of transfer algorithms either assume that no explicit task map-

pings are necessary because the source and target task have the same state

variables and actions. In addition to having the same labels, the state vari-

ables and actions need to have the same semantic meanings in both tasks (as

discussed in Section 4.1). For instance, consider again the mountain car do-

main. Suppose that the source task had the actions A = {Forward, Neutral,

Backward}. If the target task had the actions A = {Right, Neutral, Left},

a TL method would need some kind of mapping because the actions had dif-

ferent labels. Furthermore, suppose that the target task had the same actions

as the source (A = {Forward, Neutral, Backward}) but the car was facing

the opposite direction, so that Forward accelerated the car in the negative x

direction and Backward accelerated the car in the positive x direction. If the

source and target task actions have different semantic meanings, there will

also need to be some kind of inter-task mapping to enable transfer.

Methods that do not use a task mapping are marked as “N/A” in Table 8.1.
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TL methods which aim to transfer between tasks with different state variables

or actions typically rely on a task mapping to define how the tasks are related.

Methods that use mappings and assume that they are human-supplied map-

pings are marked as “sup” in Table 8.1. A few algorithms leverage experience

gained in the source task and target task (exp) or a high-level description of

the MDPs in order to learn task mappings.

Methods using description-level knowledge differ primarily in what assump-

tions they make about what will be provided. One method assumes a quali-

tative understanding of the transition function (T), which would correspond

to knowledge like “taking the action Neutral tends to have a positive influence

on the velocity in the positive x direction.” Two methods assume knowledge

of one mapping (Ma: the action mapping) to learn a second mapping (the

state variable mapping). Three methods assume that the state variables are

“grouped” together to describe objects (svg), as was discussed in Section 7.1.

These different assumptions are discussed in detail later in Section 8.5.

All six of the TL algorithms presented in this dissertation may use inter-task

mappings. One of the mapping-learning methods, as discussed in the previous

chapter, uses knowledge about grouping of state variables, and the second

needs no external domain knowledge.

IV Transferred Knowledge: What type of information is transferred between the

source and target tasks? This information can range from very low-level in-

formation about a specific task (i.e., the expected outcome when performing

an action in a particular location) to general heuristics that attempt to guide

learning. Different types of knowledge may transfer better or worse depend-

ing on task similarity. For instance, low-level information may transfer across

closely related tasks, while high-level concepts may transfer across pairs of

less similar tasks. The mechanism that transfers knowledge from one task to
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another is closely related to what is being transferred, how the task mappings

are defined (III), and what assumptions about the two tasks are made (I).

The type of knowledge transferred can be primarily characterized by its speci-

ficity. Low-level knowledge, such as 〈 s, a, r, s′ 〉 instances (I in Table 8.1), an

action-value function (Q), a policy (π), a full task model (mod), or prior distri-

butions (pri), could all be directly leveraged by the TL algorithm to initialize

a learner in the target task. Higher level knowledge, such as what action to

use in some situations (A: a subset of the full set of actions), partial policies

or options (πp), rules or advice (rule), important features for learning (fea),

proto-value functions (pvf: a type of learned feature), shaping rewards (R), or

subtask definitions (sub) may not be directly used by the algorithm to fully

define an initial policy, but such information may help guide the agent during

learning in the target task.

TL methods in this dissertation have allowed the transfer of an action-value

function (Q), policies (π), rules, and instances (I).

V Allowed Learners: Does the TL method place restrictions on what RL algo-

rithm is used, such as applying only to temporal difference methods? Different

learning algorithms have different biases. Ideally an experimenter or agent

would select the RL algorithm to use based on characteristics of the task, not

on characteristics of the TL algorithm. Some TL methods require that the

source and target tasks be learned with the same method, others allow a class

of methods to be used in both tasks, but the most flexible methods decouple

the agents’ learning algorithms in the two tasks.

The type of knowledge transferred directly affects the type of learner that is

applicable. For instance, a TL method that transfers an action-value func-

tion would likely require that the target task agent use a TD method to

exploit the transferred knowledge. The majority of methods in the litera-
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ture use a standard form of temporal difference learning (TD in Table 8.1),

such as Sarsa. Other methods include Bayesian learning (B), hierarchical

approaches (H), model-based learning (MB), direct policy search (PS), and

relational reinforcement learning (RRL). Some TL methods focus on batch

learning (Batch), rather than on-line learning. Two methods use case based

reasoning (CBR) [Aamodt and Plaza, 1994] to help match previously learned

instances with new instances, and one uses linear programming (LP) to calcu-

late a value function from a given model (as part of a dynamic programming

routine).

TL methods in this dissertation have used Sarsa (TD), NEAT (PS), and

instance-based model-learning (MB).

This chapter is organized around Table 8.1. The first two groups of methods

apply to tasks which have the same state variables and actions. (Section 8.1 discusses

the TL methods in the first block, and Section 8.2 discusses the MTL methods in

the second block.) Groups three and four consider methods that transfer between

tasks with different state variables and actions. (Section 8.3 discusses methods that

use a representation that does not change when the underlying MDP changes, while

Section 8.4 presents methods that must explicitly account for such changes.) The

last group of papers (discussed in Section 8.5) are methods that learn a mapping

between tasks like those used by methods in the fourth group of methods. Table 8.2

concisely enumerates the possible values for the attributes, as well as providing a

key to Table 8.1.
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Summary of Existing TL Methods

Allowed Source Task Transferred Allowed TL

Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection

Same state variables and actions: Section 8.1

Selfridge et al. [1985] t h N/A Q TD tt†

Asada et al. [1994] si h N/A Q TD tt

Singh [1992] r all N/A Q TD ap, tr

Atkeson and Santamaria [1997] r all N/A mod MB ap, j, tr

Asadi and Huber [2007] r h N/A πp H tt

Andre and Russell [2002] r, s h N/A πp H tr

Ravindran and Barto [2003b] s, t h N/A πp TD tr

Ferguson and Mahadevan [2006] r, s h N/A pvf Batch tt

Sherstov and Stone [2005] sf , t mod N/A A TD tr

Madden and Howley [2004] s, t all N/A rule TD tt, tr

Lazaric [2008] s, t lib N/A I Batch j, tr

Multi-Task learning: Section 8.2

Mehta et al. [2005] r lib N/A πp H tr

Perkins and Precup [1999] t all N/A πp TD tt

Foster and Dayan [2004] sf all N/A sub TD, H j, tr

Fernandez and Veloso [2006] si, sf lib N/A π TD tr

Tanaka and Yamamura [2003] t all N/A Q TD j, tr

Sunmola and Wyatt [2006] t all N/A pri B j, tr

Wilson et al. [2007] r, sf all N/A pri B j, tr

Walsh et al. [2006] r, s all N/A fea any tt

Lazaric [2008]⋆ r all N/A fea Batch ap, tr

Different state variables and actions – no explicit inter-task mappings: Section 8.3

Konidaris and Barto [2006] p h N/A R TD j, tr

Konidaris and Barto [2007] p h N/A πp TD j, tr

Banerjee and Stone [2007] a, v h N/A fea TD ap, j, tr

Guestrin et al. [2003] # h N/A Q LP j

Croonenborghs et al. [2007] # h N/A πp RRL ap, j, tr

Ramon et al. [2007] # h N/A Q RRL ap, j, tt†, tr

Sharma et al. [2007] # h N/A Q TD, CBR j, tr

Table continues on next page . . .
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Different state variables and actions – use inter-task mappings: Section 8.4

Taylor et al. [2007a] a, v h sup Q TD tt†

Taylor et al. [2007b] a, v h sup π PS tt†

Taylor et al. [2008b] a, v h sup I MB ap, tr

Torrey et al. [2005]
a, r, v h sup rule TD j, tr

Torrey et al. [2006]

Torrey et al. [2007] a, r, v h sup πp TD j, tr

Taylor and Stone [2007b] a, r, v h sup rule any/TD j, tt†, tr

Taylor and Stone [2007a] a, v h sup I TD, PS j, tt†, tr

Learning inter-task mappings: Section 8.5

Kuhlmann and Stone [2007] a, v h T Q TD j, tr

Liu and Stone [2006] a, v h T N/A all N/A

Soni and Singh [2006] a, v h Ma, svg, exp N/A all ap, j, tr

Talvitie and Singh [2007] a, v h Ma, svg, exp N/A all j

Taylor et al. [2007b]⋆ a, v h svg, exp N/A all tt†

Taylor et al. [2008c] a, v h exp N/A all j, tr

Table 8.1: This table lists all the TL methods discussed in this

survey and classifies each in terms of the five transfer dimensions

(the key for abbreviations is in Table 8.2). Two entries, marked

with a ⋆, are repeated due to multiple contributions. Metrics that

account for source task learning time, rather than ignoring it, are

marked with a †.

8.1 Fixed State Variables and Actions

To begin our survey of TL methods, we examine the first group of methods in

Table 8.1. These techniques may be used for transfer when the source and target

tasks use the same state variables and when agents in both tasks have the same set

of actions (see Figure 8.1), which renders inter-task mappings unnecessary.

