The input (second component) in each ID is also legal.

If a computation is legal for a PDA P, then the computation formed by adding the same additional stack symbols below the stack in each ID is also legal.

If a computation is legal for a PDA P, and some tail of the input is not consumed, then we can remove this tail from the input in each ID, and the resulting computation will still be legal.

Conversely, data that P never looks at cannot affect its computation. We form points (1) and (2) in a single theorem.

Theorem 6.5: If $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a PDA, and $(q, x, \alpha) \xrightarrow{*}_P (p, y, \beta)$, for any strings w in Σ^* and γ in Γ^*, it is also true that $(q, xw, \alpha\gamma) \xrightarrow{*}_P (p, yw, \beta\gamma)$

Note that if $\gamma = \epsilon$, then we have a formal statement of principle (1) above, and if $\gamma = \epsilon$, then we have the second principle.

Proof: The proof is actually a very simple induction on the number of steps the sequence of ID's that take $(q, xw, \alpha\gamma)$ to $(p, yw, \beta\gamma)$. Each of the moves the sequence $(q, x, \alpha) \xrightarrow{*}_P (p, y, \beta)$ is justified by the transitions of P without using w and/or γ in any way. Therefore, each move is still justified when these strings are sitting on the input and stack. \square

Incidentally, note that the converse of this theorem is false. There are things that a PDA might be able to do by popping its stack, using some symbols of γ, and then replacing them on the stack, that it couldn’t do if it never looked at them. However, as principle (3) states, we can remove unused input, since it is not possible for a PDA to consume input symbols and then restore those symbols to the input. We state principle (3) formally as:

Theorem 6.6: If $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a PDA, and $(q, xw, \alpha) \xrightarrow{*}_P (p, yw, \beta)$

then it is also true that $(q, x, \alpha) \xrightarrow{*}_P (p, y, \beta)$. \square

6.1.5 Exercises for Section 6.1

Exercise 6.1.1: Suppose the PDA $P = (\{q, p\}, \{0, 1\}, \{Z_0, X\}, \delta, q, Z_0, \{p\})$ has the following transition function:

1. $\delta(q, 0, Z_0) = \{(q, XZ_0)\}$.
ID’s for Finite Automata?

One might wonder why we did not introduce for finite automata a notation like the ID’s we use for PDA’s. Although a FA has no stack, we could use a pair \((q, w)\), where \(q\) is the state and \(w\) the remaining input, as the ID of a finite automaton.

While we could have done so, we would not glean any more information from reachability among ID’s than we obtain from the \(\delta\) notation. That is, for any finite automaton, we could show that \(\delta(q, w) = p\) if and only if \((q, wx) \vdash^* (p, x)\) for all strings \(x\). The fact that \(x\) can be anything we wish without influencing the behavior of the FA is a theorem analogous to Theorems 6.5 and 6.6.

2. \(\delta(q, 0, X) = \{(q, XX)\}\).
3. \(\delta(q, 1, X) = \{(q, X)\}\).
4. \(\delta(q, \varepsilon, X) = \{(p, \varepsilon)\}\).
5. \(\delta(p, \varepsilon, X) = \{(p, \varepsilon)\}\).
6. \(\delta(p, 1, X) = \{(p, XX)\}\).
7. \(\delta(p, 1, Z_0) = \{(p, \varepsilon)\}\).

Starting from the initial ID \((q, w, Z_0)\), show all the reachable ID’s when the input \(w\) is:

* a) 01.

b) 0011.

c) 010.

6.2 The Languages of a PDA

We have assumed that a PDA accepts its input by consuming it and entering an accepting state. We call this approach “acceptance by final state.” There is a second approach to defining the language of a PDA that has important applications. We may also define for any PDA the language “accepted by empty stack,” that is, the set of strings that cause the PDA to empty its stack, starting from the initial ID.

These two methods are equivalent, in the sense that a language \(L\) has a PDA that accepts it by final state if and only if \(L\) has a PDA that accepts it by empty stack. However, for a given PDA \(P\), the languages that \(P\) accepts
(If) Suppose \((q_0, w, Z_0) \vdash_{P_F}^* (q, \epsilon, \alpha)\) for some accepting state \(q\) and stack string \(\alpha\). Using the fact that every transition of \(P_F\) is a move of \(P_N\), and invoking Theorem 6.5 to allow us to keep \(X_0\) below the symbols of \(\Gamma\) on the stack, we know that \((q_0, w, Z_0X_0) \vdash_{P_N}^* (q, \epsilon, \alpha X_0) \vdash_{P_N}^* (p, \epsilon, \epsilon)\). Then \(P_N\) can do the following:

\[(p_0, w, X_0) \vdash_{P_N} (q_0, w, Z_0X_0) \vdash_{P_N}^* (q, \epsilon, \alpha X_0) \vdash_{P_N}^* (p, \epsilon, \epsilon)\]

The first move is by rule (1) of the construction of \(P_N\), while the last sequence of moves is by rules (3) and (4). Thus, \(w\) is accepted by \(P_N\), by empty stack.

(Only-if) The only way \(P_N\) can empty its stack is by entering state \(p\), since \(X_0\) is sitting at the bottom of stack and \(X_0\) is not a symbol on which \(P_F\) has any moves. The only way \(P_N\) can enter state \(p\) is if the simulated \(P_F\) enters an accepting state. The first move of \(P_N\) is surely the move given in rule (1). Thus, every accepting computation of \(P_N\) looks like

\[(p_0, w, X_0) \vdash_{P_N} (q_0, w, Z_0X_0) \vdash_{P_N}^* (q, \epsilon, \alpha X_0) \vdash_{P_N}^* (p, \epsilon, \epsilon)\]

where \(q\) is an accepting state of \(P_F\).

Moreover, between ID's \((q_0, w, Z_0X_0)\) and \((q, \epsilon, \alpha X_0)\), all the moves are moves of \(P_F\). In particular, \(X_0\) was never the top stack symbol prior to reaching ID \((q, \epsilon, \alpha X_0)\).

Thus, we conclude that the same computation can occur in \(P_F\), without the \(X_0\) on the stack; that is, \((q_0, w, Z_0) \vdash_{P_F}^* (q, \epsilon, \alpha)\). Now we see that \(P_F\) accepts \(w\) by final state, so \(w\) is in \(L(P_F)\). \(\square\)

6.2.5 Exercises for Section 6.2

Exercise 6.2.1: Design a PDA to accept each of the following languages. You may accept either by final state or by empty stack, whichever is more convenient.

* a) \\(\{0^n1^n \mid n \geq 1\}\).

b) The set of all strings of 0's and 1's such that no prefix has more 1's than 0's.

c) The set of all strings of 0's and 1's with an equal number of 0's and 1's.

Exercise 6.2.2: Design a PDA to accept each of the following languages.

* a) \\(\{a^ib^jc^k \mid i = j \text{ or } j = k\}\). Note that this language is different from that of Exercise 5.1.1(b).

4Although \(\alpha\) could be \(\epsilon\), in which case \(P_F\) has emptied its stack at the same time it accepts.