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Abstract 

In this paper, two basic Distributed Coordination of Exploration and Exploitation algorithms, Static Estimation Optimistic 
K1 and Static Estimation Optimistic K2, were implemented and tested against standard isolated traffic actuated signals 
through simulation on a microscopic traffic simulator. The simple pilot exploratory experiment demonstrates how Naïve, 
Optimistic agent-based models were able to improve the performance of a system of traffic lights over time. Results also 
show the importance of a few variables on the system performance; namely, signal operation scheme, cool down time, and 
evaluation interval. 
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1. Introduction 

Climate change, the peaking of oil and limited funds are among the biggest challenges of the twenty first 
century. It is clear that traffic management contributes to all three of these challenges. Accordingly, this work 
attempts to improve the performance of a system of traffic lights using an agent-based methodology, the 
Distributed Coordination of Exploration and Exploitation (DCEE). Attempts to optimize a system of traffic lights 
using agent-based models are not new (McKenny & White, 2013),  (Abdoos, Mozayani, & Bazzan, 2013),  (Y., 
Quek, & Loh, 2009). However, none of these attempts is based on the DCEE algorithm, which is the contribution 
of this work. In the following sections, the authors present the objectives of the paper, followed by a short 
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description of the traffic network setup, DCEE framework, and the experimental setup. Then, the authors present 
a summary of the results and conclusions. 

2. Acknowledgements 

We would like to thank the team at University of Texas at Austin’s Learning Agents Research Group for their 
assistance with the modification of the AIM traffic simulator. 

3. Literature Review 

3.1. Existing adaptive signal control systems 

 The 1970s saw the development of SCOOT (Split, Cycle and Offset Optimization Technique) in the UK  
(Robertson & Bretherton, 1991). This system features a central computer system to monitor a series of 
intersections, attempting to minimize the sum of the average queues and number of vehicle stops.  Notably, 
SCOOT makes use of a model of the traffic flow based on Cyclic Flow Profiles (average one-way flow of 
vehicles past a fixed point on the road) measured real-time using sensors. While the system has been observed to 
register a 12 percent improvement over fixed-time systems, it is not readily amendable to scaling due to the need 
for centralized control. 

 The SCAT system, which stands for ``Sydney Coordinate Adaptive Traffic'', was introduced in the 
1980s to combat congestion in downtown Sydney  (Sims & Dobinson, 1980). The system comprises one central 
supervisory computer at the control center, 11 remote region computers, and over 1000 microcomputer traffic 
signal controllers over the Sydney metropolitan area. In particular, the intersection computer is responsible for 
tactical decision on signal operation and detection of hardware failure. The regional computer each controls up to 
200 sets of signals, implementing real-time operation of said signals by analysis of the detector information 
provided by the intersection computers. Finally, the supervisory computer allows monitoring of all subsystems 
below it and manual override. Interestingly, the control hierarchy can go beyond hardware limitation and be 
organic: subsystems start out as small as individual intersections, but combine with adjacent subsystems to form 
larger subsystems/one large system. The data for each subsystem specify minimum, maximum, and optimum 
cycle length. Four background plans are stored in the database for each subsystem; a number of detectors at key 
intersections are identified as strategic detectors. Various system factors are calculated from the strategic detector 
data to decide whether the current cycle and plan should change. 

 There also exist adaptive systems such as RHODES  (Mirchandani & Wang, 2005), which features more 
involved sensor systems, models, allowing them to do away with explicit cycle length definitions. Basically, the 
system carries out two main processes. The first is estimation and prediction, which takes the sensor data and 
estimates the actual flow profiles in the network and the flows’ subsequent propagation. The second process 
involves the decision system, which selects the phase timing to optimize a given objective function, such as 
minimizing average travel delay. This decision system is hierarchical. At the highest level is a dynamic network 
loading model that captures traffic characteristics that vary slowly over time: travel demand, availability of roads 
in the networks, etc. On the basis of these characteristics, the system can estimate the load on each particular road 
segment, in terms of vehicles per hour. These estimates provide RHODES with prior allocations of green times 
(times when the traffic signals are green) for each different demand pattern and each phase. At the middle level, 
called network flow control, the system updates the green-time decisions. At this level, the system measures 
traffic flow characteristics in terms of platoons of vehicles and their speeds. Given the approximate green times, 
the intersection control at the lowest level selects the appropriate times for phase changes. It does this on the 
basis of observed and predicted arrivals of individual vehicles at each intersection. Despite this sophistication, the 
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system still requires heavy use of models, which can take time to perfect, as well as requiring the setup of the 
hierarchy. 