In one of the earliest TL works for RL, Selfridge et al. [1985] demonstrated

that it was faster to learn to balance a pole on a cart by changing the task’s transition

function, T , over time. The learner was first trained on a long and light pole. Once

it successfully learned to balance the pole the task was made harder: the pole

was shortened and made heavier. The total time spent training on a sequence of
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Allowed Task Differences Transferred Knowledge
a action set may differ A an action set
p problem space may differ fea task features

(agent space must be identical) I experience instances
r reward function may differ mod task model
si the start state may change π policies
sf goal state may move πp partial policies (e.g., options)
t transition function may differ pri distribution priors
v state variables may differ pvf proto-value function
# number of objects in state may differ Q action-value function

R shaping reward
rule rules or advice
sub subtask definitions

Source Task Selection
all all previously seen tasks are used Allowed Learners
h one source task is used (human selected) B Bayesian learner
lib tasks are organized into a library Batch batch learner

and one or more may be used CBR case based reasoning
mod a human provides a source task that H hierarchical value-function learner

the agent automatically modifies LP linear programming
MB model based learner

Task Mappings PS policy search learner
exp agent learns the mappings from experience RRL relational reinforcement learning
Ma the method must be provided with an TD temporal difference learner

action mapping (learns state variable mapping)
N/A no mapping is used TL Metrics
sup a human supplies the task mappings ap asymptotic performance increased
svg method is provided groupings of state variables j jumpstart demonstrated
T higher-level knowledge is provided tr total reward increased

about transfer functions to learn mapping tt task learning time reduced

Table 8.2: This key provides a reference to the abbreviations in Table 8.1.
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Figure 8.1: Methods in Section 8.1 are able to transfer between tasks that have
different state spaces, different transition functions, and different reward functions,
but only if the source and target tasks have the same actions and state variables.
Dashed circles indicate the MDP components which may differ between the source
task and target task.

tasks and reusing the learned function approximator was faster than training on the

hardest task directly.

Similarly, the idea of learning from easy missions [Asada et al., 1994] also

relies on a human constructing a set of tasks for the learner. In this work, the task

(for example, a maze) is made incrementally harder not by changing the dynamics

of the task, but by moving the agent’s initial state, sinitial, further and further from

the goal state. The agent incrementally learns how to navigate to the exit faster

than if it had tried to learn how to navigate the full maze directly. This method

relies on having a known goal state from which a human can construct a series of

source tasks of increasing difficulty.

Rather than change a task over time, one could consider breaking down a task

into a series of smaller tasks. This approach can be considered a type of transfer in

that a single large target task can be treated as a series of simpler source tasks. Singh
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[1992] uses compositional learning to discover how to separate temporally sequential

subtasks in a monolithic task. Each subtask has distinct beginning and termination

conditions, and each subtask will be significantly easier to learn in isolation than

in the context of the full task. Only the reward function, R, is allowed to change

between the different subtasks and none of the other MDP components may vary,

but the total reward can be increased. If subtasks in a problem are recognizable by

state features, such subtasks may be automatically identified via vision algorithms

[Drummond, 2002]. Again, breaking a task into smaller subtasks can improve both

the total reward and the asymptotic performance. However, this particular method

is only directly applicable to tasks in which features clearly define subtasks.

Atkeson and Santamaria [Atkeson and Santamaria, 1997] again consider trans-

fer between tasks in which only the reward function can differ. This work success-

fully transfers a locally weighted regression model learned in a source task by directly

applying it to a target task. Because their model enables planning over the tran-

sition function and does not account for the reward function, they show significant

improvement to the jumpstart and total reward, as well as the asymptotic perfor-

mance.

The next three methods transfer partial policies, or options, between different

tasks. First, Asadi and Huber [2007] have the agent identify states that “locally

form a significantly stronger ‘attractor’ for state space trajectories” as subgoals

in the source task (i.e., a doorway between rooms that is visited relatively often

compared to other parts of the state space). The agent then learns options to

reach these subgoals in a decision-level model. A second evaluation-level model

includes all actions and the full state space. The agent selects actions by only

considering the decision-level model but uses discrepancies between the two models

to automatically increase the complexity of the decision-level model as needed. The

model is represented as a Hierarchical Bounded Parameter SMDP, constructed so
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that the performance of an optimal policy in the simplified model will be within

some fixed bound of the performance of the optimal policy on the initial model.

Experiments show that transferring both the learned options and the decision-level

representation allow the target task agent to learn faster on a task with a different

reward function. In the roughly 20,000 state target task, only 81 distinct states are

needed in the decision-level model, as most states do not need to be distinguished

when selecting from learned options.

Second, Andre and Russell [2002] transfer learned subroutines between tasks,

which are similar to options. The authors assume that the source and target tasks

have a hierarchical structure, such as in the taxi domain [Dietterich, 2000]. On-line

analysis can uncover similarities between two tasks if there are only small differences

in the state space and then directly copy over the subroutine, which functions as a

partial policy, thereby increasing the total reward in the target task. This method

highlights the connection between state abstraction and transfer; if similarities can

be found between parts of the state space in the two tasks, it is likely that good

local controllers or local policies can be directly transferred.

Third, Ravindran and Barto [2003b] learn relativized options in a small, hu-

man selected source task. When training in the target task, the agent is provided

these options and a set of possible transformations it could apply to them so that

they applied to the target. For instance, if the source task were a small grid nav-

igation task, the target task could be a large grid composed of rooms with similar

shape to the source task and the transformations could be rotation and reflection

operators. The agent uses experience in the target and Bayesian parameter estima-

tion to select which transformations to use so that the target task’s total reward is

increased. Learning time in the source task is ignored, but is assumed to be small

compared to the target task learning time.

Next, Ferguson and Mahadevan [2006] take a unique approach that transfers
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information about the underlying task structure. Proto-value functions (PVFs)

[Mahadevan and Maggioni, 2007] specify an ortho-normal set of basis functions,

without regard to R, which can be used to learn an action-value function. After

PVFs are learned in a small source task, they can be transferred to another discrete

MDP that has a different goal or small changes to the state space. The target task

can be learned faster and achieve higher total reward with the transferred PVFs

than without. Additionally, the PVF can be scaled to larger tasks. For example,

the target maze could have twice the width and height of the source maze: R, S,

and T are all scaled by the same factor. In all cases only the target task time is

counted.

Instead of biasing the target task agent’s learning representation by trans-

ferring a set of basis functions, Sherstov and Stone [2005] consider how to bias an

agent by transferring an appropriate action set. If tasks have large action sets, all

actions could be considered when learning each task, but learning would be much

faster if only a subset of the actions needed to be evaluated. If a reduced action set

is selected such that using it could produce near-optimal behavior, learning would

be much faster with very little loss in final performance. The standard MDP formal-

ism is modified so that the agent reasons about outcomes and classes. Informally,

rather than reasoning over the probability of reaching a given state after an action,

the learner reasons over the actions’ effect, or outcome. States are grouped together

in classes such that the probability of a given outcome from a given action will be

the same for any state in a class. The authors then use their formalism to bound

the value lost by using their abstraction of the MDP. If the source and target are

very similar, the source task can be learned with the full action set, the optimal

action set can be found from the learned Q-values, and learning the target with

this smaller action set can speed up learning in the target task. The authors also

introduce random task perturbation (RTP) which creates a series of source tasks

249



from a single source task, thereby producing an action set which will perform well

in target tasks that are less similar to the source task. Transfer with and without

RTP is experimentally compared to learning without transfer. While direct action

transfer can perform worse than learning without transfer, RTP was able to han-

dle misleading source task experience so that performance was improved relative

to no transfer in all target tasks and performance using the transferred actions ap-

proaches that of the optimal target task action set. Performance was judged by the

total reward accumulated in the target task. Leffler et al. [2007] extends the work of

Sherstov and Stone by applying the outcome/class framework to learn a single task

significantly faster. Included in the paper is an analysis of the sample complexity

of the RAM-Rmax algorithm, and experiments in both a simulated task as well as

a physical robot task.

Similar to Selfridge et al. [1985] and Asada et al. [1994], the method Pro-

gressive RL [Madden and Howley, 2004] transfers between a progression of tasks of

increasing difficulty, but is limited to discrete MDPs. After learning a source task,

the agent performs introspection where a symbolic learner extracts rules for acting

based on learned Q-values from all previously learned tasks. The RL algorithm and

introspection use different state features, where the state features for the symbolic

learner are higher-level and contain information otherwise hidden from the agent.

When the agent acts in a novel task, the first time it reaches a novel state it ini-

tialize the Q-values of that state so that the action suggested by the learned rule

is preferred. Using Progressive RL, the agent is able to achieve higher total reward

and reach the goal state for the first time faster. Time spent in the source task(s)

is not counted.

Finally, Lazaric [2008] demonstrates that source task instances can be use-

fully transferred between tasks. After learning one or more source tasks, some

experience is gathered in the target task, which may have a different state space or
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transition function. Saved instances (that is, observed 〈s, a, r, s′〉 tuples) are com-

pared to instances from the target task. Instances from the source tasks that are

most similar, as judged by their distance and alignment with target task data, are

transferred. A batch learning algorithm then uses both source instances and tar-

get instances to achieve a higher reward and a jumpstart. Region transfer takes the

idea one step further by looking at similarity with the target task per-sample, rather

than per task. Thus, if source tasks have different regions of the state space which

are more similar to the target, only those most similar regions can be transferred.

In these experiments, time spent training in the target task is not counted towards

the TL algorithm.

Taken together, these TL methods show that it is possible to efficiently trans-

fer many different types of information between tasks with a variety of differences.

None of these methods use task mappings because they require that the state rep-

resentations and action sets are identical in the source and target tasks.

8.2 Multi-Task Learning Methods

Closely related to TL algorithms are multi-task learning (MTL) algorithms. The

primary distinction between MTL and TL is that multi-task learning methods as-

sume all problems experienced by the agent are drawn from the same distribution,

while TL methods may allow for arbitrary source and target tasks. For example, a

MTL task could be to learn a series of mountain car tasks, each of which had a tran-

sition function that was drawn from a fixed distribution of functions that specified

a range of surface frictions. Because of this assumption, MTL methods generally

do not need task mappings. MTL algorithms may be used to transfer knowledge

between learners, similar to TL algorithms, or they can attempt to learn how to act

on the entire class of problems. In MTL, problems can be learned simultaneously,

which is particularly appropriate for multiagent settings [Stone and Veloso, 2000],
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as each agent could be considered as learning a slightly different task. In transfer

learning settings, the tasks are typically learned in series, rather than parallel.

Sutton et al. [2007] motivate this approach to transfer by suggesting that a

single large task may be most appropriately tackled as a sequential series of subtasks.

If the learner can track which subtask it is currently in, it may be able to transfer

knowledge between the different subtasks, which are all presumably related because

they are part of the same overall task. Such a setting may provide a well-grounded

way of selecting a distribution of tasks to train over, either in the context of transfer

or for multi-task learning. Note also that the additional assumptions in an MTL

setting may be leveraged to allow a more rigorous theoretical analysis than in TL

(c.f. Kalmr and Szepesvri [1999]).

This section, like the previous, discusses scenarios where the source tasks and

target task have the same state variables and actions. However, these methods (see

Table 8.3, reproduced from Table 8.1) are explicitly MTL, and all methods in this

section are designed to utilize multiple source tasks (see Figure 8.2). Some methods

utilize all experienced source tasks when learning a novel target task and others are

able to choose a subset of previously experienced tasks. Which approach is most

appropriate depends on the assumptions about the task distribution: if tasks are

expected to be similar enough that all past experience is useful, there is no need

to select a subset. On the other hand, if the distribution of tasks is multi-modal,

it is likely that transferring from all tasks is sub-optimal. None of the methods

account for time spent learning in the source task(s) as the primary concern is

effective learning on the next task chosen at random from an unknown (but fixed)

distribution of MDPs.

As a first example of MTL, Variable-reward transfer learning [Mehta et al.,

2005] assumes that the learner will train on a sequence of tasks which are identical

except for different reward weights. The reward weights define how much reward

252



Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection

Multi-Task learning: Section 8.2
Mehta et al. [2005] r lib N/A πp H tr

Perkins and Precup [1999] t all N/A πp TD tt
Foster and Dayan [2004] sf all N/A sub TD, H j, tr

Fernandez and Veloso [2006] si, sf lib N/A π TD tr
Tanaka and Yamamura [2003] t all N/A Q TD j, tr
Sunmola and Wyatt [2006] t all N/A pri B j, tr

Wilson et al. [2007] r, sf all N/A pri B j, tr
Walsh et al. [2006] r, s all N/A fea any tt

Lazaric [2008]⋆ r all N/A fea Batch ap, tr

Table 8.3: This table reproduces the group of MTL methods from Table 8.1.
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Figure 8.2: Multi-task learning methods assume tasks are chosen from a fixed distri-
bution and use one or more source tasks to help learn the current task and assume
that all the tasks have the same actions and state variables. Dashed circles indicate
the MDP components which may differ between tasks.
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is assigned via a linear combination of reward features. The authors provide the

reward features to the agent for a given set of tasks. For instance, in the paper’s

experimental section, they use a real-time strategy domain where different tasks

change “the reward weighting for bringing in units of wood, gold, and damaging

the enemy.” Using a hierarchical RL method, subtask policies are learned. When a

novel target task is encountered, the agent sets the initial policy to the previously

learned policy that is closest, as determined by the dot product with previously

observed reward weight vectors. The agent then uses an ǫ-greedy action selection

method at each level of the task hierarchy to decide whether to use the best known

sub-task policy or explore. Some sub-tasks, such as navigation, will never need to

be relearned for different tasks because they are unaffected by the reward weights,

but any suboptimal sub-task policies will be improved. As the agent experiences

more tasks, the total reward in each new target task increases, relative to learning

the task without transfer.

Perkins and Precup [1999] pose a different problem formulation where the

agent is placed in a new task every time it reaches the goal state. The transition

function, T , may change between tasks and the agent does not know which task it

has been placed in. Over time, the agent learns the expected return for executing

hand-coded options, which significantly reduce the average time needed to discover

the goal in a novel task.

Instead of transferring options, Foster and Dayan [2004] aim to identify sub-

tasks in a source task and use this information in a target task, a motivation similar

to that of Singh [1992]. Tasks are allowed to differ in the placement of the goal state.

As optimal value functions are learned in source tasks, an expectation-maximization

algorithm [Dempster et al., 1977] identifies different “fragmentations,” or sub-tasks,

across all learned tasks. Once learned, the fragmentations are used to augment

the state of the agent. Each sub-problem can be learned independently; when
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encountering a new task, much of the learning is already complete because the

majority of sub-problems are unchanged. The fragmentations work with both a flat

learner (i.e., TD) and an explicitly hierarchical learner to improve the jumpstart

and total reward.

Probabilistic policy reuse [Fernandez and Veloso, 2006] also considers a dis-

tribution of tasks in which only the goal state differs, but is one of the most robust

MTL methods in terms of appropriate source task selection. Although the method

allows a single goal state to differ between the tasks, it requires that S, A, and T

remain constant. If a newly learned policy is significantly different from existing

policies, it is added to a policy library. When the agent is placed in a novel task, it

can choose to exploit a learned source task policy, exploit the current best policy for

the target task, or randomly explore. If the agent has multiple learned policies in

its library, it probabilistically selects between policies so that over time more useful

policies will be selected more often. The paper’s results show that as more source

tasks are learned the area under target task learning curves increase.

Unlike probabilistic policy reuse, which selectively transfers information from

a single source task, Tanaka and Yamamura [2003] gather statistics about all previ-

ous tasks and use this amalgamated knowledge to learn a novel task faster. Specif-

ically, the learner keeps track of the average and the deviation for each (s, a) pair

observed in all tasks. When the agent encounters a new task, it initializes the

action-value function so that every (s, a) pair is set to the current average for that

pair, which provides a benefit relative to uninformed initialization. As the agent

learns the target task with Q-learning and prioritized sweeping2, the agent uses the

standard deviation to set priorities on TD backups. If the current Q-value is far

from the average for that (s, a) pair, its value should be adjusted more quickly,

2Prioritized sweeping [Moore and Atkeson, 1993] is a RL method that orders adjustments to the
value function based on their “urgency,” which can lead to faster convergence than when updating
the value function in the order of visited states.
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since it is likely incorrect (and thus should be corrected before affecting other Q-

values). Additionally, another term accounting for the variance within individual

trials is added to the priority; Q-values that fluxuate often within a particular trial

are likely wrong. Experiments show that this method, when applied to sets of dis-

crete tasks with different transition functions, can provide significant improvement

to jumpstart and total reward.

The next two methods consider how priors can be effectively learned by

a Bayesian MTL agent. First, Sunmola and Wyatt [2006] introduce two methods

that use instances from source tasks to set priors in a Bayesian learner. Both

methods constrain the probabilities of the target task’s transition function by using

previous instances as soft constraints. Initial experiments show that the jumpstart

and total reward can be improved if the agent has an accurate estimation of the

prior distributions of the class from which the target is drawn. Second, Wilson et al.

[2007] consider learning in a hierarchical Bayesian RL setting. Setting the prior for

Bayesian models is often difficult, but in this work the prior may be transferred from

previously learned tasks, significantly increasing the learning rate. Additionally, the

algorithm can handle “classes” of MDPs, which have similar model parameters,

and then recognize when a novel class of MDP is introduced. The novel class

may then be added to the hierarchy and a distinct prior may be learned, rather

than forcing the MDP to fit into an existing class. The location of the goal state

and the parameterized reward function may differ between the tasks. Learning on

subsequent tasks shows a clear performance improvement in total reward, and some

improvement in jumpstart.

Walsh et al. [2006] observe that “deciding what knowledge to transfer be-

tween environments can be construed as determining the correct state abstraction

scheme for a set of source [tasks] and then applying this compaction to a target

[task].” Their suggested framework solves a set of MDPs, builds abstractions from
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the solutions, extracts relevant features, and then applies the feature-based ab-

straction function to a novel target task. A simple experiment utilizing tasks with

different state spaces and reward functions shows that the time to learn a target

task is decreased by using MTL. Building upon their five defined types of state ab-

stractions (as defined in Li et al. [2006]), they give theoretical results showing that

when the number of source tasks is large (relative to the differences between the

different tasks), four of the five types of abstractions are guaranteed to produce the

optimal policy in a target task using Q-learning.

Similar to Walsh et al. [2006], Lazaric [2008] also discovers features to trans-

fer. Rather than learning tasks sequentially, as in all the papers above, one could

consider learning different tasks in parallel and using the shared information to

learn the tasks better than if each were learned in isolation. Specifically, Lazaric

[2008] learns a set of tasks with different reward functions using the batch method

Fitted Q-iteration [Ernst et al., 2005]. By leveraging a multi-task feature learning

algorithm [Argyrious et al., 2007], the problem can be formulated as a joint opti-

mization problem to find the best features and learning parameters across observed

data in all tasks. Experiments demonstrate that this method can improve the total

reward and can help the agent to ignore irrelevant features (i.e., features which do

not provide useful information). Furthermore, since it may be possible to learn a

superior representation, asymptotic performance may be improved as well, relative

to learning tasks in isolation.

The work in this section, as summarized in the second section of Table 8.1,

explicitly assumes that all MDPs an agent experiences are drawn from the same

distribution. Different tasks in a single distribution could, in principal, have different

state variables and actions, and future work could investigate when allowing such

flexibility would be beneficial. In practice, however, MTL methods have assumed

that these are kept constant, and thus no inter-task mapping is required.
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8.3 Transfer Methods without Task Mappings

This section, unlike the previous two, discusses methods that allow the source task

and target task to have different state variables and actions (see Figure 8.3 and the

methods in Table 8.4). These methods formulate the problem so that inter-task

mappings are not needed. Instead the agent reasons over abstractions of the MDP

that are invariant when the actions or state variables change.

For example, Konidaris and Barto [2006] have separated the standard RL

problem into agent-space and problem-space representations. The agent-space is

determined by the agent’s capabilities, which remain fixed (i.e., physical sensors

and actuators), although such a space may be non-Markovian3. The problem-space,

on the other hand, may change between source and target problems and is assumed

to be Markovian. The authors learn a shaping reward [Colombetti and Dorigo, 1993,

Mataric, 1994] on-line in agent-space while learning a source task. If a later target

task has a similar reward structure and action set, the learned shaping reward will

help the agent achieve a jumpstart and higher total reward. For example, suppose

that a beacon is visible near the goal state; the agent may learn a shaping reward

that assigns reward when the state variable describing its distance to the beacon is

reduced, even in the absence of an environmental reward. The authors assume that

there are no novel actions (i.e., actions which are not in the source task’s agent-

space) but new state variables can be handled if the can be mapped from the novel

problem-space into the agent-space. Additionally, the authors acknowledge that the

transfer must be between “reward-linked” tasks, but determining if a sequence of

tasks meet this criterion is left for future work.