3.2. Related computational solutions 

In (Junges & Bazzan, 2008), the authors used three complete Distributed Constraint Optimization (DCOP) 
algorithms to study their performance in improving traffic signals. The interest here is to optimize the 
restrictions, not just satisfying them. ADOPT, one of the algorithms used, performs a distributed search using 
cost communication as a guide for the agents to choose the optimum values for its variable. OptAPO uses direct 
constraint communication as  a form of partially centralize the problem, through a mediator, which uses a 
centralized optimization in order to find an optimum solution to its portion of the problem. DPOP is based on 
dynamic programming, propagating utility in a tree-like network of agents. It is outside the scope of this paper to 
delve into the intricate details of these algorithms, and how they were implemented in this study. 

For this particular problem domain, the authors have formulated it as a tuple , ,A D F< >  where: 
• 1{ ,..., }nA a a= is the set of variables/agents, where n is the number of intersections; 
• 1{ ,..., }nD d d= is the domain of the variables, representing the possible intersections; 
• 1,1 ,{ ,..., }n nF f f= is the set of constraints among the variables, where if denotes the associated cost; each 

constraint has a cost for a given pair of values of the two variables. 
 

Note that these constraints are binary among the agents/traffic lights. 
   

The cost function associated with a constraint between two neighboring intersections i  and j  is 
, ,i j i jf β τ γ= × ×  (Junges & Bazzan, 2008), where: 

• ,i jρ is the density of vehicles in the lane i j→  
• ,i jβ represents the fraction of traffic at intersection j coming from direction i : ,

,
,
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i j
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• γ  expresses the degree two consecutive agents agree (are synchronized), which can be 1.5 when synchronized 
and 2 otherwise 

• τ  expresses the degree agents are coping with the volume of vehicles 
 

 

Table 1 Synchronization parameter in DCOP approach 

Plan run by agent i   Plan run by agent j   τ   
+ + 0 
- + 1 
+ - 1.5 
- - 2 

   
In  Table 1, +   means that plan is synchronized and agrees with the direction of higher traffic volume;  −  

means that plan is synchronized in a direction other than that of higher traffic volume. 
Whilst the authors reported positive results, it is certainly intriguing as to how β  can be computed in practice. 

Note that ,i jβ  requires knowing the load of vehicles across all z  , which varies greatly. The DCOP framework 
assumes that ,i jf  is known beforehand, and thus it is unclear how the authors sample the function space to allow 
this to hold. 
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4. The DCEE framework 

4.1. Motivation 

The main motivation to use the DCEE for this problem domain of optimizing traffic light signal is twofold. 
One, there has been no application of said framework to this domain before, and there is interest in contributing 
to the growing set of solutions that tackle this domain. Two, the DCEE framework possesses several relevant 
characteristics appropriate to this problem domain  (Taylor, Jain, Tandon, Yokoo, & Tambe, 2011): 

 
• Agents do not know their reward functions. In the context of optimizing traffic lights, one can let agents be 

the intersection controllers. As traffic patterns not only vary throughout the day, but also by season, special 
occasions, accidents... it is certainly the case that the desired outcome (traffic flow efficiency) cannot be 
determined by static functions mapping the traffic light configurations to real-time traffic outcome. 