In later work [Konidaris and Barto, 2007], the authors assume knowledge

of “pre-specified salient events.” When the agent achieves one of these subgoals,

3A standard assumption is that a task is Markovian, meaning that the probability distribution
over next states is independent of the agent’s state and action history. Thus, saving a history would
not assist the agent when selecting actions, and it can consider each state in isolation.
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection

Different state variables and actions – no explicit inter-task mappings: Section 8.3
Konidaris and Barto [2006] p h N/A R TD j, tr
Konidaris and Barto [2007] p h N/A πp TD j, tr
Banerjee and Stone [2007] a, v h N/A fea TD ap, j, tr

Guestrin et al. [2003] # h N/A Q LP j
Croonenborghs et al. [2007] # h N/A πp RRL ap, j, tr

Ramon et al. [2007] # h N/A Q RRL ap, j, tt†, tr
Sharma et al. [2007] # h N/A Q TD, CBR j, tr

Table 8.4: This table reproduces the third group of methods from Table 8.1.
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Figure 8.3: Methods in Section 8.3 are able to transfer between tasks with different
state spaces. Although T , R, A, and the state variables may also technically change,
the agent’s internal representation is formulated so that they remain fixed between
source and target tasks. As in previous figures, MDP components with a dashed
circle may change between the source task and target task.
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such as unlocking a door or moving through a doorway, the agent may learn an

option to achieve the event again in the future. As expected, problem-space options

speed up learning a single task. More interesting, when the agent trains on a series

of tasks, options in both agent-space and problem-space significantly increase the

jumpstart and total reward in the target task (time spent learning the source task

is discounted). The authors suggest that agent-space options will likely be more

portable than problem-space options in cases where the source and target tasks are

less similar.

If transfer is applied to game trees, changes in actions and state variables

may be less problematic. Banerjee and Stone [2007] are able to transfer between

games by focusing on this more abstract formulation. For instance, in experiments

the learner identified the concept of a fork, a state where the player could win on the

subsequent turn regardless of what move the opponent took next. After training in

the source task, analyzing the source task data for such features, and then setting

the value for a given feature based on the source task data, such features were

used in a variety of target tasks. This analysis focuses on the effects of actions

on the game tree and thus the actions and state variables describing the source

and target game can differ without requiring an inter-task mapping. Source task

time is discounted, but jumpstart, total reward, and asymptotic performance are

all improved via transfer. Although the experiments in the paper use only temporal

difference learning, it is likely that this technique would work well with other types

of learners.

Instead of learning the value of states in an MDP, the value function for

classes of similar agents can be learned [Guestrin et al., 2003]. Assuming that T

and R are similar for all agents in a class, these class-based value subfunctions can

be learned in a source task and then directly used in a target task that has a different

number of objects. The agents do no further learning in the target task, but the
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transferred value functions perform better than a handcoded strategy, although the

target task has different state variables and actions. However, the authors note that

the technique will not perform well in heterogeneous environments or domains with

“strong and constant interactions between many objects.”

Relational Reinforcement Learning may also be used for effective transfer.

Rather than reasoning about states as input from an agent’s sensors, an RRL learner

typically reasons about a state in relational form by constructing first-order rules.

The learner can easily abstract over specific object identities as well as the number

of objects in the world; transfer between tasks with different number of objects is

simplified. Croonenborghs et al. [2007] first learn a source task policy with RRL.

The learned policy is used to create examples of state-action pairs, which are then

used to build a relational decision tree. This tree predicts, for a given state, which

action would be executed by the policy. Lastly, the trees are mined to produce

relational options. These options are directly used in the target task with the as-

sumption that the tasks are similar enough that no translation of the relational

options is necessary. The authors consider three pairs of source/target tasks where

relational options learned in the source directly apply to the target task (only the

number of objects in the tasks may change), and learning is significantly improved

in terms of jumpstart, total reward, and asymptotic performance.

Other work using RRL for transfer [Ramon et al., 2007] introduces the TgR

algorithm, a relational decision tree algorithm. TgR incrementally builds a deci-

sion tree in which internal nodes use first-order logic to analyze the current state

and where the tree’s leaves contain action-values. The algorithm uses four tree-

restructuring operators to effectively utilize available memory and increase sample

efficacy. Both target task time and total time are reduced by first training on a

simple source task and then on a related target task. Jumpstart, total reward, and

asymptotic performance also appear to improve via transfer.
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With motivation similar to that of RRL, some learning problems can be

framed so that agents choose between high-level actions that function regardless

of the number of objects being reasoned about. Sharma et al. [2007] combines

case-based reasoning with RL in the CAse-Based Reinforcement Learner (CARL),

a multi-level architecture includes three modules: a planner, a controller, and a

learner. The tactical layer uses the learner to choose between high-level actions

which are independent of the number of objects in the task. The cases are indexed

by: high-level state variables (again independent of the number of objects in the

task), the actions available, the Q-values of the actions, and the cumulative contri-

bution of that case on previous timesteps. Similarity between the current situation

and past cases is determined by Euclidean distance. Because the state variables and

actions are defined so that the number of objects in the task can change, the source

and target tasks can have different numbers of objects (in the example domain, the

authors use different numbers of player and opponent troops in the source and tar-

get tasks). Time spent learning the source task is not counted, but the target task

performance is measured in terms of jumpstart, asymptotic gain (a metric related to

the improvement in average reward over learning), and overall gain (a metric based

on the total reward accrued).

In summary, methods surveyed in this section all allow transfer between tasks

with different state variables and actions, as well as transfer functions, state spaces,

and reward functions. By framing the task in an agent-centric space, limiting the

domain to game trees, or by using a learning method that reasons about variable

numbers of objects, knowledge can be transferred between tasks with relative ease

because the problem representations do not change from the learner’s perspective.

In general, not all tasks may be formulated so that they conform to the assumptions

made by TL methods presented in this section.
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8.4 Transfer between Different Actions and State Rep-

resentations

This section of the survey focuses on a set of methods which are more flexible than

those previously discussed as they allow the state variables and available actions

to differ between source and target tasks (see Table 8.5 and Figure 8.4), without

the additional restrictions of methods in the previous section. Note that because of

changes in state variables and actions, R, S, and T , all technically change as well

(because they are functions defined over actions and state variables). However, as

we elaborate below, some of the methods allow for significant changes in reward

functions between the tasks, while most do not.

Value Function Transfer [Taylor et al., 2007a] (Section 4.2), and Q-Value

Reuse [Taylor et al., 2007a] (Section 5.1) both require that the source task and target

task agents use value-function-learning methods. Both of these methods differ from

all previously discussed TL methods in this chapter because of their ability to use

inter-task mappings. These mappings, which must be supplied by a human or by

a mapping-learning algorithm, empirically allow successful transfer between tasks

with different state variables and actions. Value Function Transfer is also shown

effective for multi-step transfer where a set of tasks are learned in series. Finally,

both of these methods are able to reduce the total training time, a more difficult

goal than reducing the target task training time.

Policy Transfer [Taylor et al., 2007b] (Section 5.2) transfer entire policies be-

tween tasks with different state variables and actions, one of only two such methods

surveyed in Table 8.1. A set of policies is first learned via a genetic algorithm in

the source task and then transformed via inter-task mappings. Additionally, partial

inter-task mappings are introduced, which may be easier for a human to intuit in

many domains. Policies are transformed using inter-task mappings and then used

to seed the learning algorithm in the target task. As in the previous work, this
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection

Different state variables and actions – use inter-task mappings: Section 8.4

Taylor et al. [2007a] a, v h sup Q TD tt†

Taylor et al. [2007b] a, v h sup π PS tt†

Taylor et al. [2008b] a, v h sup I MB ap, tr
Torrey et al. [2005]

a, r, v h sup rule TD j, tr
Torrey et al. [2006]
Torrey et al. [2007] a, r, v h sup πp TD j, tr

Taylor and Stone [2007b] a, r, v h sup rule any/TD j, tt†, tr
Taylor and Stone [2007a] a, v h sup I TD, PS j, tt†, tr

Table 8.5: This table reproduces the fourth group of methods from Table 8.1.
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Figure 8.4: Methods in Section 8.4 focus on transferring between tasks with different
state features, action sets, and possible reward functions (which, in turn, causes the
state space and transition function to differ as well). As in previous figures, MDP
components with a dashed circle may change between the source task and target
task.
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TL method can successfully reduce both the target task time and the total time.

The primary contribution of Policy Transfer is to show that if a direct policy search

learner is used, rather than a value-function-learning RL algorithm, inter-task map-

pings can still effectively transfer between tasks with different state variables and

actions.

Transferring Instances for Model-Based REinforcement Learning (timbrel)

[Taylor et al., 2008b], discussed in Section 6.1, again applies to pairs of tasks where

the actions differ, the state variables differ, and inter-task mappings are available

to the learner. In this work, we allow transfer between model-learning methods

by transferring instances, which is similar in spirit to Lazaric [2008]. Fitted R-

max [Jong and Stone, 2007], an instance-based model-learning method capable of

learning in continuous state spaces, is used as the base RL method. Experiments

in a simple continuous domain show that transfer can improve the jumpstart, total

reward, and asymptotic performance in the target task.

Most related to the transfer methods introduced in this dissertation are the

methods of Torrey et al., which also transfer between tasks with different state

variables and actions. The group’s first method [Torrey et al., 2005] automatically

extracted advice from a source task by identifying actions which have higher Q-values

than other available actions. Such advice is mapped via human-provided inter-task

mappings to the target task as preferences given to the target task learner. In

this work, Q-values are learned via support vector regression, and then Preference

Knowledge Based Kernel Regression (KBKR) [Maclin et al., 2005] adds the advice

as soft constraints in the target, setting relative preferences for different actions

in different states. The advice is successfully leveraged by the target task learner

and decreases the target task learning time, even when the source task has different

state variables and actions. Additionally, the reward structure of the tasks may differ

substantially: their experiments use a source task whose reward is an unbounded
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score based on episode length, while the target task’s reward is binary, depending

on if the agents reached a goal state or not. Source task time is discounted and the

target task learning is improved slightly in terms of total reward and asymptotic

performance.

Later work [Torrey et al., 2006] improves upon this method by using induc-

tive logic programming (ILP) to identify skills that are useful to the agent in a

source task. A trace of the agent in the source task is examined and both positive

and negative examples are extracted. Positive and negative examples are identified

by observing which action was executed, the resulting outcome, the Q-value of the

action, and the relative Q-value of other available actions. Skills are extracted using

the ILP engine Aleph [Srinivasan, 2001] by using the F1 score (the harmonic mean of

precision and recall). These skills are then mapped by a human into the target task,

where they improve learning via KBKR. Source task time is not counted towards

the target task time, jumpstart may be improved, and the total reward is improved.

The source and target tasks again differ in terms of state variables, actions, and

reward structure. The authors also show how human-provided advice may be easily

incorporated in addition to advice generated in the source task. Finally, the authors

experimentally demonstrate that giving bad advice to the learner is only temporar-

ily harmful and that the learner can “unlearn” bad advice over time, which may be

important for minimizing the impact of negative transfer.

Torrey et al. [2007] further generalize their technique to transfer strategies,

which may require composing several skills together, and are defined as a finite-state

machine (FSM). The structure learning phase of their algorithm analyzes source task

data to find sequences of actions that distinguish between successful and unsuccessful

games (e.g., whether or not a goal was reached), and composes the actions into a

FSM. The second phase, ruleset learning, learns when each action in the strategy

should be taken based on state features, and when the FSM should transition to the
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next state. Experience in the source task is again divided into positive and negative

sequences for Aleph. Once the strategies are re-mapped to the target task via a

human-provided mapping, they are used to demonstrate a strategy to the target

task learner. Rather than explore randomly, the target task learner always executes

the transferred strategies for the first 100 episodes and thus learns to estimate the Q-

values of the actions selected by the transferred strategies. After this demonstration

phase, the learner chooses from the MDP’s actions, not the high-level strategies, and

can learn to improve on the transferred strategies. Experiments demonstrate that

strategy transfer significantly improves the jumpstart and total reward in the target

task when the source and target tasks have different state variables and actions

(source task time is again discounted).

Similar to strategy transfer, Rule Transfer Taylor and Stone [2007b] (Sec-

tion 6.2) learns rules with RIPPER that summarize a learned source task policy.

The rules are then transformed via handcoded inter-task mappings so that they

could apply to a target task with different state variables and actions. The target

task learner may then bootstrap learning by incorporating the rules as an extra

action, essentially adding an ever-present option “take the action suggested by the

source task policy,” resulting in an improved jumpstart and total reward. By using

rules as an intermediary between the two tasks, the authors argue that the source

and target tasks can use different learning methods, effectively de-coupling the two

learners. Additionally, this work demonstrated that inter-domain transfer is possi-

ble. The two source tasks in this paper were discrete, fully observable, and one was

deterministic. The target task, however, had a continuous state space, was partially

observable, and had stochastic actions. Because the source tasks required orders

of magnitude less time, the total time was roughly equal to the target task time.

Similarities with Torrey et al. [2007] include a significant improvement in initial

performance and no provision to automatically handle scale differences.4 Primary

4There is currently no published mechanism to automatically scale rule constants, which would

267



differences are the way advice is incorporated into the target learner and the choice

of utilizing a relatively fast proposition rule learner rather than a first-order rule

learner. Although much less source data is needed to learn rules in this setup, the

more powerful first order rules need no translation if the objects in question do not

change.5

Transfer learning problems are typically framed as leveraging knowledge

learned on a source task to improve learning on a related, but different, target

task. Representation Transfer [Taylor and Stone, 2007a] (Section 6.3) examines the

complimentary task of transferring knowledge between agents with different inter-

nal representations (i.e., the function approximator or learning algorithm) of the

same task. Allowing for such shifts in representation gives additional flexibility to

an agent designer; past experience may be transferred rather than discarded if a

new representation is desired. A more important benefit is that changing represen-

tations partway through learning can allow agents to achieve better performance

in less time. Complexification transfers between different function approximator

parameterizations, which would typically be used to increase the complexity of a

function approximator over time and thus reduce the total required learning time.

Offline Representation Transfer is used to initialize a second representation using

offline training, which can be used to transfer between different function approxi-

mators or between different learning methods (e.g., use a learned source task value

function to initialize a target task policy search method). Additionally, the authors

demonstrate that offline representation transfer can be used for inter-task transfer

between tasks with different actions and state variables. Experiments show that

both algorithms can reduce the target task training time, improve the jumpstart

be necessary if, for instance, the source task’s distances were measured in feet, but the target task’s
distances were measured in meters.

5For example, if a strategy is learned with respect to the distance between teammates, the
number of teammates can vary between the source and target without needing to translate such a
strategy.
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and total reward, and in some cases reduce the total training time.

All methods in this section (the fourth group in Table 8.1) utilize some type

of inter-task mapping to allow transfer between MDPs with very different specifica-

tions. While these results show that transfer can provide a significant benefit, they

presuppose that the mappings are provided to the learner. The following section

considers methods that work to autonomously learn such inter-task mappings.

8.5 Learning Task Mappings

The transfer algorithms considered thus far have assumed that a hand-coded map-

ping between tasks was provided, or that no mapping was needed. In this section we

consider methods which learn a mapping between tasks (the final group in Table 8.1,

reproduced in Table 8.6) so that source task knowledge may be exploited in a novel

target task with different state variables and actions (see Figure 8.5). The space of

possible algorithms to learn inter-task mappings is relatively unexplored, compared

to methods which can utilize such mappings.

One current challenge of TL research is to reduce the amount of information

provided to the learner about the relationship between the source and target tasks.

If a human is directing the learner through a series of tasks, the similarities (or

analogies) between the tasks will likely be provided by the human’s intuition. If

transfer is to succeed in an autonomous setting, however, the learner must first

determine how (and whether) two tasks are related, and only then may the agent

leverage its past knowledge to learn in a target task. Learning task relationships

is critical if agents are to transfer without human input, either because the human

is outside the loop, or because the human is unable to provide similarities between

tasks. Methods in this section differ primarily in what information they assume is

provided. At one end of the spectrum, Kuhlmann and Stone [2007] assume that

a complete description of R, S, and T are given, while at the other, Taylor et al.
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Allowed Source Task Transferred Allowed TL
Citation Task Task Mappings Knowledge Learners Metrics

Differences Selection

Learning inter-task mappings: Section 8.5
Kuhlmann and Stone [2007] a, v h T Q TD j, tr

Liu and Stone [2006] a, v h T N/A all N/A
Soni and Singh [2006] a, v h Ma, svg, exp N/A all ap, j, tr

Talvitie and Singh [2007] a, v h Ma, svg, exp N/A all j
Taylor et al. [2007b]⋆ a, v h svg, exp N/A all tt†

Taylor et al. [2008c] a, v h exp N/A all j, tr

Table 8.6: This table reproduces the group of inter-task learning methods from
Table 8.1.
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Figure 8.5: Section 8.5 presents methods to learn the relationship between tasks
with different state variables and actions. As in previous figures, MDP components
with a dashed circle may change between the source task and target task.
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[2008c] learn the mapping exclusively from experience gathered via environmental

interactions.

Given a complete description of a game (i.e., the full model of the MDP),

Kuhlmann and Stone [2007] analyze the game to produce a rule graph, an abstract

representation of a deterministic, full information game. A learner first trains on

a series of source task games, storing the rule graphs and learned value functions.

When a novel target task is presented to the learner, it first constructs the target

task’s rule graph and then attempts to find a source task that has an isomorphic

rule graph. The learner assumes that a transition function is provided and uses

value-function-based learning to estimate values for afterstates of games. Only state

variables need to be mapped between source and target tasks, and this is exactly

the mapping found by graph matching. For each state in the target task, initial

values are set by finding the value of the corresponding state in the source task.

Three types of transfer are considered: direct, which copies afterstate values over

without modification; inverse, which accounts for a reversed goal or switched roles;

and average, with copies the average of a set of Q-values and can be used for boards

with different sizes. Source task time is ignored but jumpstart and total reward can

both be improved in the target task.

The previous work assumes full knowledge of a transition function. A more

general approach could assume that the agent has only a qualitative understand-

ing of the transition function. For instance, qualitative dynamic Bayes networks

(QDBNs) [Liu and Stone, 2006], summarize the effects of actions on state variables

but are not precise (for instance, they could not be used as a generative model for

planning). A graph mapping technique can automatically find a mapping between

actions and state variables in two tasks with relatively little computational cost.

The authors show that mappings can be learned, effectively enabling value function

transfer between tasks with different state variables and actions. However, it re-
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mains an open question as to whether or not QDBNs are learnable from experience,

rather than being hand-coded.

The next three methods assume knowledge about how state variables are

used to describe objects in a multi-player task. For instance, an agent may know

that a pair of state variables describe “distance to teammate” and “distance from

teammate to marker,” but the agent is not told which teammate the state variables

describe. First, Soni and Singh [2006] supply an agent with a series of possible state

transformations and an inter-task action mapping. There is one such transformation,

X, for every possible mapping of target task variables to source task variables. After

learning the source task, the agent’s goal is to learn the correct transformation: in

each target task state s, the agent can randomly explore the target task actions, or it

may choose to take the action πsource(X(s)). This method has a similar motivation

to that of Fernandez and Veloso [2006], but here the authors are learning to select

between possible mappings rather than possible previous policies. Over time the

agent uses Q-learning to select the best state variable mapping as well as learn

the action-values for the target task. The jumpstart, total reward, and asymptotic

performance are all slightly improved when using this method, but its efficacy will

be heavily dependant on the number of possible mappings between any source and

target task.