• Agents can execute a fixed number of actions per trial, for a finite number of trials, to maximize the on-line 
reward. Traffic signals optimization process can be done continually every day, but traffic light signaling 
must take into account the fact that human drivers need a minimum duration of green/yellow/red to react. This 
means that any changes that hope to improve the traffic condition cannot happen too rapidly, but rather can be 
thought of as episodic or at least with some sizeable delay between change. Also, the goal is not to achieve a 
theoretical upper bound of traffic performance, but rather to improve it as much as possible. Thus, the 
framework will realistically get the agents to maximize the expected reward over time. 

• Agents cannot explore the entire cross-product of possible actions among themselves. The agents in a traffic 
signal network cannot hope to explore all possible coordination and control among them, owning to the fact 
that the environment is continuous. 

  
Among previous works making use of this framework is one optimizing wireless signal transmission among 

physical robots forming an ad-hoc network (Taylor, Jain, Tandon, Yokoo, & Tambe, 2011). Thus there is 
practical promise for the framework, and it is only logical that we proceed to investigate its effectiveness on a 
new problem domain. 

 

4.2. Formal Definition 

Formally, a DCEE problem  (Taylor, Jain, Tandon, Yokoo, & Tambe, 2011) consists of: 
 

• a set of variables, },...,,{ 21 nxxxV = , where iD∈i,1x ; 
• a set of agents, each controlling a variable from V  (in the general case, one agent could control multiple 

variables); 
• an (initially unknown) reward function :ij i jf D D R× → , which gives the cost of a binary 

constraint ( , )i i j jx d x d← ← ,  where ,i i j jd D d D∈ ∈ ; 
• a set time horizon T ∈•  ; 
• a set of assignments of values to variables 0 ,  ...,  TA A  to be processed sequentially by the agents. Each 

assignment tA  is a tuple ( )1 1 2 2, ,...,t t t t nt ntx d x d x d← ← ←  
 
The goal is to maximize the total reward during the time horizon: 
 

( ), , ,
0 ,

,
T

i j i t j t
t x x Vi j

R f d d
= ∈

=∑ ∑  
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One often formulates DCEE problems in terms of binary constraints between pairs of agents. Please refer to 
Figure 1 for an example of a network of three agents an two binary constraints. In particular, agent , {1..3}i i∈   
controls variable ix  , where _1 0.. ,  _ 2 0.. ,  _ 3 0..D k D m D n⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ =⎣ ⎦= ⎣= ⎦   are the respective domains of the variables. 1,2R   
and 2,3R  are the reward matrices that map from the corresponding pair of agents' variable values to a reward, 
which the agents typically attempt to maximize. The question marks in the reward matrices represent the fact that 
the reward function ,i jf   is initially unknown for any pair of variables ,  i jx x  . 

Therefore, ,i jf  must be empirically estimated by agents i  and j  trying out different variable 
assignments ( , )i i j jx d x d← ← . At the same time, an agent must be able to make use of the known portion of the 
reward matrix, so that it can maximize the real time reward over the given time horizon T  . This need for 
balancing between exploration and exploitation of new and old pair-wise cross product tuples among the agents 
give rise to the name of the framework. Indeed, the agents are distributed, meaning they are each autonomous. 
However, they are aware of their neighbors, and carry out coordination delegation (when does each agent do 
what) in order to optimize the constraint values  (Taylor, Jain, Tandon, Yokoo, & Tambe, 2011). 

Now that the name of the framework has been broken down, one should also be sure to understand the 
implication of the algorithms which this work shall explore: the Static Estimation - Optimistic K1, and Static 
Estimation - Optimistic K2 algorithms. Static Estimation means when exploring the unknown tuples ( ,  )i jx x , the 
agent will assume that ,i jf   yields a constant value v . The agent is also optimistic in the sense that v  is set to be 
an unrealistically high value. This symbolizes the agent's belief that any unexplored tuple of variables is equally 
worthy of a visit, and more important than the known ones. Finally, an important factor that shapes coordination 
among neighboring agents is k-movement, where at most k  agents can change their variables simultaneously in a 
neighborhood every round. Naturally, an agent's neighborhood is the set of its neighbors. Larger k  values allow 
for more joint moves, but sometimes this can decrease total team performance (Taylor, Jain, Tandon, Yokoo, & 
Tambe, 2011). This is referred to as the team uncertainty penalty, where lower k  values allow agents to perform 
better in a sparse constraint graph. Thus, K1 means only one agent may change its variable per round, whereas 
K2 allows one or two agents to do so. Additionally, it is important to note that the agents are rational: each agent 
will attempt to maximize its own reward, defined as cR  , which is the total constraint value over all constraints 
with its neighbors: 

,
 controlled by 

( , )c i j i j
x n Nj

R f d d
∈

= ∑  

The result of the agent being optimistic in hoping to gain an impossible amount of reward for every unknown 
variable tuple is that 1) every agent wishes to change configurations on every round, 2) the algorithm will always 
be exploring the environment (practically speaking, since the premise is that there are too many configurations to 
exhaustively cover during the given time frame), and 3) agents with the worst performance per neighborhood will 

Figure 1 A sample chain constraint graph of three DCEE agents (Taylor, Jain, Tandon, Yokoo, & Tambe, 2011) 
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be allowed to explore. On every round, every agent will measure the reward between itself and all of its 
neighbors. 

4.3. Algorithms 

The Static Estimation-Optimistic K1 (SE-Opt K1) algorithm allows a single agent to change variable(s) per 
neighborhood. For instance, in Figure 1, if agent 2 changes its variable setting, agents 1 and 3 must remain fixed. 
Alternatively, if agent 1 changes its variable, agent 2 must remain fixed, but agent 3 could choose to change. 

The variable assignment will always result in be an unexplored variable tuple for each neighbor, because the 
agent is optimistic that such an unexplored variable tuple will have a very high potential reward v .  Thus, the 
total potential gain will be, assuming the agent has L   neighbors, cg L v R= × − . The agent then bids this potential 
gain as a promise of how much it will improve the current situation. After exchanging bids with the neighbors, an 
agent only moves if it sees that its bid is the greatest, which means that it is the worst performing member of the 
neighborhood.  

Figure 2 details a walkthrough of the algorithm on sample network of agents. In each round of coordination 
in a DCEE problem, four SE-Opt K1 agents first exchange their current variable assignment i ix d←  . Then, they 
each empirically measures its pair wise constraint rewards (the innermost integers), updating their reward 
matrices with these measurements using the latest ix   values provided by their neighbors. Assuming 100v =  , each 
agent gathers its total estimated gain g   as shown in its dialog bubble. Next, the agents exchange values of g   as 
their bids, and an agent only moves if it has the highest bid value. Thus, agent 1 gets to change 1x   in this round, 
with highest bid value of 120. 

 

Figure 2 SE-Optimistic K1 agents collaborating during one round. 

For the SE-Optimistic K2 algorithm, each neighborhood can allow up to two agents performing joint 
movement to change configurations. Communication is more involved as the agents must first look around their 
neighborhood to see with whom they will likely make the strongest bidding pair (by assuming that the neighbor's 
neighbors would not change while evaluating the combined rewards). Each agent then sends an OfferPair 
message to their prospective partner p . Should p   reply with an OfferPair message back as well, then they both 
will confirm to work with each other. The value g  of their joint bid, then, is no longer their own gain, but rather 
the joint gain, which they will now use to compete with other agents. Should p  not reply to accept the proposed 
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partnership, though, the agent will have to evaluate its potential reward as would an agent in the  k=1 scenario, 
and then bid using that value. 

Please refer to Figure 3 for an example of SE-Opt K2 algorithm in action. In each round, four SE-Opt K2 
agents first exchange their current variable assignment i ix d← . Then, they each empirically measures its pair wise 
constraint rewards (the innermost integers), noting these rewards into their reward matrices by using the updated 
ix   values from their neighbors. Assuming 100v = , each agent i   gathers its total estimated joint gain ,i jg   for each 

neighbor j   (for example, 1,2 160g =  and 1,4 180g = . Note that the shared constraint between i   and j   is counted 
only once in the calculation. Since 1,4 1,2g g> , agent 1 identifies its best potential partner 4p =  and offers to pair. 
Fortunately, agent 4 returns the offer, as 1,4 3,4 150g g> =  . The pair of agents (1, 4) sends out their joint bid of 180, 
dominating over the remaining neighbors. Thus the pair proceeds to change 1x   and 4x   for this round.) 