Second, AtEase [Talvitie and Singh, 2007] also generates a number of pos-

sible state variable mappings. The action mapping is again assumed and the tar-

get task learner treats each of the possible mappings as an arm on a multi-armed

bandit [Bellman, 1956]. The authors prove that their algorithm learns in time pro-

portional to the number of possible mappings rather than the size of the problem:

“in time polynomial in T , [the algorithm] accomplishes an actual return close to the

asymptotic return of the best expert that has mixing time at most T .” This ap-

proach focuses on efficiently selecting between the proposed state variable mappings
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and does not allow learning in the target task.

Third, these assumptions are relaxed by the method Mapping Learning via

Classification [Taylor et al., 2007b] (Section 7.1), which shows that it is possible to

learn both the action and state variable mapping simultaneously by leveraging a

classification technique, although it again relies on the pre-specified state variable

groupings (i.e., knowing that “distance to teammate” refers to a teammate, but not

which teammate). Action and state variable classifiers are trained using recorded

source task data. For instance, the source task agent records ssource, asource, s
′
source

tuples as it interacts with the environment. An action classifier is trained so that

C(ssource,object, s
′
source,object) = asource for each object present in the source task.

Later, the target task agent again records starget, atarget, s
′
target tuples. Then the

action classifier can again be used for to classify tuples for every target task object:

C(starget,object, s
′
target,object) = asource, where such a classification would indicate a

mapping between atarget and asource. Relatively little data is needed for accurate

classification; the number of samples needed to learn in the target task far outweighs

the number of samples utilized by the mapping-leaning step. While the resulting

mappings are not always optimal for transfer, they do serve to effectively reduce

target task training time as well as the total training time.

Modeling Approximated State Transitions by Exploiting Regression mas-

ter [Taylor et al., 2008c] (Section 7.2) was designed to be the most flexible mapping-

learning method to date as no state variable groupings are required. The key idea

of master is to save experienced source task instances, build an approximate tran-

sition model from a small set of experienced target task instances, and then test

possible mappings offline by measuring the prediction error of the target-task mod-

els on source task data. This approach is sample efficient at the expense of high

computational complexity, particularly as the number of state variables and actions

increase. The method uses an exhaustive search to find the inter-task mappings
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that minimize the prediction error, but more sophisticated (e.g., heuristic) search

methods could be incorporated. Experiments show that the learned inter-task map-

pings can successfully improve jumpstart and total reward. A set of experiments

also shows how the algorithm can assist with source task selection by selecting the

source task which is best able to minimize the offline prediction error. The primary

contribution of master is to show that autonomous transfer is possible, as the al-

gorithm can learn inter-task mappings autonomously, which may then be utilized

by any of the TL methods discussed in this dissertation, or by those discussed in

the previous section of this survey (Section 8.4).

In summary, this last section of the survey has discussed several methods

able to learn inter-task mappings with different amounts of data. Although all

make some assumptions about the amount of knowledge provided to the learner

or the similarity between source and target tasks, these approaches represent an

important step towards achieving fully autonomous transfer.

8.6 Summary of Related Work

This chapter has presented the current state of transfer in RL domains. We have

structured it by grouping methods based on what assumptions are made about

the differences between the source task and the target task. In addition to listing

each method’s successes in terms of different TL scenarios, we have also discussed

each work in terms of five dimensions: the task difference assumptions, how source

tasks are selected, what kind of task mappings are used (if any), what knowledge is

transferred, and what type of RL algorithm is utilized. Table 8.1 can be considered

a summary of this chapter as it details all of the above information about each

of the methods we discuss. The goals of this chapter have been to provide an

introduction to the existing literature, situate the algorithms in this dissertation

within the literature, and present a framework to help organize future TL work.
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An alternate TL framework may be found in the related work section of

Lazaric [2008], a recent PhD thesis on TL in RL tasks. Lazaric compares TL meth-

ods in terms of the type of benefit (jumpstart, total reward, and asymptotic per-

formance), the allowed differences between source and target (different goal states,

different transition functions but the same reward function, and different state and

action spaces) and the type of transferred knowledge (experience or structural knowl-

edge). This chapter is more detailed both in the number of approaches considered,

the depth of description about each approach, and also uses a different organiza-

tional structure. In particular, we specify which of the methods improve which of

five TL metrics: Jumpstart, Asymptotic Performance, Total Reward, Reward Area

Ratio, and Time to Threshold; we note which of the methods account for source

task training time rather than treating it as a sunk cost; and we differentiate meth-

ods according to five dimensions: how the source task is selected, if the TL method

utilizes task mappings, what type of knowledge is transferred, and what type of base

RL methods are compatible.

The next chapter summarizes the work presented in this dissertation and

then discusses future directions for TL research, as suggested both by the survey in

this chapter and by the TL methods introduced in this dissertation.
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Chapter 9

Conclusion and Future work

This chapter summarizes the contributions of this dissertation and suggests pos-

sible enhancements to TL algorithms as well as general open question in transfer

learning. Section 9.1 presents a summary of the algorithms introduced by this dis-

sertation along with guidelines that suggest when methods are applicable and when

one method may be preferable to another. Section 9.2 discusses a series of pos-

sible enhancements to the transfer and mapping-learning algorithms presented in

this dissertation. Section 9.3 suggests situations where the TL methods from this

dissertation are likely to be effective, as well as discussing the general problem of

negative transfer. General open questions in the field of transfer for reinforcement

learning are presented in Section 9.4 and Section 9.5 concludes.

9.1 Summary of Dissertation Methods

The primary technical contribution of this dissertation is to introduce inter-task

mappings (Section 4.1), a novel construct that enables transfer between MDPs with

different state variables and actions. A second contribution is to introduce six

transfer methods (summarized in Table 9.1) that can utilize inter-task mappings to
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transfer between tasks with different state variables and actions. A third contribu-

tion is the introduction of a pair of mapping-learning methods (also in Table 9.1)

capable of learning inter-task mappings from observed data via existing machine

learning algorithms.

Recall that we motivated the research in this dissertation by asking the fol-

lowing question in Chapter 1:

Given a pair of related RL tasks that have different state spaces,
different available actions, and/or different representative state
variables,

1. how and to what extent can agents transfer knowledge
from the source task to learn faster or otherwise better in
the target task, and

2. what, if any, domain knowledge must be provided to the
agent to enable successful transfer?

The take away message from this dissertation is that inter-task mappings

can successfully enable transfer and thereby significantly improve learning. We have

demonstrated that our methods are broadly applicable in different domains, using

different base RL methods, and with different function approximators. Furthermore,

we have shown that these mappings can be learned autonomously using off-the-shelf

machine learning algorithms and data gathered by agents in pairs of tasks.
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TL Methods Introduced in this Dissertation

Method Name: Value Function Transfer, Section 4.2
Scenario: Value Function Transfer is only applicable when both the source task
agent and target task agent use TD learning, and both use the same type of
function approximation.
When to use: Results suggest that Value Function Transfer improves learning
speed in the target task more effectively than other TL methods and thus should
be preferred over other methods, when applicable.

Method Name: Q-Value Reuse, Section 5.1
Scenario: This method again applies when the source and target task agents use
TD learning, but agents are not required to use the same function approximator.
When to use: Transfer with Q-Value Reuse is not as not as effective as Value
Function Transfer and may require extra memory due to multiple function
approximators, but it becomes more useful if the source task agent and target
task agent have different function approximators.

Method Name: Policy Transfer, Section 5.2
Scenario: This method is applicable when the source and target task agents use
direct policy search with ANN action selectors.
When to use: If the target task agents use policy search learning, Policy Transfer
is the only applicable TL method introduced by this dissertation.

Method Name: timbrel, Section 6.1
Scenario: This TL method is applicable when the target task agent uses instance-
based RL. The source task agent may use any RL method.
When to use: timbrel is the only method introduced in this dissertation that
can transfer into a model-learning target task agent.

Method Name: Rule Transfer, Section 6.2
Scenario: Rule Transfer is applicable when the target task agent uses a TD
method.
When to use: If the source task uses an RL method other than value-function
learning, but the target task uses value-function learning, Rule Transfer and
Representation Transfer are the only applicable methods presented in this
dissertation. If both the source task agent and the target task agent use
value-function learning methods, experiments suggest that Value Function Transfer
can provide better learning performance in the target task than Rule Transfer
provides.

Table continued on next page. . .
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Method Name: Representation Transfer: Complexification, Section 6.3
Scenario: Complexification is applicable when the parameterization of a function
approximator can change over time.
When to use: If a function approximator for a task can change its representation
over time so that it better represents the true value function, and the function
approximator exhibits locality (such as in a CMAC or RBF), Complexification may
significantly improve learning performance.

Method Name: Offline Representation Transfer, Section 6.3
Scenario: Offline Representation Transfer is applicable when the representation
changes in a task, or for inter-task transfer.
When to use: Offline Representation transfer is a very flexible method, but
requires computation after learning in the source representation, but before
learning in the target representation. It is best used to reuse past knowledge, but
the agents use different internal learning representations and other TL methods do
not apply.

Method Name: Learning Mappings via Classification, Section 7.1
Scenario: If appropriate inter-task mappings are unknown, but the agent is
provided per-object state variable groupings, or the source task and target task
have the same state variables, this mapping-learning method is applicable.
When to use: Experiments show that learning a mapping to enable transfer is
significantly better than not using transfer, or using an uninformed mapping that
averages together all state variables and actions. If the agent has domain knowledge
specifying how state variables can be assigned to objects, but the inter-task
mappings are unknown, this method should be used.

Method Name: master, Section 7.2
Scenario: Inter-task mappings are unknown.
When to use: If the state variables and/or actions in a pair of tasks are different,
and Learning Mappings via Classification is not applicable, master should be used
to learn appropriate inter-task mappings.