 

Figure 3 SE-Optimistic K2 agents in action during one round. 
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5. Implementation 

5.1. The traffic simulator 

The Autonomous Intersection Management (AIM) microscopic simulator is developed by the Learning Agents 
Research Group at the University of Texas at Austin, and supports a Manhattan topology of North-South and 
East-West multi-lane roads joined by a number of intersections. Figure 4 shows a screenshot of a 2 2×  
intersection setup in the AIM simulator. 

 

Figure 4 A screenshot of a four-intersection layout in AIM with two-way single-lane traffic. 
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Each road has two spawn points where new vehicles can enter the system. Each spawn point uses a Poisson 
process to determine the spawn time for the next vehicles; all spawn points share the same rate parameter λ . 
Because each direction has one lane, a newly spawned vehicle will not pass other cars, nor does it perform U-
turns. Upon creation, each vehicle is assigned a destination, uniformly chosen among the seven possible exit 
points of the system; the vehicle then follows the shortest path to reach its designated exit point. 

5.2. Inter-agent constraint: average travel time 

Agents evaluate the rewards of binary constraints with a neighbor by measuring the average travel time of a 
fixed number of cars traveling on the stretch of road connecting two agents. The total team reward at each round 
is then the weighted average of this average travel time, scaled by the volume of traffic on each stretch of road 
linking a pair of agents. For our static estimation agents, we set the unexplored reward to be 0 seconds, an 
unattainable value for travel time. To allow numerically higher reward value to be more desirable, we negate the 
actual measurements. Average travel time serves as a reasonable metric to optimize, as it correlates with other 
commonly used metrics that gauge traffic light performance, such as queue length and throughput. Thus, by 
letting the agents optimize for higher rewards in this context, we are letting the intersections work toward lower 
average travel time along the lanes between them, thus improving traffic light performance. 

5.3. Performance measures 

Two performance measures were singled out for collection: 
• Average link delay (seconds/vehicle): take each vehicle currently traveling on a road linking two gents, and 

measure the time delay that the vehicle experiences as it travels on the current road.  This is computed by 
noting the start time startt   for each vehicle as it enters a road.  When evaluation occurs at time t  , the vehicle 
has traveled a distance d   from the beginning of the current road segment.  If there is no obstruction along 

the way, the vehicle should have traveled that distance under a time duration of  optimal
max

dt
v

=  , where maxv   is 

the maximum legal speed for said vehicle on the road. However, the actual travel time, startt t tδ = −   may be 
greater than optimalt  , and thus one obtains delay optimalt t tδ= −  .  

• Average throughput (vehicles/second): this is the average number of vehicles being spawned across all 
spawnpoints in the simulator. Note that as queue grows longer from the nearest intersection back toward the 
spawnpoint, there comes a point where no new vehicles can be spawned when they are supposed to due to 
lack of space. This in turn impacts the spawn rate, and thus is indicative of congestion problem. 

5.4. Signal schemes as action space 

For this problem domain, the agent each controls precisely one traffic intersection, thus put in charge of the 
intersection's traffic signal. The space of possible traffic signals is created by 1) restricting the agents in an 
experiment to a particular signal scheme, and 2) discretizing the space of said signal scheme, and assigning each 
of the element in the discretized set of signals an ID. This ID, or signal scheme index, is the variable controlled 
by the agent. In the setup for the DCEE experiments, there are two straightforward traffic light signal schemes 
that were facilitated by the underlying engine: the approximately N-phase signal scheme henceforth known as 
AIM, relies on the simulator's definition of an active phase; and the "canonical" signal scheme, so called because 
it conforms to the design of the simple two-phase pretimed signal scheme. 