Table 9.1: This table summarizes all methods introduced in this
dissertation and suggests when each method is most useful. Recall
that Table 6.10 in Chapter 6 presented a summary of the TL meth-
ods, but focuses on experimental results presented, rather than the
relative strengths of the different TL methods.
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9.2 Possible Enhancements to Dissertation Methods

In this section of the dissertation we present a number of possible enhancements for

the methods introduced by this dissertation.

9.2.1 Inter-Task Mappings

Inter-task mappings have been defined so that the state variables and actions are

mapped independently. This formulation was sufficient for all the source task and

target task pairs considered in this work. However, there may be tasks where these

two mappings are interdependent. For instance, it could be that the actions map

differently depending on the agent’s current location in state space. A second possi-

bility would be tasks in which a mapping between states, rather than state variables,

was more effective for transfer. If there are pairs of tasks which exhibit either of

these conditions, the inter-task mapping construct would need to be enhanced to

account for such possibilities.

The inter-task mapping construct does not currently account for reward. If

the reward structure in the two tasks were explicitly taken into account, it may

be possible to better transfer between tasks with different reward functions. For

example, if the goal state in 3D Mountain Car were moved from the Northeast

corner to the Southwest corner, inter-task mappings would not be able to represent

such a change, nor would master be able to learn a new mapping to account for

this difference.

9.2.2 Transfer Algorithms

This section enumerates some of the ways in which transfer algorithms presented in

this dissertation may be improved or expanded upon.

280



Transfer Functionals

Value Function Transfer and Policy Transfer introduced a number of different trans-

fer functionals, denoted ρ. Although all transfer functionals relied on the same

inter-task mappings, different ρs were needed for dissimilar function approximators.

Given the similarity inherent in the different ρ formulations, it may be possible to

construct a transfer functional general enough to work with all of the function ap-

proximators considered in this dissertation. Ideally, the transfer functional would be

function-approximator independent: it would take as inputs an inter-task mapping,

a source action-value function, and some details about the function approximator,

and then output an appropriate target task action-value function.

When discussing ρANN , we posited that “if the target task ANN had addi-

tional hidden nodes, a more sophisticated δ mapping [that is used to map hidden

nodes from one network to another] could be utilized,” as the current transfer δ

function assumes that the source and target neural networks had the same number

of hidden nodes. If there were more hidden nodes in the target network than in

the source network, ρ could distribute the value of weights of a single source task

hidden node across multiple target task hidden nodes. Another option would be to

connect the additional target task nodes with zero weights so that they would have

no impact in initial calculations of the value function, but could be learned over

time. If there were fewer hidden nodes in the target network than in the source net-

work, weights from multiple source task hidden nodes could be combined to weight

connections to a single target task hidden node, but such a transfer may loose a

significant amount of useful information.

Increasing Methods’ Applicability

timbrel was developed to work with instance-based model-learning methods but

was only tested using Fitted R-max as a base RL method. We predict that it would

281



also work, possibly with minor modifications, in conjunction with other model-

based RL algorithms. For instance, timbrel could be directly used in the planning

phase of Dyna-Q as a source of simulated experience when the agent’s model is

poor (such as at the beginning of learning a target task). timbrel should also be

useful, without modification, in R-max. In the future we would like to experiment

with other model-based RL algorithms to empirically compare the effectiveness of

transfer with Fitted R-max. Additionally, we intend to apply timbrel to more

complex domains that have continuous state variables; we expect that transfer will

provide even more benefit as task difficulty increases.

The transfer methods in this dissertation have modified source task knowl-

edge, whether instances, value functions, policies, or rules, using inter-task map-

pings. However, our methods do not explicitly account for scaling differences. For

instance, recall that Rule Transfer relies on the Translate() function to modify a

learned source decision list. Rules can be in the form “IF dist(K1, T1) < 5 THEN

Pass to K3.” But if the source task measured distance in meters and the target

task measured distance in inches, the constant in this rule would need to be scaled.

Similarly, if the source task reward for 3 vs. 2 Keepaway was +1 at every timestep,

but the target task reward for 4 vs. 3 Keepaway was changed to +10 at every

timestep, the Value Function Transfer functional should be augmented to scale the

transferred Q-values appropriately. In both cases we currently rely on a human to

scale the rules or Q-values if necessary, but ideally such scaling factors could be

learned autonomously, possibly as part of a mapping-learning algorithm.

When discussing Rule Transfer we emphasized that the source task learner

was unconstrained but that the target task learned had to use TD learning. However,

this requirement is only due to the three rule utilization methods, all of which were

designed to affect how the target task agent learns an action-value function. It may

be possible to modify one or more of rule utilization methods to allow for other
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types of base learners in the target task, which would greatly increase the method’s

applicability.

The Representation Transfer methods, rather than transferring between tasks,

were designed to transfer between different representations. However, they can also

be combined with inter-task mappings to transfer between tasks as well (as seen in

Section 6.3.6). It would also be useful to test if transfer was feasible (and beneficial)

if both the representation and the task changed.

Transfer from Complex to Simple Tasks

This dissertation, and the majority of TL work, focuses on transfer from a relatively

simple source task to a more complex target task. In principle, transferring from

complex to simple tasks should also be effective. We do not explore such an option

because it would likely only be beneficial in the target task training time scenario

(and would not reduce the total training time), but such situations may appear in

practice.

Learning Partial Mappings

Both mapping learning methods presented in this dissertation assume that each

action or state variable in the target task has some corresponding action or state

variable in the source task. However, for some pairs of tasks, a partial inter-task

mapping may be optimal because of some novel target task characteristic which

has no correspondence in the source task. For instance, when transferring from

the Standard 2D Mountain Car task to the 3D Hand Brake Mountain Car task,

the hand-brake action would likely have no correlation with any source task action.

This situation could be addressed in master by setting a maximum acceptable MSE

threshold, above which actions or state variables could be assigned “cannot map”

values, but it may be possible to construct a more robust mechanism.
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Background Domain Knowledge

Mapping Learning via Classification relies on domain knowledge that groups state

variables with task objects. This type of domain knowledge was chosen primarily

to be consistent with previous work in mapping learning [Soni and Singh, 2006,

Talvitie and Singh, 2007]. However, this suggests that there may be other types of

semantic knowledge that could also assist with mapping learning. In the future we

would like to explore other types of knowledge that could be provided by a human,

or learned, to empower mapping-learning methods without resorting to searching

through the full space of possible mappings, as done in master.

Reducing Computational Complexity

The primary motivation for master is to learn mappings with few samples at the

expense of high computational complexity. We do so under the assumption that for

many fielded agents, sample complexity is much more of a bottleneck than compu-

tational complexity. In the future we would also like to reduce the computational

complexity.

The first area for improvement would be tackling the inner loop of master

which is exponential in the number of state variables and actions. As suggested

in Section 7.2, to scale this approach to tasks with hundreds of state variables or

actions, some type of heuristic search could be included in the algorithm.

Lastly, master relies on agents’ ability to explore the target task quickly

and build an approximate model. However, in some tasks the initial exploration

may not be indicative of the entire MDP, or the target task may be too complex to

model, and a model learned with only a little training data would be misleading.

While there may be no way to guard against this for arbitrary MDPs, it would be

useful to define the type of task for which such initial exploration is likely to yield

a useful model for learning a mapping.
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9.3 Determining the Efficacy of Transfer

One question this dissertation does not directly address is how to determine the

optimal amount of source task training to minimize the target task training time

or total training time. If the source task and target task were identical, the goal

of minimizing the target task training time would be trivial (by maximizing the

source task training time) and the goal of minimizing total training time would be

impossible. On the other hand, if the source task and target task were unrelated,

it would be impossible to reduce the target task training time through transfer and

the total training time would be minimized by not training in the source task at

all. It is likely that a calculation or heuristic for determining the optimal amount of

source task training time will have to consider the structure of the two tasks, their

relationship, and what transfer method is used. This optimization becomes even

more difficult in the case of multi-step transfer, as there are two or more tasks that

can be trained for different amounts of time.

More fundamental than the amount of time to learn in a source task is the

question of whether two tasks are similar enough that transfer may be beneficial.

As discussed in Section 4.4, we hypothesize that the main requirement for Value

Function Transfer or Q-Value Reuse to successfully improve target task learning is

that, on average, at least one of the following is true:

1. The best learned actions in the source task, for a given state, are mapped to

the best action in the target task via the inter-task mappings.

2. The average Q-values learned for states are of the correct magnitude in the

target task.

Policy Transfer and Rule Transfer are concerned with action selection, not transfer of

Q-values, and thus need only be concerned with the first condition above. Instance-

based transfer (as done in timbrel) uses source task instances to help construct
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a target task model; the primary requirement is that the model generated in the

target task from the source task instances improves planning in the target task,

relative to having no source task data. However, as discussed below, none of these

guidelines can guarantee that transfer will be productive, or even that transfer will

not harm the learner’s performance.

Avoiding Negative Transfer

The majority of TL work in the literature has concentrated on showing that a

particular transfer approach is plausible. None, to our knowledge, has a well-defined

method for determining when an approach will fail. While we can say that it is

possible to improve learning in a target task faster via transfer, we cannot currently

decide if an arbitrary pair of tasks are appropriate for a given transfer method.

Therefore, transfer may produce incorrect learning biases and result in negative

transfer. A similar question is pertinent to Representation Transfer: is there a way

to determine if a task could be usefully learned with multiple representations, rather

than a single representation? Perhaps if these questions were answered, a method

to automatically construct a source task given a target task could be designed.

Consider the source task in Figure 9.1 (left), which is deterministic and

discrete. The agent begins in state I and has one action available: East. Other

states in the “hallway” have two applicable actions: East and West, except for state

A, which also has the actions North and South. Once the agent executes North or

South in state A, it will remain in state B or C (respectively) and continue self-

transitioning. No transition has a reward, except for the self-transition in state

B.

Now consider the target task in Figure 9.1 (right), which is the same as

the source task, except that now the self-transition from C’ is the only rewarded

transition in the MDP. Q⋆(I’,East) in the target task (the optimal action-value
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Figure 9.1: An example pair of tasks that is likely to result in negative transfer for
TL methods.

function, evaluated at the state I’) is the same as Q⋆(I, East) in the source task.

Indeed, the optimal policy in the target task differs at only a single state, A’, and

the optimal action-value functions differ only at states A’, B’, and C’. By any of the

guidelines above, these two tasks are similar enough that transfer should help, but

any of the TL methods introduced in this dissertation will likely result in negative

transfer. Methods such as master, which can measure task similarity via model

prediction error, or region transfer [Lazaric, 2008], which examines the similarity of

tasks at a local level rather than at a per-task level, can help assist when deciding

if the agent should transfer or what the agent should transfer. However, neither

method provides any theoretical guarantees about its effectiveness.

One way of attempting to avoid negative transfer is to use the ideas of bisim-

ulation [Milner, 1982]. Ferns et al. [2006] point out that:

In the context of MDPs, bisimulation can roughly be described as the

largest equivalence relation on the state space of an MDP that relates

two states precisely when for every action, they achieve the same imme-

diate reward and have the same probability of transitioning to classes

of equivalent states. This means that bisimilar states lead to essentially

the same long-term behavior.
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However, bisimulation may be too strict because states are either equivalent or not,

and may be slow to compute in practice. The work of Ferns et al. [2005, 2006] relaxes

the idea of bisimulation to that of a (pseudo)metric that can be computed much

faster, and gives a similarity measure, rather than a boolean. It is possible, although

not yet shown, that bisimulation approximations can be used to discover regions of

state space that can be transferred from one task to another, or to determine how

similar two tasks are in toto.

Homomorphisms [Ravindran and Barto, 2002] are a different abstraction that

can define transformations between MDPs based on transition and reward dy-

namics, similar in spirit to inter-task mappings, and have been used successfully

for transfer [Soni and Singh, 2006]. However, discovering homomorphisms is NP-

hard [Ravindran and Barto, 2003a] and homorphisms are generally supplied to a

learner. While these two theoretical frameworks may be able to help avoid negative

transfer, or determine when two tasks are “transfer compatible,” more work needs

to be done to determine if such approaches are feasible in practice, particularly if

the agent is fully autonomous (i.e., is not provided domain knowledge by a human)

and is not provided a model of the MDP.

9.4 Future Transfer Work

As mentioned in the previous section, TL in RL domains is one area of machine

learning where the empirical work has out-paced the theoretical. There is consider-

able room, and need for, more work (c.f. Bowling and Veloso [1999]) that provides

bounds, convergence guarantees, and theoretical guarantees of correctness. This

section suggests other open areas in TL.
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Increasing Transfer’s Applicability

There is a dearth of TL methods that utilize model-learning RL methods. Be-

cause model-learning algorithms are often more sample efficient than model-free

RL algorithms, it is likely that TL will have a larger impact on sample complex-

ity when coupled with such methods. For the same reasons, more TL methods

should be designed to work with recent sample-efficient batch RL algorithms (e.g.,

LSTD [Lagoudakis and Parr, 2003]).

No TL work in this dissertation addresses concept drift [Widmer and Kubat,

1996], which presumes that the agent is in a non-stationary environment. At cer-

tain points in time, the environment may change arbitrarily, which is true (to some

extent) for many real world tasks. As Ramon et al. [2007] note, “for transfer learn-

ing, it is usually known when the context change takes place. For concept drift, this

change is usually unannounced.” In addition to sudden and discrete changes, TL al-

gorithms could be improved to handle gradual change over time, whether announced

or unannounced.

Lastly, none of the methods in this dissertation, and few in the related work

section, directly address continuing (non-episodic) RL tasks. While TL techniques

should directly generalize from the episodic case, it would be useful to verify this

claim.

Improving Transfer’s Efficacy

One idea that has yet to be widely adopted, but has a large potential for improv-

ing transfer efficacy, is that of automatically modifying source tasks (c.f. Randomized

Task Perturbation [Sherstov and Stone, 2005], and suggested in Kuhlmann and Stone

[2007]). By explicitly generating knowledge that will likely be useful for transfer,

methods may be able to significantly improve target task performance, particularly

in the multi-task learning setting.
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Transfer provides two distinct benefits to agents in a target task. First, trans-

fer may help improve the agent’s exploration so that it discovers higher-valued states

more quickly. Secondly, transfer can help bias the agent’s internal representation

(e.g., it’s function approximator) so that it may learn faster. It will be important

for future work to better distinguish between these two effects; decoupling the two

contributions should allow for a better understanding of TL’s benefits, as well as

provide avenues for future improvements.

When learning a source task for the explicit purpose of speeding up learning

in a target task, one could imagine that a non-standard learning or exploration

strategy may produce better transfer results, relative to standard strategies. For

instance, it may be better to explore more of the source task’s state space than to

learn an accurate action-value function for only part of the state space. While no

current TL algorithms take such an approach, there has been some work on the

question of learning a policy that is exploitable (without attempt to maximize the

on-line reward accrued while learning) in non-transfer contexts [Şimşek and Barto,

2006].

Similarly, instead of always transferring information from the end of learning

in the source task, an agent that knows its information will be used in a target

task may decide to record information to transfer partway through training in the

source task. For instance, Section 5.2.2 showed that transfer may be more effective

when using policies trained for less time in the source task than when using those

trained for more time. Although others have sometimes observed similar behavior

[Mihalkova and Mooney, 2008], most work shows that increased performance in the

source task is correlated with increased target task performance. For instance,

Table 4.3 in Chapter 4 shows that target task agents learn faster with increased

amounts of source task training, even after long periods of training in the source

task. Understanding how and why this effect occurs will help determine the most
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appropriate time to transfer.

A related question is whether exploration in the target task could be better

directed for mapping-learning methods. Both Mapping Learning via Regression and

master require data from the target task to learn a mapping. However, it could be

that a more aggressive form of exploration would be more beneficial than standard

ǫ-greedy exploration. Another option would be to define an iterative process that

alternates between collecting data in the target task and estimating an inter-task

mapping, where uncertainty in the mapping could help guide target task exploration.

Ideas from theory revision [Ginsberg, 2005] (also theory refinement) may

help inform the construction of transfer functionals. For example, Value Function

Transfer initialize a target task agent to have computed Q-values “similar” to those

in the source. Transfer is successful if the target task Q-values are close enough

to the optimal Q-values that learning is improved, relative to not using transfer.

There are also situations where a syntactic change to the knowledge would produce

better transfer. Value Function Transfer from 3 vs. 2 Keepaway to 3 vs. 2 Give-

away produces negative transfer (see Section 4.3.5) as the transferred Q-values are

far from optimal in the target task and cause the agent to perform poorly. How-

ever, a TL algorithm that could recognize the relationship between Keepaway and

Giveaway and change the transferred knowledge appropriately (essentially saying

that πtarget(starget) 6= πsource(χX(starget)) may be able successfully transfer between

these two tasks.

Transfer in More Difficult Tasks

Lastly, TL research should be applied to more difficult tasks in the future. Although

the Keepaway domain used in this thesis is fairly realistic, it is still learnable by off-

the-shelf Sarsa. An impressive demonstration of TL would be to enable agents to

learn on a task that was otherwise unlearnable, either because learning without
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correct biases caused the agent to fail to may any headway, or because a real-world

problem has constraints on the amount of data gathered. An example of the first

is simulated robot soccer – to date, no research has successfully learned behavior

for a full team of agents. An example of the second domain is physical agents –

by using transfer, RL methods should be able to learn robotic control significantly

faster than learning without transfer, potentially making RL a more practical tool

for roboticists.

9.5 Conclusion

This dissertation has presented inter-task mappings, a set of transfer learning algo-

rithms that utilize these mappings to transfer between tasks with different actions

and state variables, and a set of algorithms capable of learning inter-task mappings.

Efficacy of these techniques has been empirically studied using a variety of base RL

algorithms, in multiple domains, and with varying amounts of domain knowledge.

Taken as a whole, this dissertation has introduced a powerful tool for improving the

learning capabilities of existing RL algorithms by generalizing across tasks, allowing

difficult tasks to be learned faster than if transfer were not used, or possibly learning

tasks which would otherwise be unlearnable.

In the coming years deployed agents will become increasingly common and

gain more capabilities. While current agents are typically designed to perform a

single task, agents will soon be expected to perform multiple tasks. Transfer learning

is one way to help enable such multi-purpose agents to train in the real world.

Transfer learning, paired with RL, is an appropriate paradigm if the agent must take

sequential actions in the world and the designers do not know optimal solutions to

the agent’s tasks (or even if they do not know what the agent’s tasks will be). Before

such agents could be reliably deployed, transfer methods will need to be improved,

as discussed earlier in this chapter. Additionally, base RL methods will also likely
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need to be made more sample efficient, and better heuristics need to be developed

to determine what type of RL algorithm is most appropriate for a given task. I will

consider this dissertation a success if, within a decade, my work has helped to create

a multi-task autonomous agent capable of on-line learning in the real world.

Significant progress on transfer for RL domains has been made in the last

few years, but there are many open questions. We expect that many of the above

questions will be addressed in the near future so that TL algorithms become more

powerful and more broadly applicable. Additionally, we hope to see more physi-

cal and virtual agents utilizing transfer learning, further encouraging growth in an

exciting and active subfield of the AI community.
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Appendix A

On-line Appendix

An on-line appendix to this dissertation may be found at
http://www.cs.utexas.edu/users/mtaylor/dissertation.
At this webpage is code for:

Domains introduced in this dissertation

1. 3D Mountain Car Task

2. Inaccurate 3 vs. 2 and Inaccurate 4 vs. 3 Keepaway

3. 3 vs. 2 XOR Keepaway

4. Ringworld

5. Knight Joust

Selected TL algorithms introduced in this dissertation

1. The ρ functional used by Value Function Transfer

2. Policy Transfer
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