5.4.1. AIM traffic light operation scheme 
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Two parameters specify precisely such an active phase: the green_offset and green_time, both measured in 

seconds (see Figure 5.) For simplicity, the majority of our experiments will have the active phase length fixed at 
60 seconds. We then associate each intersection with a DCEE agent, letting each agent control exactly one 
variable --- its signal scheme index. This index enumerates all possible traffic signal configurations, running from 
0 to 65 (see Figure 6.) Thus, index 0 maps to the tuple (0, 5), which is an active phase with no leading red, and 
five seconds of green time (followed by two seconds of yellow and 53 seconds of red). To translate the next 
index, we attempt to increase green_offset by a five-second interval, while keeping the total active phase length. 
Should this not be possible, we instead increase the offset by five seconds, and reset green time to five seconds. 
This results in a triangular translation table, stopping at (55,5), for a total of 66 possible combinations for the 
AIM signal format. 

Once the active phase has been determined, the entire signal layout for each direction (North-South, East-
West) will be specified as shown in Figure 7. Note that at any moment, only one direction is considered to be 
active (thus running the active phase signal scheme); the other direction is inactive, running the complementary 
signal scheme. 

 

Figure 5 Traffic light configuration that makes up an “active phase”' in the simulator 

 

 

Figure 6 The AIM signal scheme index, and its corresponding ($green\_offset$, $green\_time$) valueseconds. 

 

 

Figure 7 AIM signal scheme schematic, repeating after 120 seconds. 
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5.4.2. Canonical traffic light operation scheme 
This signal scheme operates with two parameters: green1, the duration of green split for phase 1, and C, the 

cycle length (Figure 8.) Aside from this, the translation process from the signal scheme index to actual Canonical 
signal scheme follows the same process as that for AIM, with a jump step of five seconds for both green1 and C. 
There are 54 available signal schemes for Canonical (see Figure 9). 

 

Figure 8 Canonical signal scheme schematic 

 

Figure 9 The Canonical signal scheme index 

5.5. Incoming traffic flows 

Using the aforementioned random generator, the Simulator will be responsible for spawning vehicles at 
spawnpoints, which are situated at the beginning of each lane heading into the network of intersections. The time 
interval between successive vehicles spawned follows an exponential distribution so that the arrival rate of 
vehicles at each spawn points obeys the Poisson process. Once created, a vehicle is assigned a destination lane 
through which it will exit the network. There is no U-turn allowed. The vehicle uses A*-search to determines the 
shortest path to get from the lane containing its spawnpoint to the exit lane. To simulate the random nature of 
traffic flows, each vehicle by default will pick a destination in a uniformly random manner.  

6. Experimental Setup 

6.1. DCEE algorithms 

For our experiments, we set up a 2x2 Manhattan grid, in which each road is two-way, each direction having 
one single lane. Thus, there are four traffic intersections, each controlled by a DCEE agent. Each experiment took 
90000 seconds. 

The experiments all had a one-hour warm-up period, during which the agents will assign random signal 
schemes to the traffic lights every 300 seconds. As soon as the traffic simulation begins, independent Evaluator 
threads will start collecting average delay and throughput metrics every 60 seconds. After the warm-up period, 
successive rounds of agents communicating and changing signal schemes took place. There was a cool down 
period of 600 seconds to allow the effect of the new traffic signal to take place. We had the vehicle spawn 
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rate {1800,300}λ∈ , corresponding to oversaturateed  and undersaturated traffic conditions, respectively. Each 
experiment for a given traffic level and algorithm is repeated 40 times. Data series were processed using a 
running average window of size 101. 

6.2. Isolated actuated traffic signal benchmark 

At the beginning, the same warm-up period is observed, after which the traffic lights are hardcoded to follow 
the procedures below: 
• Remembers the current active direction (with green time) {North-South/East-West}. For our discussion, let's 

assume the current active direction is North-South. 
• Scans the North and South incoming lane for vehicles within a distance of 30m, every 0.3 seconds. If there 

are no vehicles detected for North direction, then North gaps out. The same applies for the South direction. If 
and when both North and South direction gaps out, then change the active direction to East-West (going 
through the sequence of turning green-yellow-red clearance for North-South before turning green for East-
West.) 

• Keeps track of how long North-South has stayed in green. If and when the duration has exceeded max-greenNS  
, then also change the active direction to East-West in the same manner outlined above. 

• Repeats the above logic for East-West. 

6.3. Determining saturation flow rates 

One important variable required for calculating max-green  for isolated traffic actuated controllers are the 
saturation flow rates. A quick experiment was set-up to obtain these statistics. In the experiment, all spawnpoints 
other than spawnpoint #1 (spawning for the only lane of 1st Street East) were disabled, thus adding no vehicles to 
the system. Spawnpoint #1 was altered to ignore the Poisson process used to determine the time for the next 
vehicle to spawn, and instead would try to spawn new vehicles at every time-step. This represents the maximum 
incoming traffic rate scenario. All spawned vehicles from spawnpoint #1 were then set to always traverse the first 
encountered intersection in a turn direction { , , }STRAIGHT RIGHT LEFTω∈ . Each direction was measured using a 
separate experiment, and in each experiment, an integer counter tracked the number of vehicles successfully 
traversing the intersection in the correspondingω . 

Since each ω  involves a different curvature through the intersection, one would expect variation in average 
travel time, and hence the number of vehicles successfully traversing in a fixed amount of time. The result of the 
three experiments is outlined in Table 2. 

 

Table 2 Saturation flow rate experiments, N=40, runtime = 3000 seconds. 

ω  # vehicles 
LEFT 2721.12 0.913±  

THROUGH 2722.73 1.004±  
RIGHT 2721.94 1.118±  

6.4. Determining traffic flow profiles 

For each intersection, the traffic flow profile details the rate of incoming traffic from each direction, and for 
each turn direction, ω . 
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For simplicity, let us refer to the spawnpoint adjacent to an exit point by the same index.  Denote the volume 
(in vehicles/hour/lane) of vehicles spawning at spawnpoint a   and heading ultimately for exit point b   to be abV  . 

Also, denote mI α ω− −   as the volume of incoming traffic for intersection {1,2,3,4}m∈ (counter-clockwise from top 
left), coming from { , , , }EASTBOUND SOUTHBOUND NORTHBOUND WESTBOUNDα = of the intersection, and turning in 
direction ω  , as defined previously. 

Since the traffic simulator has been programmed to simulate the unpredictable nature of traffic, each vehicle 
spawned, in the uniform traffic volume case, will have automatically decided a random destination {1,...,8} { }d s∈ −  
, where {1,...,8}s∈  is the spawn location (thus, no U-turn). This means that each vehicle in the uniform traffic 
volume case has a one in seven chance to go to any of its valid seven destinations. This information, and 
symmetry, can help us estimate the traffic flow profile for each intersection. 

Now, consider 1 EASTBOUND RIGHTI − −   (Figure 10). The assumption that vehicles will try to take the shortest route to 
get to a given destination means that all vehicles from 1  wanting to reach 2  will all turn right to get there. 
However, a vehicle coming from 1   and wanting to get to 4   shall have two possible options for each case 
(Figure 10): turn right then left and right (dotted line), or go straight and then right and straight (dot-dash line). 
Since one cannot assume to know the driver's behavior or preferences when planning the signal controller, it is 
reasonable to assume an equal probability of vehicles turning right and going straight at intersection1  , since 
either decision lets the driver to traverse an equal distance to get to 4  . 
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Figure 10 Flow volume for 1 EAST RIGHTI − −  . Each dashed arrow is a possible path that the vehicles, having turn so, will take. 

Thus, denoting the uniform traffic incoming rate of λ  vehicles/hour/lane (at each spawnpoint), the following 
equation holds: 
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This way, the values for the remaining volume of incoming traffic for 1I  , and then, through symmetry, 3I  . 
With the above saturation flow rates (Table 2) and traffic volume profile for each and every intersection, the 

NSmax green−  and EWmax green−  parameters is determined through a software package  (PASSER (TM) V-09, 
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2011) for optimizing isolated traffic signal. Refer to Table 3 for settings regarding high traffic level (1800 
vehicles/hour/lane). For low traffic level (300 vehicles/hour/lane), both values are 15 seconds. 

 

Table 3 _max green  setting for isolated traffic actuated signal controller agents, 1800λ =  vehicle/hour/lane 

Agent ID _ ( )NSmax green seconds  _ ( )EWmax green seconds  
1 63 57 
2 57 63 
3 63 57 
4 57 63 

 

7. Results 

    While viewing the figures of the results, the reader should recognize that PURE-WARMUP experiments 
represent the case where the agents kept executing their warm-up sequence until the Evaluator threads died. In a 
sense, this case represents a benchmark of the worst possible performance of the system. Also, the 
ISOACTUATED experiments are scenarios where each traffic intersection is an isolated, traffic-actuated signal. 

7.1. AIM traffic light operation scheme 

Figure 11 and Figure 12 show the performance of the DCEE algorithms in high and low traffic conditions, 
matched against the state-of-practice benchmark of actuated isolated traffic signals. 

It is apparent that the DCEE algorithms have shown improvement in average link delay per vehicle over the 
course of the experiments for both over-saturated and under-saturated traffic levels. In particular, both K1 and 
K2 algorithms performed better than PURE-WARMUP over time, indicating performance increase over random 
action. 

This holds also in terms of average throughput for over-saturated traffic condition; the identical throughput 
performance of all experiments for under-saturated traffic condition was due to the fact that there was no 
backlogging of vehicles under all circumstances. 

Additionally, K1 outperforms K2 in terms of average link delay for each traffic condition. Last, there are 
instances where the DCEE algorithms outperform the state-of-practice of actuated isolated traffic lights. 



16 Author name / Procedia - Social and Behavioral Sciences 00 (20133) 000–000 

 

 

Figure 11 K1 and K2 performance using AIM signal scheme, high traffic 
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Figure 12 K1 and K2 performance using AIM signal scheme, low traffic 
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7.2. Canonical traffic light operation scheme 

The overall performance of the DCEE algorithms under this signal scheme are shown at high traffic level 
(Figure 13) as well as low (Figure 14.) Note that unlike the case with AIM signal scheme, K1 and K2 
algorithms' performance actually decreased over time for both average throughput and average link delay. This 
holds for both over-saturated and under-saturated traffic conditions. 

However, K1 outperforms K2 in both performance metrics and for each traffic condition. Additionally, K1 
managed to maintain a very stable performance level over time relative to K2, characterized by very stable 
standard deviation of average link delay. 
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Figure 13 K1 and K2 performance using Canonical signal scheme, high traffic 
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Figure 14 K1 and K2 performance using Canonical signal scheme, low traffic 
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8. Conclusion 

The aforementioned results show that: 
• With appropriate limitation of the action space in terms of signal schemes, the DCEE algorithms can enable 

the agent-based system of traffic lights to improve the traffic performance over time, albeit gradually. 
•  Performance of these naive algorithms is very sensitive to the signal scheme space employed. In particular, 

switching from the symmetric signal scheme type (AIM) to asymmetric signal scheme type (Canonical) 
actually decreased the agents' performance. Also, the frequency at which signal schemes are changed seem to 
be another important factor, evident by the fact that PURE-WARMUP can dominate over the DCEE 
algorithms under Traditional traffic light signal operation scheme. Finally, the number of agents able to 
change their signal schemes per round of coordination is also a differentiating factor, as K1 algorithm 
outperforms or performs as least as well as its K2 counterpart. This observation corroborates the team 
uncertainty penalty phenomenon which has been observed in other problem domain applications of the DCEE 
framework (Taylor, Jain, Tandon, Yokoo, & Tambe, 2011). 
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